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Abstract: Unconsolidated earthen surface materials can retain heavy metals originating from dif-
ferent sources. These metals are dangerous to humans as well as the immediate environment.
This danger leads to the need to assess various geochemical conditions of the materials. In this
study, the assessment of topsoil materials’ contamination with heavy metals (HMs) was conducted.
The material’s representative spatial samples were taken from various sources: agricultural, in-
dustrial, and residential areas. The materials include topsoil, eolian deposits, and other uncon-
solidated earthen materials. The samples were analyzed using the ICP-OES. The obtained results
based on the experimental procedure indicated that the average levels of the heavy metals were:
As (1.21 ± 0.69 mg/kg), Ba (110.62 ± 262 mg/kg), Hg (0.08 ± 0.18 mg/kg), Pb (6.34 ± 14.55 mg/kg),
Ni (8.95 ± 5.66 mg/kg), V (9.98 ± 6.08 mg/kg), Cd (1.18 ± 4.33 mg/kg), Cr (31.79 ± 37.9 mg/kg),
Cu (6.76 ± 12.54 mg/kg), and Zn (23.44 ± 84.43 mg/kg). Subsequently, chemometrics modeling and
a prediction of Cr concentration (mg/kg) were performed using three different modeling techniques,
including two artificial intelligence (AI) techniques, namely, generalized neural network (GRNN)
and Elman neural network (Elm NN) models, as well as a classical multivariate statistical technique
(MST). The results indicated that the AI-based models have a superior ability in estimating the
Cr concentration (mg/kg) than MST, whereby GRNN can enhance the performance of MST up to
94.6% in the validation step. The concentration levels of most metals were found to be within the
acceptable range. The findings indicate that AI-based models are cost-effective and efficient tools for
trace metal estimations from soil.

Keywords: artificial intelligence; trace metals; topsoil; spatial distribution; Saudi Arabia

1. Introduction

Soil is one of the most important natural resources in the environment. It is continu-
ously evolving by weathering rock materials, the accumulation of decaying plant matter,
eolian deposits, fluvial/marine deposits, etc. Soil provides vital living space to humans
and substrate for many microbes, plants, and animal species [1]. Therefore, proper moni-
toring, protection, and preservation methods of soil are among the primary environmental
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sustainability objectives. Trace metals are considered major pollutants in soil [2]. These
materials are found naturally in the environment with various variable concentrations
reported by different environmental scientists. Moreover, various artificial sources such as
pollution have been reported [3]. The abnormal levels accumulated may directly impact
human health and the ecosystem [4]. It is equally important to note that there is a high
tendency for heavy metals to accumulate in the food chain, owing to their sophisticated
nature. Human-induced metal accumulations come from various sources [5], ranging
from vehicular emissions to industrial waste, fossil fuel combustion, and municipal waste
residue disposal.

Although authorities require environmental impact assessment and monitoring report-
ing, only very few environmental soil studies based in Saudi Arabia have been reported.
Reported studies were performed in the areas of Jizan City [6], Red Sea coastal line [7], Jed-
dah City [8], and Wadi Hanifah, Riyadh, Saudi Arabia [9]. Arif and Hashem [6] studied soil
samples in five localities in Jizan City for metal contents and fungal flora. They observed
that the soil contained high Pb, Cu, Ni, Mn, and Cd concentrations. Al-Hefner et al. [7]
measured heavy element concentrations in the surface soil along the Red Sea coastline
using the ICP-MS technique. They reported high Sr, Hf, and U concentrations among the
28 elements found in the soil. Kadi [8] investigated soil samples from roads in Jeddah
City. Samples were analyzed for nine elements, and only Pb and Zn were found in higher
concentrations. They reported that traffic conditions on the roads are the main reason for
higher concentrations of these two elements. Al Yemeni et al. [9] studied Wadi Hanifah,
which served as a natural wastewater drainage system for the City of Riyadh. They found
high levels of Cd, Ni, Pb, and Zn in both the wastewater and soil sediments of the region.
Due to these trace elements’ hazardous nature, it is, therefore, necessary for environmental
scientists to identify the degree, concentrations, and primary sources of heavy metals from
the agricultural, residential, and industrial soils.

