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Background: An imbalance between total training load and total recovery may cause
overtraining (OT). The purpose of the present study was to verify the effects of OT on
the expression of brain-derived neurotrophic factor (BDNF), its receptor tropomyosin
receptor kinase B (TrkB) and p75 and the dynamic expression patterns of brain-
specific miR-34a and miR-124 or inflammation-related miR-21 and miR-132 in the
mouse hippocampus.

Method: Eight weeks old C57BL/6J mice were randomly assigned to the control (CON),
normal training (NT) and OT groups. An 8-week OT training protocol was applied to
evaluate the phenotype of mice endurance (incremental load test, ILT) and cognitive
capacity (Morris water maze test). We used qRT-PCR and immunoblotting to detect
changes in the molecular level of hippocampal samples.

Result: Compared with the CON, both NT and OT decreased bodyweight after 8-week
training. After 8-week of training, NT increased the exhaustion velocity (EV) while the EV
of OT was lower than NT. Mice in NT decreased the escape latency than CON. The
percentage of time spent in the probe quadrant and the number of crossing platform
times in NT were higher than CON and OT. The BDNF, p75 and TrkB mRNA levels
were increased in NT than CON, only the p75 mRNA was increased in OT. The NT
exhibited increased protein levels of BDNF and TrkB compared to CON. The protein
expression of BDNF was decreased in OT than NT and CON. The protein level of p75 in
the OT was higher than in NT and CON. In addition, the phosphorylation level of TrkB
in OT was higher than CON and NT. Only the miR-34a level was increased in the OT.
Moreover, the expression of miR-34a was found to be negatively correlated with the
expression of BDNF, and the increase in miR-34a level was accompanied by a decrease
in performance.
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Conclusion: In summary, the training-evoked increase in the BDNF level may help to
improve performance, whereas this conditioning is lost after OT. Moreover, miR-34a
potentially mediated changes in the expression of BDNF and may reflect the decrease in
performance after OT.

Keywords: treadmill training, hippocampus, miRNAs, overtraining, normal training

INTRODUCTION

Exercising regularly is a potent force of nature with significant
potential for maintaining body health throughout the lifespan.
Aerobic exercise modifies many molecular, physiological and
structural changes in humans and animals, particularly in the
hippocampus, the brain region critically important for memory
consolidation and learning (Hamilton and Rhodes, 2015).
Thus, exercise training has been recommended as a promising
therapeutic strategy for countering age-related changes in the
hippocampus, such as alterations in relational memory and
mnemonic discrimination (Voss et al., 2019). For example, it
has been shown that moderate exercise increases the size of
the hippocampus in humans, which is also linked to enhanced
memory (Erickson et al., 2011).

Neurotrophins are a family of closely related secreted
proteins that play an important role in promote nervous
development and neurite outgrowth (Levi-Montalcini, 1987).
Among them, brain-derived neurotrophic factor (BDNF) is
highly expressed in the brain, interacts with its receptor
tyrosine kinase TrkB and p75 to regulate nervous system
function like neuronal differentiation and survival, dendritic
pruning, the patterning of innervation, synaptic function and
plasticity in the central and the peripheral nervous system
(Skaper, 2018). Activation of Trkb by BDNF can regulate
the induction of hippocampal long-term potentiation (LTP)
which is an important mechanism of hippocampal learning
and memory (Kovalchuk et al., 2002). The p75 is a member
of the TNF receptor superfamily that can bind to BDNF and
transmits signals important for determining which neurons
survive during development (Huang and Reichardt, 2001). At
present, the precise molecular mechanisms regarding exercise-
mediated neurogenesis are still not fully known (Baptista
and Andrade, 2018; Cooper et al., 2018). Importantly, BDNF
is a candidate mechanism underlying these exercise-induced
benefits that help optimize brain plasticity outcomes via exercise
intervention (Baptista and Andrade, 2018; Cooper et al., 2018).
Acute high-intensity exercise increases the expression of BDNF
(Venezia et al., 2017). Furthermore, MicroRNAs (miRNAs),
small non-coding regulatory RNAs, are important regulators
of various cellular processes via several signaling pathways
relevant to exercise adaptation (Doma ńska-Senderowska et al.,
2019). Moreover, exercise-induced memory improvements are
accompanied by changes in the hippocampal miRNA-mRNA
regulatory network (Fernandes et al., 2018). In addition,
several specific miRNAs (brain-specific miR-34a; Agostini
et al., 2011), miR-124 (Sun et al., 2015), inflammation-
related miR-21 (Slota and Booth, 2019), miR-132 (Dong
et al., 2018) are involved in the regulation of biological

processes within the brain, including development, proliferation
and apoptosis.

