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Abstract

Agricultural carbon emissions have become the constraints of agricultural low-carbon and

circular economy development in China. China’s agricultural production faces severe pres-

sures and challenges in agricultural carbon reduction. In this paper, we take observation for

the 31 provinces in china from 1997 to 2017, to explore the influencing factors and spatial

spillover effects of agricultural by estimating spatial panel data models. The results show

that China’s agricultural carbon emissions will continue to increase in the future, because

the growth of per capita gross domestic product (GDP) is the main driving force to acceler-

ate the growth of agricultural carbon emissions, but the agricultural input factors will help to

reduce the growth of carbon emissions. Moreover, it is proved that economic factors and

agricultural input factors have direct effects and spatial spillover effects on agricultural car-

bon emissions except for agricultural environmental factors. In the short term, strengthening

environmental protection may bring some pressure to the economic development of some

places, but to achieve high-quality development, we must fundamentally solve the problem

of environmental pollution. The conclusion provides important enlightenment and scientific

basis for formulating effective policies to curb the growth of CO2 emissions in China.

Introduction

The global warming caused by greenhouse gases has become the biggest threat to human

beings in the future. In 2018, global carbon dioxide emissions increased by 1.7%, the total

emissions reached the highest level in history (33.1 billion tons). Since 2017, China has become

the second largest source of greenhouse gases. Agricultural carbon emission is accounts for

17% of the national total [1]. If we do not take effective measures to reduce emissions, it is pre-

dicted that agricultural greenhouse gases will increase by 30% in 2050 [2]. Agriculture sector is

not only a major source of greenhouse gas emissions, but also, as one of the most vulnerable

sectors to climate change. Agricultural emission reduction is a binding goal incorporated into

the national economy, social development and long-term planning [3]. Agricultural carbon

emission reduction is an important way to improve the ability of agriculture to cope with
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climate change, and an important link to realize the sustainable development of agriculture

[4]. How to control the carbon emission caused by agriculture sector is a complex and impor-

tant issue.

China’s agriculture sector faces the dual objectives of ensuring food security and reducing

carbon emissions. In agricultural production, it is necessary to improve the output efficiency

of unit agricultural input, on the other hand, reducing the carbon consumption of unit output

is also essential [5]. The agricultural sector is considered to be the most difficult sector to

achieve carbon emission reduction goal. As the largest agricultural country, China gains the

largest agricultural production while also generating the largest carbon emissions. In recent

years, in order to ensure food security and increase agricultural production, the use of chemi-

cal fertilizer, pesticide and agricultural machinery has increased year by year. Moreover, due to

the increase of population and economic growth, the growth of agricultural carbon dioxide

emissions in China has been accelerated.

At present, the research on agricultural carbon emission mainly focuses on the calculation

of agricultural carbon emission and its driving factors [6–9]. Agricultural carbon emission

mainly comes from farmland utilization, paddy field, livestock intestinal fermentation and

manure management. Among them, agricultural land use carbon emissions (farmland ecosys-

tem carbon emissions), accounted for 34.29% of the total agricultural carbon emissions [10].

In order to explore the path of agricultural sustainable development, scholars have done a lot

of research on the influencing factors of agricultural carbon emissions, it involves different

countries and regions. However, the study mainly focused on the cross section data, focusing

on IPAT model of STIRPAT model environmental Kuznets curve, LMDI decomposition

model to analysis of influence factors in the whole, ignoring the due to the regional agricultural

production and operation of the geographical condition convergence, population flows, mode

of production and technology promotion and diffusion, regional agricultural production and

operation activities affect each other and function [1,5,9,11]. At present, there are also a few lit-

eratures using short-term panel data to quantitatively analyze the spatial characteristics and

driving factors of agricultural carbon emissions in China. However, it mainly focuses on the

analysis of the influencing factors in the provincial level, or studies on a specific industry, such

as vegetable planting, fruit tree planting, etc. [4,7,12,13].

The commonly decomposition model of carbon emission factors includes LMDI decompo-

sition method, Kaya identities and STRIPAT model [1,9,10]. Most of study found that, GDP of

planting industry, GDP of agriculture, regional GDP, total regional population and total rural

population, agricultural production efficiency, agricultural industrial structure, industrial

structure, regional economic development level, urbanization all of the factors have reflected

the influencing factors of agricultural carbon emissions [4,11,13]. Based on the above literature

analysis, some appropriate variables were selected in this paper, and the appropriate deforma-

tion of variables was carried out through statistical analysis.

Research on spatial characteristics shows that China’s carbon dioxide emissions are increas-

ing, with a gradual spatial agglomeration effect. In addition, the study also found that carbon

dioxide emissions varied widely between cities, and show a trend of increasing year by year.