The application of modeling techniques such as the artificial intelligence (AI)-based
approach provides a cost-effective, powerful, and efficient strategy for estimating and
predicting heavy metals, which can be employed to solve various challenges and issues.
Using computational methods such as AI can minimize the financial stress related to earth
science, environmental engineering, and spatial geology based on time, cost, space, and
labor requirements. Computational techniques were developed recently to solve issues and
challenges that cannot be solved using different mathematical models, classical approaches,
and linear statistical methods [10–13]. The robust application of AI techniques is not only
limited to the mechanisms involved in minimizing or removing heavy metals, but also can
be used in system identification in different fields of science and technology [14–20].

The supremacy of computational techniques is related to various factors, such as the
development of the models, the kind of learning network to be implemented, and the struc-
ture of the network [21–24]. Even though numerous research works on the implementation
of AI-based techniques on heavy metals have been reported in the technical literature, sev-
eral characteristics could be explored regarding the long-term applications of heavy metal
modeling. Hence, to our current knowledge, no study in the technical literature reports the
prediction of Cr concentration (mg/kg) using GRNN and Elm NN models in Saudi Arabia.
Therefore, this study evaluated the level of heavy metals (HMs)/trace metals in the soil
samples taken from different areas of Dammam region, Kingdom of Saudi Arabia. The
literature search revealed no reliable reports on the distribution of trace metals in soils of
Dammam metropolitan areas, especially using AI-based models. Therefore, this study aims
to assess the spatial distribution of heavy metals around the Dammam area, east of Saudi
Arabia. Moreover, the study equally employed the application of two AI-based models
in the form of generalized neural network (GRNN) and Elman neural network (Elm NN)
models, as well as a classical multivariate statistical technique (MST) as a linear method
for the prediction of Cr concentration (mg/kg). Another approach to understanding the
wide range of applications and connection strength of AI-based models and HMs is by
using a bibliographic survey. A survey of the reported literature on the database Scopus
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yielded the finding that about 200 peer-reviewed papers from between Jan 1985 and June
2022 adopted over the feasibility of a wide interest in HMs and AI-based techniques (see,
Figure 1). Figure 1 shows that 1000 keywords occurring between those studies, indicating
the deep interest and implementation of this field. In addition, the popularity of this study
topic can be investigated in different regions throughout the world, with the bulk of the
countries producing the output related to AI and HMs using the same data.
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2. Material and Methods
2.1. Study Location

The city of Dammam is located from latitude 26◦20′18′′ to 26◦32′51′′ and longitude
49◦49′54′′ to 50◦09′17′′. The city of Dammam is the capital city of the Eastern Province of
Saudi Arabia. It is regarded as the largest oil region in the world. It houses the judiciary,
administrative, and other government agencies and departments. A large percentage of the
province’s population resides in this area. Based on its geographical location, its closeness
with the Arab Gulf countries enables it to be a great tourist center. It equally experienced
various forms of industrialization and urbanization activities recently.

The city of Dammam is also surrounded by many farms that produce dates and other
fruits and vegetables. It also has two main industrial cities for small to medium-size
industries. Dammam has recently experienced migration, sub-urbanization, and rapid
industrialization. A geological map with agricultural (AG), industrial (ID), residential (R),
and background (BG) areas was considered and is presented in Figure 2.
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The classification of soil types is based on the grain size distribution and soil consis-
tencies. It provides an avenue through which research related to soil can be addressed
in a rigorously systematic manner. The unified soil classification system was adopted in
classifying the soil. The soil ID is classified as coarse gravel if more than 50% of the soil
is gravel, and coarse sand if more than 50% of the soil is sand. The following conditions
were also used in classifying the soil: 1 < Cc < 3 and Cu ≥ 4 for gravel; 1 < Cc < 3 and
Cu ≥ 6 for sand; P = poorly graded: <5% fine, Cu < 6, and 1 > Cc > 3; W = well-graded:
<5% fine, Cu ≥ 6, and 1 ≤ Cc ≤ 3; M = silty: >12% fine; C = clayey: >12% fine.

Soil types in the selected sampling location are as follows:

• For the AG samples, it is mainly poorly graded sand with silt to silty sand;
• For the ID samples, it is mainly silty sand to poorly graded sand with silt and gravel;
• For the R samples, it is mainly well-graded sand with silt and gravel to silty sand;
• For the BG samples, it is mainly poorly graded sand with silt to silty sand.