High training loads are generally used to improve sports
performance during periodization phases. Emerging evidence
has indicated that recovery periods are important for athletes
to achieve an overcompensation period and to improve
their performance, and inappropriate load management is
a significant risk factor for acute illness and overtraining
(OT) syndrome (Meeusen et al., 2013). This process has been
defined as functional overreaching (FOR), nonfunctional
overreaching (NFOR) and overtraining syndrome (OTS;
Meeusen et al., 2013). At present, as OTS is a diagnosis
of exclusion, it is important to screen for inflammatory,
metabolic, hormonal, psychiatric, and infectious conditions that
may be the primary reason for the decrease in performance
(Meeusen et al., 2013). It is well established that mice
subjected to a downhill running-based OT protocol induces
the NFOR state (Pereira et al., 2012, 2014), which is defined
as a performance decrement that may be reversed after
weeks or months of recovery (Meeusen et al., 2013). This
protocol was used by our research group. Based on the
important role of BDNF and specific miRNAs in sustaining
the physiological processes of the brain, we verified the
effects of OT on BDNF/TrkB signaling and the dynamic
expression patterns of brain-specific miR-34a and miR-124
and inflammation-related miR-21 and miR-132 in the
mouse hippocampus.

We hypothesized that OT affects these key molecules, which
may be useful for monitoring OTS and better understanding the
negative adaptations that contribute to performance decrease.

MATERIALS AND METHODS

Experimental Animals
A total of 90 male C57BL/6J mice (8 weeks old) were ordered
from the Experimental of Beijing Vital River Laboratory Animal
Technology (Beijing, China) and every five mice were housed
in the same cages with a controlled temperature (22 ± 2◦C).
The mice were kept on a 12 h light/dark schedule (light: 9 AM
to 9 PM, dark: 9 PM to 9 AM) and provided access to food
and water. All mouse breeding and experimental procedures
were approved by the Nanjing University Animal Care and Use
Committee (ID: GPTAP014).

The rodents were randomly divided into three groups: the
control group (CON; sedentary mice; n = 30), normal training
group (NT; trained with adequate recovery, n = 30), the
group overtrained by downhill running (OT; performed the OT
protocol based on downhill running; n = 30). The experimental
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FIGURE 1 | Experimental design. Mice (normal training, NT: n = 30,
overtraining, OT: n = 30) exercised according to the training program,
including a treadmill training protocol and two incremental load tests (ILT).
During the second stage of the treadmill running protocol, the NT group ran
at Grade = −14%, Speed = 60% EV and Time = 60 min. Forty-eight hours
after the end of the last ILT, the mice were killed to take tissue samples (NT:
n = 15, OT: n = 15) or perform Morris water maze experiments (NT: n = 15,
OT: n = 15), respectively.

groups were trained or tested in an appropriately lit room
between 1 PM and 5 PM (Figure 1).

Acclimatization and Incremental Load Test
(ILT)
As previously described (Pereira et al., 2012), the NT and
OT groups were first acclimated to treadmill running (ZH-PT,
Zhenghua, Anhui, China) at 10 m/min with 0% inclination for

10min per day for a week (includes 5-day of treadmill adaptation,
1-day of ILT test, and 1-day of rest). Then, rodents performed the
ILT with an initial intensity of 6 m/min at 0% inclination with
3 m/min increments every 3 min until exhaustion, which was
defined as a mouse touching the end of the treadmill five times
in 1 min. The mice were encouraged using physical prodding,
and if a mouse became exhausted without completing the stage,
the exhaustion velocity (EV = V + (n/b)∗a, with V being the
completed maximum speed, n is the duration in the incomplete
stage, b being the duration of the stage, and a being the test
increment) was calculated (Kuipers et al., 1985). The EV of
each mouse was used to determine the intensity of the NT and
OT protocols.