The conclusion emphasizes how the importance of spatial characteristics of CO2 emission

between cities for emission reduction [14–17]. But the analysis of the agricultural carbon emis-

sions’ influencing factors mainly focuses on economy and population [6,14]. Few scholars

have explored the implicit constraints of agricultural economic and social development from

the perspective of input, neglecting technological progress, climate change, and the phenome-

non of increasing agricultural carbon emissions due to excessive pursuit of agricultural output.

This study attempts to build a spatial panel model, through panel data of 31 provinces from

1999 to 2017, to explore the influencing factors of agriculture carbon emissions in China and
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its spatial spillover effect. The study focuses on the following problems. Firstly, it proposed a

method to obtain agricultural carbon emission data at the micro level. Then, from the perspec-

tive of space, we analyze the distribution of China’s agricultural structure, economic growth,

technological level, agricultural investment, agricultural carbon emissions, and the spatial

auto-correlation of variables; Finally, this paper further studies the spatial spillover effect of

agricultural carbon emission factors on agricultural carbon emission. There are important the-

oretical and practical significance for reducing cross regional carbon emissions and promoting

economic cooperation addressing the above mentioned issues.

The framework of this paper is as follows. The next section describes the methods and data

used in model estimation. In Section 3, the research results are given, and the influencing fac-

tors and spatial spillover effects are explained. Finally, the paper gives the conclusion and pol-

icy enlightenment.

Methodology and data

Calculation of agricultural carbon emissions

When studying the influencing factors of agricultural carbon emissions, it is the first issue for

researchers to identify the sources of agricultural carbon emissions. According to the previous

studies (as shown in Fig 1). China’s agricultural carbon emissions involve agricultural activi-

ties, planting and aquaculture. Carbon dioxide is mainly emitted from agricultural activities,

especially factory agriculture and production mode [3,5,18]. In the process of agricultural pro-

duction, such as irrigation, the use of chemical fertilizer and energy, most aspects of agricul-

tural production will generate a lot of carbon emissions. In the paper, we focus on four key

points to explore the impacts of agricultural input on carbon emissions in agricultural.

According to IPCC (2007), agricultural carbon emissions can be calculated by formula (1):

C ¼
Xn

i¼1
Ci ¼

Xn

i¼1
Tidi ð1Þ

Where C stands for agricultural carbon emission, Ci is the different provinces of carbon emis-

sion, Ti is the different sources of carbon emission, and δi is the coefficient of different carbon

emission sources.

In this paper, agricultural carbon emission sources are divided into three parts: carbon

emission from agricultural production activities, CO2 emission from rice crop production,

and CO2 emission from livestock and poultry.

Fig 1.

https://doi.org/10.1371/journal.pone.0240800.g001
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Through Eq (2), the carbon emission of agricultural production activities is estimated:

Ca ¼
Xn

i¼1
Wiεi ð2Þ

Where, Ca is the carbon emission from agricultural production activities, and Wi is the con-

sumption of fertilizer, pesticide, agricultural plastic film and agricultural diesel oil, and the

coefficient of εi is shown in Table 1.

In the calculation of rice planting and animal husbandry. First we calculate methane emis-

sions, and then we convert it to CO2 equivalent.

Methane produced by rice cultivation is the main source of carbon emission. Rice mainly

involves early season rice, semilate rice and late season rice. In this paper, rice is selected as the

research object, and the emission coefficient of rice is referred to Wen et al. [14], the carbon

emission generated in difference of rice growth is calculated by formula (3).

Cr ¼
Xn

i¼1
Nimi ð3Þ

CH4 emission from animal husbandry mainly comes from the formation of animal feces

and fermentation of stomach. The main animal husbandry in China includes cattle, mules,

horses, camels, donkeys, pigs, sheep and poultry. According to IPCC (2007) and [22] different

animal husbandry emission coefficients, CH4 emissions of 8 animal husbandry are estimated

by formula (4) (see Table 2).

Cr ¼
Xn

i¼1
Sigi ð4Þ

Where, Si is the quantity of different livestock and γi is the emission coefficient of correspond-

ing livestock.

Descriptive analysis of data

Considering the availability of data and the quality of data, this paper selects the panel data of

31 provinces from 1999 to 2017. The original data are mainly collected from China Statistical

Yearbook, China Agricultural Yearbook, China Agricultural data collection and China Rural

Yearbook. Through calculation, we can get the carbon emissions generated by agricultural

activities, crop production and livestock in 1999–2017. The calculation results are shown in

Table 1. Carbon emission coefficient of major agricultural production activities.

Carbon Emission Source Carbon Emission Factor Literature sources

Fertilizer 0.8956 kg c/kg [19]

Pesticide 4.9341 kg c/kg [20]

Agricultural Irrigation 266.48 kg c/hm2 [19]

Agricultural Diesel 0.5927 kg c/kg IPCC (2007)

Agricultural Plastic Film 0.8956 kg c/kg [21]

https://doi.org/10.1371/journal.pone.0240800.t001

Table 2. CH4 emission coefficient of various livestock (kg/head).