2.2. Sampling Method

For sampling purposes, the Dammam region is in the southern part of Saudi Arabia,
whereby the dataset was classified into agricultural, industrial, background, and residential
areas. Thirty-three representatives from each of the classes were taken, with a total of one
hundred thirty-two samples. The locations of these samples are presented in Figure 2.
The procedure involves collecting different soil samples from other locations, recorded
by miniaturized and portable positioning system instruments. The samples were then
stored using a polythene bag safely in the laboratory. The topsoil samples were collected
over a two-month period (i.e., February to March 2014). The procedure is considered as
a powerful acid digesting process capable of dissolving all elements that are naturally
widespread in the environment.

2.3. Geochemical Analysis of Soil Samples

The samples were prepared as per the USEPA method 3050B to digest soil, sediment,
and sludge. The samples were then analyzed by inductively coupled plasma-optical emis-
sion spectrometer (ICP-OES) (SPECTRO Analytical Instruments GmbH & Co. KG, Kleve,
Germany) as per USEPA method 200.7, revision 4.4 [25]. The chemical reagent employed
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complied with the standards of the ACSCAR (American Chemical Society’s Committee on
Analytical Reagents). Distilled water (DI), concentrated nitric acid (HNO3), concentrated
hydrochloric acid (HCl), and 30% hydrogen peroxide are examples of such reagents (H2O2).
Because the digestion required the use of acid, it was carried out under a fume hood,
under the supervision of an expert, and with the certified and recommended laboratory
safety equipment. The equipment was calibrated using the multi-elemental standardization
approach, which consists of six different working standards incorporated with a single
blank used to identify the tools’ accuracy and suitability. Quality control measurements
were equally used for each batched processing of the samples under consideration. Each
batch was composed of 20 different samples.

2.4. Proposed Machine Learning Methodology

Basic data statistics were performed using Minitab version 16. Additionally, PCA and
CA were equally conducted to differentiate various groups of the analytes with approximate
geochemical behaviors and explore the correlations among the various elements. Before
the simulation process, the raw data was analyzed and standardized into unit variance
as well as zero means. Then, the eleven heavy metals were grouped based on CA. The
data used in the modeling process of the current study were taken from our experimental
research for trace elements present in the soil in the Dammam region of Saudi Arabia.
Three different computational techniques were used in modeling and predicting the Cr
concentration (mg/kg) as the dependent (target) variable, whereas the concentrations
(mg/kg) of six other trace metals, Ba, Cu, Ni, Ti, V, and Zn, were chosen as the independent
(input) variables. The spatial analysis for input–output variables used in this study are
presented in Figure 3.
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Three different data-driven approaches, including GRNN, Elm NN, and MST, were
comparatively used in the current work to determine the best model that can be employed
in estimating the concentration of Cr as a potentially toxic trace element to both humans
and soil microorganisms. Before starting the estimation step, preliminary data processing
techniques were carried out by employing both the AI-based models GRNN and Elm NN,
and the linear approach MST (Figure 4). The cross-validation technique was equally utilized
to ensure that both under- and overfitting were avoided in both the calibration and valida-
tion steps. The data was subsequently divided into 65% calibration and 35% validation.
Furthermore, the current study employed the application of the Spearman–Pearson-based
correlation technique for the determination of feature selection as well as for understanding
the nature of the dataset for the agricultural area (see Figure 5). Based on the correlation
performance of the input variables against the target Cr, the independent variables were
classified into C1: Zn, Ni, and Ba, and C2: V, Cu, and Ti before the estimation stage.
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2.5. Generalized Regression Neural Network (GRNN)

The GRNN was introduced by Specht [26] as the family of ANN models; the models
used single-pass learning ANN. The GRNN consists of four layers (input, hidden, summa-
tion, output) unlike the typical neural network (see Figure 6a). As a traditional network, all
the classifications of neural networks can serve as the multi-input multi-output model; this
learning capability also was attributed to GRNN. To understand the learning paradigm of
GRNN, the inputs’ player is similar to the classical neural network, where the weight is
transposed and the training was associated with a Gaussian kernel’s functions. The major
different between GRNN and ANN is that the former is a single-pass network, while the
latter uses two passes. This makes the GRNN take less time for training. Secondly, the type
of neurons differs for GRNN as well; in GRNN, the weight of each neuron is computed
using a special parameter called a smoothing parameter (σ), which is also regarded as the
hyper-parameter tuning. The σ is responsible for learning improvements of the models
based on the accuracy evaluation [27].