Running OT Protocol and Performance
Evaluation
Briefly, each experimental week of the 8-week running protocol
consisted of 5 days of training followed by 2 days of recovery. The
mice were first adapted to treadmill running for 5 days, and the
exhaustion velocity (EV: m∗min−1) of each mouse was used to
determine the intensity of the exercise protocols. The CON group
did not perform any exercise. During the first 4 weeks (i.e., the
first stage) of the exercise protocol, the NT mice ran at a grade of
0%, the intensity was maintained at 60% of EV and the duration
was 60 min per day in the 4th week. From the 5th week to the
8th week of the exercise protocol, the intensity and duration were
maintained, but the rodents ran at a grade of −14%. The OT
protocol was the same as the NT protocol during the first stage
and the 5th week. However, in the 6th week of the OT protocol,
the intensity was increased to 70% of the EV. In the 7th week
of the OT protocol, the intensity and duration were increased
to 75% of the EV and 75 min, respectively. In the 8th week of
the OT protocol, the number of daily sessions was doubled than
the 7th week. The rest interval between daily sessions during the
8th week was 4 h (da Rocha et al., 2015; Pereira et al., 2015b).
Forty-eight hours after the end of the last training session in
week 8, the NT group and the OT group performed the ILT in
downhill running.

Morris Water Maze Test
Spatial learning and memory performance of mice was evaluated
by the Morris water maze test. The Morris water maze protocol
has been described in detail in Morris’s previous report (Morris,
1984). In brief, the mice were placed in opaque water of a
circular swimming pool and trained to find a platform hidden
below the water surface in target quadrants according to the
spatial cues in the experimental room. During the training to
find the hidden platform, the mice were allowed to swim for
a maximum of 60 s. One block of four trials per day (1 min
swimming time, inter-trial interval of 40 min) was performed
for five consecutive days. On the 6th day, mice were given a
60-s retention probe test during which the platform was removed
from the pool. Data were collected using a ceiling-mounted
video camera, and analysis by MobileDatum software (RD1101-
MWM-G, MobileDatum, Shanghai, China). All Morris water
maze tests were performed between 1 AM and 5 AM, and the
water temperature is maintained at 20± 2◦C.
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Hippocampus Extraction and
Immunoblotting Analysis
The mice were sacrificed 48 h after the last ILT test to eliminate
the effects of acute exercise stress. The hippocampus of each
hemisphere was surgically excised under sterile RNase-free
conditions, snap-frozen in liquid nitrogen and stored at −80 ◦C
until use.

The hippocampi were processed with a Tissuelyser machine
(Jingxin, Shanghai, China). The samples were lysed in
RIPA buffer and protease inhibitor cocktail, and the protein
supernatants were collected after centrifugation. The protein
concentration was calculated using the BCA Protein Assay
Kit (Thermo Scientific, Rosemont, IL, USA). Equal amounts
of protein were loaded on 12.5% SDS-polyacrylamide gels,
separated using electrophoresis, and then transferred to a PVDF
membrane (Bio-Rad, Irvine, CA, USA). The membrane was
blockedwith 5% skimmilk powder in TBST for 1 h and incubated
with primary antibodies (phosphorylation-TrkB Y705, 1:1,000,
Abcam, Cambridge, UK; TrkB, 1:1,000, Cell Signaling, Danvers,
MA, USA; p75NTR, 1:1,000, Cell Signaling, Danvers, MA, USA;
BDNF, 1:1,000, Proteintech Group, Inc., Rosemont, IL, USA;
β-actin, 1:1,000, Proteintech Group, Inc., Rosemont, IL, USA) at
4◦C overnight. The membrane was washed in TBST four times
for 10 mins each, and the membrane was incubated for 1 h with
anti-mouse IgG (1:10,000, Invitrogen, Carlsbad, CA, USA) or
anti-rabbit IgG (1:5,000, Abcam, Cambridge, UK). Thereafter,
themembrane was washed four times for 10min. The bands were
detected with the SuperSignal West Pico chemiluminescence
substrate (Thermo Scientific, Rosemont, IL, USA).

RNA Isolation
For RNA isolation, the frozen hippocampus was homogenized
using TRIzol reagent (Thermo Scientific, Rosemont, IL, USA)
according to the manufacturer’s protocol. The RNA quality and
quantity were measured using a Nanodrop spectrophotometer
(ND-1000, Thermo Scientific, Rosemont, IL, USA).