Sources Poultry Sheep Pig Donkey Camel Horse Mule Cow

Intestinal fermentation 0 5 1 10 46 18 10 59.7

Manure 0.02 0.16 3.5 0.9 1.92 1.64 0.9 8.75

Sources: IPCC (2007) and Chen [22].

https://doi.org/10.1371/journal.pone.0240800.t002
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Fig 2. The Fig 3 show average proportion of emissions from each carbon source from 1999 to

2017.

Our results indicate change characteristics of agricultural carbon emissions as show in the

Fig 2: the evolution characteristics of China’s carbon emissions show the track of “stable-

Fig 2.

https://doi.org/10.1371/journal.pone.0240800.g002

Fig 3.

https://doi.org/10.1371/journal.pone.0240800.g003
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fluctuation-stable”. After 2008, the carbon emissions have increased steadily. Our results reveal

agricultural carbon emissions may have an increasing trend in the future [23].

Based on the above results, we speculate that the following reasons may affect agricultural

carbon emissions: First of all, since the subprime crisis in 2008 in the United States, the sharp

decline in demand from the United States has led to the bankruptcy of a large number of enter-

prises in the Pearl River Delta, and a large number of migrant workers in China have lost their

jobs and returned home to engage in agricultural production. The population flow leads to the

increase of agricultural production activities, which leads to the increase of carbon emissions

in 2008. Therefore, the urbanization level is considered as one of the influencing factors of

agricultural carbon emissions.

Secondly, it is found that the variation trend of agricultural carbon emissions in China is

mainly determined by the carbon emissions from rice growth and livestock activities. There

are two inflection points for agricultural carbon emissions in China: The first turning point

was in 2003, which was caused by the reduction of rice carbon emissions. In 2003, rice leaf curl

disease broke out in China due to abnormal climate, which caused serious losses to rice pro-

duction in China. This has resulted in a significant reduction in rice production and a sudden

change in carbon emissions. Based on this, this paper introduces the degree of natural disasters

to measure the change of agricultural carbon emissions. The second turning point was in

2007, the reduction of carbon emissions from animal husbandry led to the reduction of agri-

cultural carbon emissions. Since the end of 2003, the highly pathogenic H5N1 avian influenza

has witnessed an unprecedented outbreak, sweeping across Asia and some European coun-

tries. In 2005, avian influenza spread widely in China, which led to a significant decline in

poultry breeding industry in 2006. Therefore, agricultural carbon emissions in 2006 were

greatly reduced. Moreover, our results show that after 2006, the carbon emission of agricul-

tural activities and rice growth in China has increased gradually, but the livestock industry has

decreased year by year. The above analysis proves the impact of agricultural structural changes

on agricultural carbon emissions.

Through effectively identifying the influencing factors of agricultural emission reduction,

we can establish and perfect the rational agricultural emission reduction target system. Based

on the analysis of data statistics and literature, this paper selects the influencing factors from

agricultural input, social economy and agricultural environment. Then effectively guarantee

the realization of the goal of agricultural emission reduction.

Construction of spatial weight matrix (SWM)

In the paper, we using the simple binary 0–1 space weight matrix as Wij, the space weight

model of the research scope is established.

Wij ¼
1; When regin i is next to region j

0; When regin i is not next to region j

(

ð5Þ

As shown in the formula in (5), the According to the above equation, if the two regions are

adjacent, the corresponding weight element value is 1; if the two regions are not adjacent, the

corresponding element value is 0. Finally, we normalize the row so that the sum of its elements

is 1.

In the above analysis, we calculated the agricultural carbon emissions (CO2) of each prov-

ince, and took this as the dependent variable. Agricultural carbon emissions are affected by

many factors, such as economic development, energy consumption structure, industrial struc-

ture, urban, rural structure, and technological progress. Referring to the existing research

influencing factors, considering the difference between land and population size between each
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province, we choose the influencing factors from three aspects of agricultural input, social

economy and agricultural environment as explanatory variables. Among them, agricultural

investment includes rural electricity consumption (E), per capita mechanization level (DL),

total amount of fertilizer application (F); social economy involves per capita agricultural gross

product (AGDP), proportion of agricultural output value (P), urbanization level (U); finally,

we use disaster area (A) to measure agricultural development. Considering the skew distribu-

tion, all variables are logarithmically transformed before the input model. Then, the spatial

panel data model is used to estimate the factors affecting China’s agricultural carbon emissions

and their spatial spillover effects. Establish spatial lag model, such as formula (6). The descrip-

tive statistical analysis of these variables is shown in Table 3.

ln CO2it ¼ aþ b0

Pn
j¼1

Wij ln CO2it þ b1 lnAGDPit þ b2DLitþ

b3 ln Fit þ b4 lnUit þ b5 lnAit þ b6 ln P þ b7 ln Eit þ εit
ð6Þ

Where i is the province and t is the time. Wij is a 0–1 spatial weight matrix and an economic

distance weight matrix. ifit refers to individual fixed effect, tfit represents the time fixed effect.