Its general form is depicted below:

Pi = exp

(
− (X− Xi)

T(X− Xi)

2σ2

)
(1)

where X is the input data of the testing dataset, Xi is the ith input of the training dataset,
and σ is the smoothing parameter.
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2.6. Elman Neural Network (Elm NN)

As a subset of ANN, the Elman NN is a recurrent neural network (RNN) that consists
of layers, such as those of traditional BPPNNs. The Elm NN has been applied in several
fields of science and engineering to solve the problems of simulation, prediction, and
estimation [28,29]. Basically, Elm NN consists of four layers, including inputs, hidden,
context, and output layers. The interaction between the layers are considered as FFCNs
(feed-forward connection networks). The context layers of Elm NN are used to contain
the hidden layers’ output values [30]. Elman NN is, generally, regarded as a feedback
NN with tap delay layers. As a black-box dynamic model, Elman NN can map both the
single- and multiple-input–output relationship; such models can be applied to simplify
several derivative calculations, and are highly valued for research purposes. It is evident
that a significant amount of research is devoted to showing the advantage of introducing
RNNs. System identification has been popular recently, and RNNs such as Elan NN are
widely recommended within this field. It is reported that feed-pass loops have the greatest
influence on the learning capability of RNNs [31]. In comparison with classical ANNs,
RNNs are promising in terms of capturing complex system and complexity behavior (see
Figure 6b).

2.7. Multivariate Statistical Techniques (MST)

Generally, we have different kinds of multivariate statistical techniques (MST), includ-
ing multi-linear regression (MLR), stepwise-linear regression (SWLR), interaction-linear
regression (ILR), etc. The MST technique is regarded as one of the conventional regression
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approaches used to understand and model the collinearity of various parameters as targets
and independent parameters. Overall, it is described using Equation (4):

y = b0 + b1x1 + b2x2 + . . . bixi (2)

where y is the target parameter, x1 is the value of the ith predictor, b0 is the regression
constant, and bi is the coefficient of the ith predictor.

2.8. Evaluation Metrics of the Models

The predictive values were compared with the measured values and then checked
using different performance indices to determine various computation methods’ perfor-
mances. For instance, the current study explores the application of three other statistical
indices, namely, the Nash–Sutcliffe coefficient efficiency (NSE) and the Pearson coeffi-
cient (PC), whereby the root mean squared error (RMSE) is used in determining the error
depicted by each model.

NSE = 1−
∑N

j=1

[
(Y)obs,j − (Y)com,j

]2

∑N
j=1

[
(Y)obs,j − (Y)obs,j

]2 (3)

PC =
∑N

i=1
(
Yobs −Yobs

)(
Ycom −Ycom

)√
∑N

i=1
(
Yobs −Yobs

)2
∑N

i=1
(
Ycom −Ycom

)2
(4)

RMSE =

√
∑N

i=1(Yobsi −Ycomi)
2

N
(5)

3. Results and Discussion

The American Association of State Highway and Transportation Official (AASHTO)
sieve analysis procedure was adopted to assess the concentrations and spatial distributions
of different trace elements at AG and ID. This provides a method for addressing soil
research through a systematic and thorough methodology. The grain size distribution
and soil consistency were used to classify soil characteristics. The topsoil was classified
using a unified soil classification method. The geochemical map of the sample sites was
created using AutoCAD and ArcMap software. During sample collection, a portable global
positioning system (GPS) was used to record sample locations. The geochemical spatial
distribution map of each element discovered in the different regions was then created using
Surfer 8 software. After analysis, the trace metal content in each place was combined with
the geographical coordinates of each sample location obtained during sample collection.
The levels of metals are presented below in parentheses, with the mean levels followed by the
maximum level detected in (mg/kg) in the sampled locations. Since the Kingdom of Saudi
Arabia does not have well-defined guidelines regarding the limits of trace metals in soil, the
Canadian Environmental Soil Quality Guidelines (CESQG) standards for the Protection of
Environment and Human Health (PEHH) were adopted for comparison purposes.