Quantitative Real-Time PCR (qRT-PCR)
For miRNA expression analysis, reverse transcription
was performed using miRNA-specific probes to generate
corresponding cDNA products. qRT-PCR was carried out
with a TaqMan PCR kit on a Roche LightCycler 480 ‖
sequence detection system. The real-time PCR conditions
consisted of a predenaturation step at 95◦C for 5 min, followed
by 40 cycles of 95◦C for 15 s and 60◦C for 1 min. The
following TaqManr miRNA assays used were: hsa-miR-132
(ID: 000457), hsa-miR-34a-5p (ID: 000426), hsa-miR-124-3p
(ID: 001182) and hsa-miR-21 (ID: 000397). All reactions,
including those for the reference controls, were run in
duplicate, and the Ct values were calculated. The Ct values
of the miRNAs were normalized to that of U6 snRNA, and
the relative levels of miRNAs were determined using the
formula 2−∆∆CT.

For mRNA expression analysis, the oligo (dT) method
(TaKaRa, Dalian, China) was used for the reverse transcription
of protein gene mRNA to generate cDNA. qRT-PCR was then
performed using SYBR Green dye (Invitrogen) and specific

TABLE 1 | The sequences of the primers used for amplification.

Forward primer Reverse primer

BDNF 5′-TCATACTTCGGTTGCATGA
AGG-3′

5′-AGACCTCTCGAACCTGCCC-3′

p75 5′-CTAGGGGTGTCCTTTGGA
GGT-3′

5′-CAGGGTTCACACACGGTCT-3′

TrkB 5′-CTGGGGCTTATGCCTGCTG-3′ 5′-AGGCTCAGTACACCAAATC
CTA-3′

primers for BDNF, p75 and TrkB. The specific primers were
designed using the NCBI primer design tool (Table 1). The
Ct values were determined by setting a fixed threshold. The
relative mRNA levels were normalized to that of β-actin using
the 2−∆∆CT method as described above.

Statistical Analyses
All statistical analyses were conducted using GraphPad Prism
5 software. The values are expressed as the means ± standard
errors of the means (SEM). According to Shapiro–Wilkes
W-test, the data were normally distributed, and the homogeneity
of the variances was confirmed by Levene’s test. Therefore,
one-way analysis (ANOVA) of variance was used to examine
the results of qRT-PCR. When one-way ANOVA indicated
statistical significance, Bonferroni’s post hoc test was performed.
The significance level was predetermined to be p < 0.05 unless
otherwise indicated.

RESULTS

Bodyweight and Incremental Load Test
Figure 2A shows the changes in body weight (g) in the
experimental groups during the experimental weeks. As
indicated in Figure 2B, bodyweight from week 0 to week 8 was
significantly lower for the OT group (8.43 ± 5.25%, p < 0.0001)
and NT group (12.68 ± 5.43%, p < 0.001) compared with
the CON group (20.79 ± 4.06%). In addition, it is important
to note that the bodyweight of the OT group tended to be
lower than that of NT, although the difference failed to reach
statistical significance.

As shown in Figure 2C, significant differences in EV were
not observed between the NT group (37.13 ± 10.91) and the
OT group (35.69 ± 9.01) during week 0. In addition, the EV of
the NT group (48.88 ± 7.28) was significantly greater than that
of the OT group (36.3 ± 7.67) during week 8. Compared with
that during week 0, the EV of the NT group (p < 0.05) increased
significantly during week 8, while there was no significant
difference in the EV of the OT group (p > 0.05).

Morris Water Maze Performance
The results showed that the escape latency of the three
experimental groups in the first 3 days was similar and there was
no significant difference in trial training (Figure 3A). NT group
(29.35 ± 14.35) significantly (P < 0.01) decreased the escape
latency by day 4 as compared to CON group (38.93 ± 14.43)
and remained significant on days 5 (NT:26.57 ± 15.52,
CON:32.36 ± 14.77, P < 0.01). From the 4th day to the fifth
day, the NT group showed a lower escape latency than the
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OT group, but the difference was not significant (P > 0.05).
Figures 3C,D shows the probe trial results, we found that
the NT group (36.07 ± 15.20%) showed a significant increase
in the percentage of time spent in the probe quadrant than
CON group (16.75 ± 11.14%, P < 0.01) and OT group
(20.72 ± 13.73%, P < 0.05). Similarly, we found that the
number of times in the NT group (3.61 ± 1.50) crossed the
original platform position was significantly increased compared
to the CON (2.05 ± 1.36, P < 0.05) and OT groups
(2.14 ± 1.83, P < 0.05). Representative swimming traces of the

three experimental groups during the probe test are shown in
Figure 3B.