The spatial error models are constructed as in formula (7)

ln CO2it ¼ aþ r
Pn

j¼1
WijCO2it þ εitþb1 lnAGDPit þ b2DLit

þb3 ln Fit þ b4 lnUit þ b5 lnAit þ b6 ln P þ b7 ln Eit

ð7Þ

The spatial Durbin model is constructed as in Eq (8):

ln CO2it ¼ aþ b0

Pn
j� 1

Wij ln CO2it þ b1 lnAGDPit þ b2 ln Fit þ b3 ln Pit

þb4 lnUit þ b5 lnAit þ b6 lnDLit þ b7 ln Eit þ φit þ s1

Pn
j� 1

Wij ln Eit

þs2

Pn
j� 1

Wij lnAGDPit þ s3

Pn
j� 1

Wij ln Fit þ s4

Pn
j� 1

Wij ln Pit

þs5

Pn
j� 1

Wij lnUit þ s6

Pn
j� 1

Wij lnAit þ s7

Pn
j� 1

Wij lnDLit

þifit þ tfit þ εit

ð8Þ

The spatial Doberman model reflects the impact of local agricultural input, social economy

and agricultural development on carbon emission and its spatial spillover effect.

Spatial auto-correlation test

The first law of geography believes that a certain spatial attribute value on a geographic unit is

related to the same spatial attribute value of its adjacent units, the closer the space is, the

greater the relevance will be. The attribute value of the geographical space is dependent on the

space. The traditional regression model cannot measure the spatial relationship, and the spatial

Table 3. Descriptive analysis of variables.

Category Variables Unit Observations Min Max Mean Standard Deviation

Dependent variable CO2 million ton 589 42.1 2238.42 846.86 534.4

Agricultural input DL Million Kilowatts/per 589 91.5 13353 2507.653 2577

F million ton 589 2.5 716 163.78 135.3

E TWh 589 0.2 1869.3 175.19 293.47

Social economy AGDP Ten thousand yuan /person 589 0.037 1 0.246 0.165

P % 589 0.0039 0.38 0.13516 0.07

U % 589 0.1683 0.9 0.46785 0.16

Agricultural development A thousand hectares 589 0 7394 1302.926 1127.39

https://doi.org/10.1371/journal.pone.0240800.t003
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measurement model can well solve the problem of the regression of the spatial dependence of

the geography. Taking into account the mobility of pollutant emissions between regions and

the diffusion of technological innovations, the influencing factors of agricultural carbon emis-

sions in a region are unavoidably affected by the influencing factors of neighboring regions.

In order to control the spatial auto-correlation effect of dependent variables, spatial panel

data model is used to test the influencing factors and spatial spillover effects in this study.

Compared with general panel data model, spatial panel data model considers spatial effects

including spatial dependence and spatial spillover effect. In contrast to the cross-section

model, spatial panel data can capture the individual consistency of spatial units, then effec-

tively avoid the loss of variables and estimation errors.

Before use the spatial analysis, we test the explanatory variables for multiple linearity first,

and the results are shown in Table 4: the variance inflation factor (VIF) value of all variables is

less than 10, so there is no collinearity problem between variables. In addition, due to the

regression of spatial panel data, the problem of multicollinearity can be reduced, which mak-

ing parameter estimation more effective.

Before using the spatial model, a series of spatial Lagrangian tests are used to verify the

rationality of introducing spatial effects into the general panel data model. This study considers

the spatial factors of the 2017 agricultural carbon emission impact model. As shown in

Table 5, the test results show that the non-fixed effect model, spatial fixed effect model and

time fixed effect model have significant results, reject the original hypothesis, and there is spa-

tial effect in the data sample. The above results show that the spatial panel model is superior to

the traditional panel data model without spatial effect. Spatial econometric models should be

used to capture the spatial correlation of factors affecting agricultural carbon emissions at the

provincial level.

Spatial characteristics of agricultural carbon emissions

Spatial auto-correlation analysis is used to verify whether the selected samples have spatial

auto-correlation. This section uses global Moran’s I to test the spatial correlation of agricul-

tural carbon emissions and their influencing factors. Wij represents a standardized spatial con-

nection matrix. Global Moran’s I calculation formula (9).

GlobalMoran0sI ¼
m
Pn

i¼1

Pn
j¼1

wijðxi � �xÞ

ð
Pn

i¼1

Pn
j¼1

wijÞ
Pn

i¼1
ðxi � �xÞ2

ð9Þ

Where m is the number of spaces, xi, xj represents the space index i, j, respectively. Global

Moran’s I ranges from—1 to 1. The closer the calculation result is to 1, the more obvious the

spatial clustering area is, the closer it is to—1, indicating that there are more discrete

Table 4. Collinearity test of variables.

Variables VIF

LnDL 4.36

LnAGDP 1.45

LnF 4.94

LnE 1.45

LnA 1.45

LnP 2.72

LnU 2.79

The mean values of VIF 2.73

https://doi.org/10.1371/journal.pone.0240800.t004
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distribution trends in the spatial memory. The value of the Global Moran’s I closer to 1, it

shows that the more obvious the spatial clustering area is; The value of the Global Moran’s I

closer to -1, it shows that there are more discrete distribution trends in space.

As shown in Fig 4, the Moran’s I value of agricultural carbon emissions is greater than 0. The

results show that there is a significant positive auto-correlation relationship between the provin-

cial carbon emissions in China. The value of Moran’s I is positive, means that regions with high

agricultural carbon emissions (high group provinces) tend to be distributed together, similar to

regions with low emissions (low group provinces). From 1999 to 2017, the global Moran’s I

value decreased, indicating that the cohesion trend of China’s agricultural carbon emissions

decreased. In general, the spatial auto-correlation test results show that it is necessary to build a

spatial panel data model to measure the influencing factors and spatial spillover effects.

To represent the auto-correlation of different units, Fig 5 shows the Moran’s I scatter distri-

bution of the selected variables in 2017. Each quadrant represents different clustering types: In

the first quadrant, HH represents high value points surrounded by similar points; plotted in

the second quadrant is LH represents low value points surrounded by high value points; the

third quadrant is LL represents low value points surrounded by similar points; in the fourth

quadrant, HL represents high value points surrounded by low value points. Moran’s I scatter

plot shows that the spatial auto-correlation factors rank U>E>P>DL>F>A>AGDP. Among

them, the value of provincial agricultural carbon emission is 0.1304. The statistical results

show that most of the points are concentrated in HH and LL clusters. This is another evidence

of spatial auto-correlation. It is proved again that the spatial auto-correlation of variables has

an important influence on model estimation.

In order to visualize the spatial clustering pattern of each variable more intuitively, Fig 6

shows a specific geographical distribution corresponding to provincial agricultural carbon

emissions in 2017. According to Lisa map, 75% of provincials in China’s were in the H-H clus-

ter: Jiangsu, Anhui and Hubei. In these regions, the provincial agricultural carbon emissions

Table 5. Estimation results of non-spatial panel model and LM test.

Variables Mixed estimation model Individual fixed effect model Time fixed effect model Random effect model

LnAGDP 0.33(���) 0.2(���) 0.36(���) 0.19(���)

LnF 0.27(���) 0.05(���) 0.26(���) 0.077(���)

LnE 0.13(���) -0.06(���) 0.13(���) -0.02

LnP 0.23(���) 0.048(���) 0.18(���) 0.085(���)

LnU -0.93(���) -0.07(���) -1.08(���) -0.09(���)

LnA 0.03(���) 0.00 0.03(�) 0.004

LnDL -0.01 0.11(���) -0.04(�) 0.1(���)

_cons 4.75(���) 6.7(���) 4.6(���) 6.5(���)

R2 0.80 0.88 0.92 0.65

Adj-R2 0.80 0.88 0.90 0.62

LM spatial lag 40.2(���) 16.8(���) 38.6(���) 0.30

Robust LM spatial lag 38.6(���) 0.09 39.65(���) 0.40

LM spatial error 3(���) 0.08 39(���) 1.00

Robust LM spatial error 50(���) 0.09 42(���) 1.00

Note:

���denotes the significance levels of 1%;

��denotes the significance levels of 5%;

�denotes the significance levels of 10%.

https://doi.org/10.1371/journal.pone.0240800.t005
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were high, and the carbon emissions of adjacent regions were also high. Guizhou Province is in

the cluster of L-H. That means although the agricultural carbon emission of Guizhou Province

is relatively low, the agricultural carbon emission of its neighboring provinces is relatively high.

According to the cluster diagram of Lisa, independent variables have 39 data points (49% of

the total data) in H-H region (these points and the data in the adjacent regions are higher).

The data points located in H-H region are mainly concentrated in the agricultural region of

north china plain, the middle and lower reaches of the Yangtze river agricultural region, the

northeast agricultural region and the southwest agricultural region. These agricultural produc-

tion areas are mainly plains, which contribute up to 80% of China’s grain production. Sec-

ondly, 26% of the areas are in the L-L quadrant, mainly concentrated in Xinjiang and the

northwest provinces. The modernization level and economic development of these areas are

relatively backward, so the data of these points and adjacent areas are relatively lower. The sec-

ond quadrant and the fourth quadrant are L-H and H-L respectively. There are 15% of the

dependent variables in L-H quadrant, mainly concentrated in Guizhou, Shanxi, Anhui, Jilin,

Qinghai and Hebei. The adjacent areas of these regions are mainly coastal provinces and devel-

oped cities such as Beijing. Our findings indicate that the level gap between the provinces in

L-H region has not been narrowed.