Expression of mRNA
As shown in Figure 4A, we measured the mRNA expression
levels in the hippocampus in the three experimental groups. The
mRNA expression levels of BDNF were significantly higher in
the NT group than in the CON group (p < 0.05). Compared
with that in the NT group, the excessive training program
reduced BDNF expression in the OT group, but the mRNA

FIGURE 2 | Bodyweight (g) responses in the experimental groups during the experimental weeks (A). The percentage of body weight change between week 0 and
week 8 in the experimental groups (B). The effects of NT and OT group on the exhaustion velocity (EV), as determined during the ILT during weeks 0 and 8 (C). The
data represent the means ± SE of n = 15. CON: sedentary mice; NT: mice trained with adequate recovery; OT: mice that underwent the downhill running OT
protocol. *Statistical significance (P < 0.05); ***statistical significance (P < 0.001); ****statistical significance (P < 0.0001).

FIGURE 3 | The Morris water maze test results in the three experimental groups. The escape latency of the experimental groups (A). Representative samples of
swimming trace during the probe test phase on day 6 (B). The percentage time in target quadrant (C) and the number of crossing (D) during probe testing. The data
represent the means ± SE of n = 15. CON: sedentary mice; NT: mice trained with adequate recovery; OT: mice that underwent the downhill running OT protocol.
*Statistical significance (P < 0.05); **statistical significance (P < 0.01); ##statistical significance (P < 0.01) compared with the CON group on the 4th and 5th day.
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FIGURE 4 | The mRNA expression in the hippocampus in the three experimental groups. brain-derived neurotrophic factor (BDNF; A), TrkB (B), p75 (C). The data
represent the means ± SE of n = 15. CON: sedentary mice; NT: mice trained with adequate recovery; OT: mice that underwent the downhill running OT protocol.
*Statistical significance (P < 0.05); ***statistical significance (P < 0.001).

FIGURE 5 | The representative protein expression and phosphorylation level results of the three experimental groups are shown in figure (A). Protein levels (arbitrary
units) of BDNF (B), TrkB (C), p75 (D) and the respective β-actin controls in the hippocampus. pTrkB (E) shows the phosphorylation level of TrkB. The data represent
the means ± SE of n = 9. CON: sedentary mice; NT: mice trained with adequate recovery; OT: mice that underwent the downhill running OT protocol. *Statistical
significance (P < 0.05), **statistical significance (P < 0.01), ****statistical significance (P < 0.0001).

expression in the OT group was still higher than that in the
CON group. The relative mRNA expression of TrkB among
the different groups is shown in Figure 4B. The analysis of the
mRNA expression data showed that TrkB mRNA level in the
NT group was significantly higher than those in the CON group
(p < 0.001). There was a rise in the TrkB mRNA level in the OT
group compared with the CON group after 8 weeks of excessive
training, but there was no significant difference. The relative
mRNA expression of p75 among the different groups is shown
in Figure 4C. According to the data, the mRNA expression
of p75 was significantly increased in the NT and OT groups
compared with the CON group (p < 0.05).

Protein Expression and Phosphorylation
Level in the Hippocampus
Figure 5A shows that the protein expression and
phosphorylation levels in hippocampal tissue were different
among the three experimental groups. The relative expression
of BDNF (p < 0.05) and TrkB (p < 0.01) protein in the NT
group was significantly higher than that in the CON group
(Figures 5B,C). The protein expression of p75 was higher in the
NT group than in the CON group, but the difference was not
significant (p > 0.05; Figure 5D). The BDNF (p < 0.05) protein
expression level in the OT group were significantly decreased
compared with those in the CON group (Figure 5B). Compared
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with the CON group, the p75 (p < 0.01) protein expression
level in OT group was significantly increased, while the TrkB
protein expression was also increased but not significantly
(Figures 5C,D). In addition, the relative protein expression
of BDNF (p < 0.0001) and TrkB (p > 0.05) was lower in the
OT group than in the NT group, which significant only in
BDNF (Figures 5B,C). In contrast, the protein expression of
p75 (p < 0.05) in the OT group was significantly higher than
that in the NT group (Figure 5D). Figure 5E shows that the
phosphorylation level of TrkB in the OT groups was significant
increase than in CON (p < 0.05) group and NT (p < 0.05)
group. The phosphorylation of TrkB in the NT group was
higher than that in the CON group, but the difference was not
significant (p > 0.05). These results suggest that those protein
and phosphorylation level are differentially expressed in the
hippocampus as a result of different exercise protocols.