Results and interpretation

Table 6 shows the estimation results of four spatial panel data models. Random effect model or

fixed effect model are selected for each model by Hausman test. If the Hausman statistic is less

Fig 4.

https://doi.org/10.1371/journal.pone.0240800.g004
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than 0, it can accept the original hypothesis of random effect (H0: Individual effects are inde-

pendent of regression variables) [23]. In order to further verify the results of model selection,

GPM, SAR, SEM, SAC and SDM models are estimated and compared. The experimental

results show that for GPM model, SAR model and SAC model, the value of the Hausman is

more than 0, The results show fixed effect model is more suitable than the random effect

model, while for SEM and SDM the random effect model is more effective than the fixed effect

model. Because the overall R2 within estimation of SDM model is higher than other models, it

can be considered as a relatively good regression model. Therefore, in the following analysis,

we mainly explain the influencing factors according to the estimation results of SDM random

effect model.

Fig 5.

https://doi.org/10.1371/journal.pone.0240800.g005

Fig 6.

https://doi.org/10.1371/journal.pone.0240800.g006
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Analysis of direct effects

Table 7 calculates the influencing factors of agricultural carbon emissions at provincial level in

China. The results show that the direct average effect coefficients of AGDP, F, E, U and DL are

0.16, 0.043,—0.04,—0.041 and 0.1, respectively. In other word, when AGDP, F and DL

increase by 1%, agricultural carbon emissions will increase by 0.16%, 0.044% and 0.1%, respec-

tively. The above data indicate that the AGDP is the direct driving factor of agricultural carbon

emissions, followed by DL. Although the use of agricultural fertilizer has a certain effect in pro-

moting agricultural carbon emissions, it has a smaller effect compared with the former two.

Contrary to the above variables, the direct effect of rural electricity consumption and

urbanization on agricultural carbon emissions is—0.04%, at a significant level of 1%. The data

show that when the power level and urbanization level increase by 1%, the agricultural carbon

emissions will be reduced by 0.04%. The increase of agricultural electric power use and popula-

tion aggregation to cities may directly inhibit agricultural carbon emissions in China. The

model shows that increasing power supply and accelerating urbanization are effective ways to

reduce agricultural carbon emissions. Feedback effect refers to that the explanatory variables

of a certain region will affect the explanatory variables of “neighboring” areas, which in turn

will affect the explained variables of the region. The feedback effect of E is -0.14, which means

that affected by neighboring provinces, the feedback effect can reduce the agricultural carbon

emissions of the original provinces. The feedback effect of U is -0.001, which means that

affected by neighboring provinces, the feedback effect can reduce the agricultural carbon emis-

sions of the original provinces.

Space spillover effect

Compared with the average direct effect and the estimated coefficient, the average total effect

can reflect the actual effect of the influencing factors more comprehensively. The total positive

Table 6. Spatial panel data model estimation results.

Variable GPM(FE) SAR (FE) SEM (RE) SAC (FE) SDM (RE)

lnAGDP 0.15 (���) 0.118(���) 0.16(���) 0.16(���) 0.15 (���)

lnF 0.05 (���) 0.045(���) 0.05(���) 0.038 (���) 0.041(���)

lnE -0.011 -0.06 -0.0164 -0.017(�) -0.012

lnDL 0.1(���) 0.08 (���) 0.1(���) 0.1 (���) 0.086(���)

lnA -0.005 -0.0041 -0.005 -0.0046(�) -0.004

lnP 0.08(���) 0.058 (���) 0.076 (���) 0.06 (���) 0.03 (�)

lnU -0.024 -0.02 -0.024 -0.008 -0.04 (�)

constant 6.8 (���) 6.63(���) 3.6 (���)

lag lnA 0.011

lag lnP -0.18 (���)

lag lnE -0.18 (���)

Statistics

R2 between 0.6 0.32 0.6 0.52 0.13

R2 overall 0.6 0.3 0.52 0.5 0.13

R2 within 0.31 0.3 0.3 0.3 0.4

Note:

���denotes the significance levels of 1%;

��denotes the significance levels of 5%;

�denotes the significance levels of 10%.

https://doi.org/10.1371/journal.pone.0240800.t006

PLOS ONE The influencing factors and spillover effects of interprovincial agricultural carbon emissions in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0240800 November 4, 2020 12 / 17

https://doi.org/10.1371/journal.pone.0240800.t006
https://doi.org/10.1371/journal.pone.0240800


effects of AGDP, F and DL on agricultural carbon emissions are 0.32, 0.0083 and 0.18 respec-

tively. On the contrary, P, E and U have inhibitory effects on agricultural carbon emissions,

with coefficients of -0.29, -0.37 and -0.075, respectively. Among them, the average total effect

of P mainly comes from the spatial spillover effect. Due to the influence of spatial spillover

effect in the results, it is likely to distort the actual effect of the influencing factors by using the