The Relative Levels of miRNAs in the
Hippocampus
As shown in Figure 6A, we examined the expression of
miR-34a in hippocampal tissue after excessive training by qRT-
PCR. The data showed that the expression level of miR-34a
was significantly upregulated in the OT group compared with
the CON group (p < 0.05). However, similar results were
not obtained by additional qRT-PCR analysis. Figures 6B–D
show the results of quantitative RT-PCR demonstrated that the
expression levels of miR-21, -124, and -132 in the NT and OT
groups were higher than those in the CON group, although the
differences failed to reach statistical significance.

Based on the fact that the protein expression of BDNF
decreased in the OT group, the relative expression of miR-34a
increased. We analyzed the correlation between the expression
of miR-34a and the relative protein expression of BDNF after
8 weeks of excessive training. As indicated in Figure 7, the
data showed that miR-34a was moderately negatively correlated
with BDNF protein level in hippocampal tissue (r = −0.6621,
p < 0.01).

DISCUSSION

The time frame of training and recovery may be important
parameters for performance gain and loss. Overall, the above
findings suggest that the OT protocol-induced increase in the
miR-34a level may be linked to a maladaptation condition;
thus, miR-34a may represent a distinction between adaptation
and maladaptation.

It is well established that the BDNF/TrkB signaling system
is one of the major systems involved in exercise-mediated
hippocampal neurogenesis in response to acute exercise and
adaptation to chronic exercise (Chou et al., 2018; Firth et al.,
2018; Liu and Nusslock, 2018; Hill and Polk, 2019). Many
mechanisms are involved in such adaptation, exerting significant
regulatory control over many facets of a neuronal function and
leading to the biological effects of the hippocampus, including
cognitive functioning and neurogenesis (Chou et al., 2018;
Firth et al., 2018; Liu and Nusslock, 2018; Hill and Polk,
2019). A previous study has shown that treadmill exercise in

mice increases BDNF expression by regulating BDNF mRNA
and protein expression in the hippocampus (Fahimi et al.,
2017). Similar changes were observed in the NT group in
the present study. BDNF and TrkB, as a BDNF-specific
receptor, are equally functionally dependent upon on one
another (Skaper, 2018), and the expression of TrkB has also
been found to be acutely increased in trained mice (Liu
et al., 2008). Moreover, the TrkB protein expression level is
positively correlated with passive avoidance performance (Liu
et al., 2008). Our study also showed that the TrkB mRNA
and protein levels in the NT group increased in the present
study. However, these positive changes were not found in
the OT group. Moreover, autophosphorylation of the TrkB
catalytic domain at tyrosine 705 is considered a critical step
in TrkB receptor activation, which followed by activation of
various signaling pathways (Huang and Reichardt, 2003). The
phosphorylation of TrkB at Y705 only increased in the OT
group. In addition, the mRNA level of p75, a tumor necrosis
factor receptor (Skaper, 2018), increased both in the NT and
OT groups. However, only the protein level of p75 increased in
OT groups.

Furthermore, in animal models, chronic exercise training
robustly increases the expression of BDNF and improves
memory performance; there is also reasonable evidence
to suggest that BDNF may mediate the exercise-memory
interaction (Loprinzi, 2019). Similarly, our study also showed
these changes. Moreover, the transmembrane domain of the
p75 stimulates phosphorylation of the TrkB during brain
injury, Alzheimer’s disease, and epilepsy (Saadipour et al.,
2017). Elevated p75 protein/TrkB phosphorylation levels were
also found in OT groups in our study, which likely indicated
maladaptation. Taken together, our results suggest that NT
mainly activates adaptive BDNF/TrkB signaling, while OT likely
involved p75 and TrkB phosphorylation. It is known that the
performance decrease induced by excessive training is a hallmark
of an NFOR/OT state (Meeusen et al., 2013). However, given
that some alterations found in OTS/NFOR/FORmay result from
overload training regardless of the performance state, alterations
may not always differentiate between OTS, NFOR and FOR but
instead indicate excess training.