estimated coefficients in Table 4 for analysis, directly. So the total, direct and indirect effects

among variables should be further calculated. Among the influencing factors we explored, per

capita agricultural GDP can be considered as the main driving factor of agriculture. Consider-

ing the population factor, with the continuous growth of social economy and the increase of

per capita agricultural GDP, China’s agricultural carbon emissions will inevitably continue to

grow. The spatial spillover effect of AGDP is 0.14% (at a significant level of 1%), which indi-

cates that the increase of AGDP in the province will not only promote the growth of agricul-

tural carbon emissions in the original province, but also promote the increase of agricultural

carbon emissions in neighboring provinces. In addition, the use of agricultural fertilizer and

the degree of agricultural machinery will also increase agricultural carbon emissions. Machin-

ery substitutes for labor, which increases the consumption of diesel, electricity and other

energy sources, leading to the increase of agricultural carbon emissions. At the same time, the

research results show that the increase of per capita agricultural GDP and rural electricity con-

sumption can not only increase the carbon emissions of the province, but also affect the carbon

emissions of neighboring provinces.

Table 7. The direct, indirect, and total effects of explanatory variables.

Variable Effects SDM (RE) SAC (FE) SAR (FE)

lnAGDP Average direct effect 0.16(���) 0.16(���) 0.13(���)

Average indirect effect 0.14(���) -0.05(���) 0.114(���)

Average total effect 0.32(���) 0.12(���) 0.24(���)

lnF Average direct effect 0.043(���) 0.04(���) 0.047(���)

Average indirect effect 0.04(���) -0.01 (���) 0.042(���)

Average total effect 0.083(���) 0.03(���) 0.09(���)

lnE Average direct effect -0.04(���) -0.016 -0.033(���)

Average indirect effect -0.33(���) 0.0046 -0.03(���)

Average total effect -0.37(���) -0.012 -0.066(���)

lnDL Average direct effect 0.1(���) 0.1(���) 0.088(���)

Average indirect effect 0.08(���) -0.03(���) 0.078(���)

Average total effect 0.18(���) 0.07(���) 0.166(���)

lnA Average direct effect -0.003 -0.0046 -0.0044

Average indirect effect 0.017 0.0013 -0.0041

Average total effect 0.014 -0.0033 -0.0085

lnP Average direct effect 0.008 0.063(���) 0.065(���)

Average indirect effect -0.3(���) -0.02(���) 0.06(���)

Average total effect -0.29(���) 0.043(���) 0.125(���)

lnU Average direct effect -0.041(�) -0.01 -0.0225

Average indirect effect -0.34 0.0029(���) -0.02

Average total effect -0.075(�) -0.0071 -0.04

Note:

���denotes the significance levels of 1%;

��denotes the significance levels of 5%;

�denotes the significance levels of 10%.

https://doi.org/10.1371/journal.pone.0240800.t007
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The results show that the increase of rural electricity consumption, urbanization level and

the proportion of agricultural output value will reduce agricultural carbon emissions. Among

them, rural electricity consumption has the maximum average elasticity of total effect, and its

total effect is less than 0. It can be considering that increasing rural electricity consumption is

the main way to reduce agricultural carbon emissions. According to the data survey, the pro-

portion of new energy power generation in China has increased from 17.8% in 2000 to about

30% in 2017. China’s agricultural activities are mainly based on electricity and energy. There-

fore, the increase of renewable energy power generation can directly reduce agricultural car-

bon emissions. At the same time, the research shows that the total effect of rural electricity

consumption mainly comes from the spatial spillover effect, it shows that compared with the

original provinces, the increase of rural power consumption has more obvious impact on

neighboring provinces.

The increase of urbanization level can reduce agricultural carbon emissions, mainly

through direct effects on agricultural carbon emissions, compared with the effect of the origi-

nal provinces, the increase of rural power consumption has more obvious effect on the emis-

sion reduction of neighboring provinces. The increase of urbanization level can reduce

agricultural carbon emissions, mainly through the direct effect on agricultural carbon emis-

sions. As the flow of rural population has led to the decrease of agricultural workers, moreover,

the growth of agricultural production materials such as chemical fertilizer and pesticide has

slowed down or negative growth, which has led to the reduction of agricultural carbon emis-

sions. The proportion of agricultural output value in the primary industry mainly affects the

agricultural carbon emissions through spillover effect. The proportion of agricultural output

value in the primary industry mainly affects the agricultural carbon emissions through spill-

over effect. This study once again confirmed the emission reduction effect of agricultural eco-

nomic structure, so we should further play its role in regional emission reduction. The

proportion of traditional agriculture should be further reduced in the eastern developed areas

where the proportion of agriculture is relatively low, give more attention to central and west-

ern regions with more comparative advantages. Meanwhile, strengthen the division and coop-

eration of agricultural development, and supporting facilities for agricultural industry in

different provinces. Develop advantageous and characteristic agriculture according to local

conditions.