Recently, it has been suggested that altered miRNA profiles
following exercise may be useful biomarkers of health and
adaptation for intervention strategies (Doma ńska-Senderowska
et al., 2019). Thus, monitoring the differential expression
of miRNAs related to molecular patterns of communication
triggered during/after exercise as a response may better
elucidate the recovery and adaptation/maladaptation responses
to the training load. Brain-specific miR-34a and miR-124 are
recognized as regulators of signaling pathways relevant to
neurophysiology and neuropathology (Agostini et al., 2011; Sun
et al., 2015). miR-34a, as a tumor suppressor transcript, is
abundantly expressed in the adult mammalian brain (Agostini
et al., 2011). Previous work has suggested that the pre-inhibition
or suppression of miR-34a improves neuronal survival in the
presence of a variety of neurotoxins implicated in Parkinson’s
disease (Horst et al., 2017). Its elevation may also play a role in
neuronal demise in animal models of Alzheimer’s disease, and
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FIGURE 6 | Expression of miR-34a (A), miR-21 (B), miR-124 (C) and miR-132 (D) in the hippocampus of the three experimental groups. The data represent to
means ± SE of n = 15. CON: sedentary mice; NT: mice trained with adequate recovery; OT: mice that underwent the downhill running OT protocol. *Statistical
significance (P < 0.05).

FIGURE 7 | Correlation between miR-34a expression and BDNF expression.
A direct negative correlation was observed between miR-34a expression and
the protein levels of BDNF in hippocampal tissue (r = −0.6621, p = 0.0052).

its suppression may be generally neuroprotective (Horst et al.,
2017). Moreover, swimming intervention can delay d-galactose-
induced brain aging in rats via suppressing miR-34a-mediated
autophagy impairment and abnormal mitochondrial dynamics
(Kou et al., 2017). However, an increase in miR-34a level in

the OT group was observed in the present study, indicating
that excessive training may activate these maladaptation
consequences. In addition, miR-124 is also the most abundant
miRNA in the brain (Sun et al., 2015). Furthermore, the
aberrant expression of miR-124 has been found to contribute
to pathological conditions involving the central nervous system
(Sun et al., 2015). A previous study also suggested that
exercise exerts a positive impact on stress resilience in singly-
housed mice that may be mediated by decreased miR-124
expression and increased Nr3c1 expression in the hippocampus
(Pan-Vazquez et al., 2015).

In addition, because muscle damage, inflammation, and
different training phase responses may normally occur during
exercise training or stress from OT designed to optimize
performance (Meeusen et al., 2013; Pereira et al., 2014; da Rocha
et al., 2017), it is critical to contextualize the assessment of
inflammation-related miRNA with other assays concurrently.
miR-132 has also been shown to be enriched in the mammalian
brain and has been found to be highly conserved and enriched
in neurons (Cheng et al., 2007). miR-132 has also been
reported to participate in toll-like receptors responses and
potentiates anti-inflammatory signaling (Shaked et al., 2009). In
mammalian neurons, when miR-21 is aberrantly expressed, it
contributes to inflammatory disease and has proinflammatory
effects (Sheedy, 2015). A previous study showed that voluntary
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exercise suppresses miR-132 expression in the hippocampus of
SAMP8 mice, which is associated with cognitive improvement
(Dong et al., 2018). In addition, both exercise and tamoxifen
have synergistic effects in reducing the expression of miR-21
in an estrogen receptor-positive breast cancer model to reduce
mammary tumor burden in mice (Khori et al., 2015). These
studies suggest that exercise may have positive effects on
pathological conditions through the miR-132/miR-21 pathway.
However, these changes have not been found in the NT group in
normal mice. In addition, OT did not affect these two miRNAs
in the present study.

Taken together, our study showed that with regard to
the selected miRNA, only miR-34a was responsive to OT.
More importantly, the increase in miR-34a level in the
hippocampus in mice was accompanied by a decrease in motor
and memory performance, and be negatively correlated with
the expression of BDNF, which plays an essential role in
exercise-induced neuroplasticity (Szuhany et al., 2015), likely
indicating that miR-34a may be involved in the maladaptation
consequence of OT. Training-induced phenotypicmaladaptation
is a consequence of repetitive stimulation from individual
exercise bouts. In addition, the body weight in the OT
group was unchanged in our study, although the low body
weight gain and food intake were related to exhaustive
training and OT (Pereira et al., 2015a). Thus, the precise
roles and activity of miR-34a in the hippocampus, which is
modulated by factors that control the expression of miR-34a,
as well as those of its downstream target genes and signaling
pathways, should be further investigated in relation to the
OT-response continuum.

CONCLUSION

Together, our findings of miR-34a-mediated BDNF changes
may provide new insight into the maladaptation physiological
responses to exercise and potentially make miR-34a a viable
target for monitoring OT.
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