Conclusions and policy implications

As one of the largest carbon dioxide emission sectors, the agriculture sector has the responsi-

bility to find ways to reduce carbon emissions and achieve sustainable development. The iden-

tification of the impact factors on CO2 emissions is critical for reducing CO2 emissions in

agriculture sector. Several studies have demonstrated the impact of economic factors on agri-

cultural emissions, particularly in developing countries. However, this study did not fully con-

sider the spatial and temporal effects of different factors.

The identification of agricultural input, economic development and agricultural environ-

mental factors is the first step to reduce carbon dioxide emissions and achieve sustainable

development goals. In order to accurately estimate agricultural input, economic development

and agricultural environment, the significance of the impact factors on agricultural carbon

emissions. In our research, strictly determine the model specification, based on the five models

of GPM, SAR, SEM, SAC and SDM, we chose the spatial panel data of 31 provinces in China

from 1999 to 2017. The paper calculates the spatial factors that affect China’s agricultural car-

bon emissions, and proves the direct utility and spatial spillover factors of agricultural develop-

ment factors on agricultural carbon emissions. Through the comparative analysis of the
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models, it is proved that economic factors and agricultural input factors have direct effects and

spatial spillover effects on agricultural carbon emissions except for agricultural environmental

factors. The results show that: the indirect impact is mainly manifested in per capita agricul-

tural output value, per capita total mechanical power, rural electricity consumption and agri-

cultural structure; the direct impact is per capita agricultural output value, total mechanical

power, rural power consumption and urbanization level. It is worth noting that agricultural

input factors play an increasingly important role in reducing CO2 emissions. Economic devel-

opment is still considered to be one of the drivers of environmental pressure. In the short

term, strengthening environmental protection may bring some pressure to the economic

development of some places, but to achieve high-quality development, we must fundamentally

solve the problem of environmental pollution. The development of agriculture should com-

bine economy with environment.

Following the above conclusions, some policy implications may emerge automatically. The

significance of spatial auto-correlation of agricultural carbon emissions means that the emis-

sion reduction decision-making unit should be expanded from within the region to the inter

region. From the theoretical point of view, the cross regional impact cannot be ignored in the

evaluation of agricultural CO2 emission level. In addition, the existence of radiation spatial

auto-correlation indicates that the influence of sequence lag should also be considered in the

evaluation of regional or adjacent regional level. Joint decision-making among regions is an

effective way to achieve the goal of regional overall emission reduction.

According to the results of all the models, except economic factors, agricultural input has

significant positive spillover effect on CO2 emissions. Among them, the total power of agricul-

tural machinery per capita has more obvious effect on CO2 emission than the use of agricul-

tural chemical fertilizer. Under the advocacy policy of low-carbon agriculture in China, the

effect of agricultural fertilizer on CO2 emission has achieved certain effect. But the total power

of agricultural machinery is the comprehensive influence of other factors, such as population,

economy and technology. It is not only an important embodiment of agricultural comprehen-

sive production capacity, but also an important symbol of agricultural modernization. “The

guiding opinions on accelerating the transformation and upgrading of agricultural mechaniza-

tion and agricultural machinery equipment industry” issued by the State Council in 2018,

clearly states that the total power of agricultural machinery in China will exceed 1 billion kilo-

watts, and the comprehensive mechanization rate of crop cultivation and income in China will

reach 70%, by 2020. The level of Agricultural Mechanization in China has been improved

unprecedentedly. However, while vigorously developing agricultural mechanization, we

should also guard against the negative impact of agricultural mechanization and the increase

of agricultural carbon emissions caused by agricultural mechanization. Based on this, China’s

agricultural mechanization should speed up the development in the direction of large-scale

compound, energy-saving and efficient, intelligent and accurate, so as to improve the scale of

agricultural production in China.

The increase of rural electricity consumption, urbanization level and agricultural structure

will reduce CO2 emissions. The level of urbanization mainly affects carbon emissions through

direct effects, while the agricultural structure mainly affects agricultural carbon emissions

through spatial spillover effects. It must be noted that urbanization directly affects carbon

emissions through population migration, which directly leads to the reduction of Chinese

farmers and will cause hidden dangers to China’s agricultural development. The role of agri-

cultural power consumption and agricultural structure in emission reduction is based on the

development of new energy and technology. Therefore, the state can promote energy-saving

technology and new energy power generation technology, develop energy-saving and emission

reduction technologies for grain production, and strengthen the deep integration of

PLOS ONE The influencing factors and spillover effects of interprovincial agricultural carbon emissions in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0240800 November 4, 2020 15 / 17

https://doi.org/10.1371/journal.pone.0240800


agricultural machinery and agronomy, so as to strengthen the inhibitory effect of Technologi-

cal Development on agricultural carbon emissions. Actively expand the implementation scope

of “climate smart agriculture project”, so as to realize the increase of grain production and

emission reduction in China.
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