3.1. Spatiotemporal Characteristics of Soil Heavy Metal Contents

Most of the metals followed a general trend in concentration with the highest means
found in the sample from the industrial region, then agricultural, and subsequently, the
residential locations. The lowest means were found in the background area. The results
of the analysis of the topsoil samples are shown in Table 1, along with the allowable
limits stated by CESQG for different heavy metals. The concentration of Arsenic (As) was
highest in the industrial area (mean = 1.58 mg/kg, maximum = 4.56 mg/kg) followed
by the agricultural region (mean = 1.516 mg/kg, max = 3.135 mg/kg), while the lowest
was in the residential area (mean = 0.97 mg/kg, max = 2.22 mg/kg). However, none of
the samples was tested above the 12 mg/kg threshold. The concentrations of barium (Ba)
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was highest in the industrial area (mean = 335.5 mg/kg, max = 1966.5 mg/kg), followed
by the agricultural (mean = 34.46 mg/kg, max = 100.62 mg/kg) and residential areas
(mean = 34.11 mg/kg, max = 98.55 mg/kg). Some of the samples from the industrial
areas exceeded the allowable limit of 500 mg/kg. The concentration of cadmium (Cd)
was highest in the industrial area (mean = 1.878 mg/kg, max = 28.69 mg/kg), followed
by the residential area (mean = 1.878 mg/kg, max = 28.69 mg/kg) and agricultural area
(mean = 0.07, max = 1.137). One sample from each industrial and agricultural area measured
above the allowable 10 mg/kg limit.

Table 1. Concentration of trace metals in the Dammam area.

Agriculture Area

Element As Ba Cd Cr Cu Hg Ni Pb V Zn

Unit mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
Allowable limit 12 500 10 64 63 6.6 50 140 130 200

MCLs 12 750 1.4 64 63 6.6 50 70 130 200
Min 0.45 7.8 0 3.03 0.97 0 4.6 0.9 1.635 1.015
Max 3.135 100.62 1.135 74.7 * 31.64 1.025 16.25 52.35 21.885 46.25

Mean 1.516 34.46 0.07 24.4 8.74 0.087 9.22 6.49 11.52 12.43
No. of samples 33 33 33 33 33 33 33 33 33 33

Industrial Area

Element As Ba Cd Cr Cu Hg Ni Pb V Zn
Unit mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

Allowable limit 12 500 10 64 63 6.6 50 140 130 200
MCLs 12 2000 22 87 91 50 50 600 130 360
Min 0.52 0.0 0 0.12 0.18 0.01 4.76 0.04 0.09 0.1
Max 4.56 1966.5 * 28.69 * 247.6 95.75 * 1.44 45.2 100.25 20.42 676.5 *

Mean 1.58 335.35 1.878 51.77 11.0 0.11 13.14 11.42 13.11 65.44
No. of samples 33 33 33 33 33 33 33 33 33 33

Residential Area

Element As Ba Cd Cr Cu Hg Ni Pb V Zn
Unit mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

Allowable limit 12 500 10 64 63 6.6 50 140 130 200
MCLs 12 500 10 64 63 6.6 50 140 130 200
Min 0.13 0.33 0 0.07 0.04 0.0 2.25 0.08 0.02 0.01
Max 2.22 98.55 23.01 120.2 19.17 0.59 13.23 25.6 17.73 39.39

Mean 0.97 34.11 1.87 29.64 4.38 0.06 6.44 4.79 7.00 8.47
No. of samples 33 33 33 33 33 33 33 33 33 33

* The value that exceeds the permissible concentration.

Nevertheless, the amount of Cr was found to be more prevalent in the industrial
sample (with mean = 51.77 mg/kg, max = 247.6 mg/kg) than the residential soil samples
(mean = 29.64 mg/kg, max = 120.22 mg/kg) and agricultural area (mean = 24.4 mg/kg,
max = 74.7 mg/kg). The relative averages of the total samples measured were above
the permissible concentration. The concentration of copper (Cu) was highest in the in-
dustrial area (mean = 11.0 mg/kg, max = 95.75 mg/kg), followed by the agricultural
(mean = 8.74, max = 31.64) and residential areas (mean = 4.38 mg/kg, max = 19.17 mg/kg).
Two of the samples from the industrial area exceeded the allowable limit of 63 mg/kg.
The concentration of mercury (Hg) was highest in the industrial area (mean = 0.11 mg/kg,
max = 1.44 mg/kg), followed by the agricultural (mean = 0.087 mg/kg, max = 1.02 mg/kg)
and residential areas (mean = 0.06 mg/kg, max = 0.59 mg/kg). None of the samples ex-
ceeded the allowable limit of 6.6 mg/kg. The concentration of nickel (Ni) was the highest in
the industrial area (mean = 13.14 mg/kg, max = 45.2 mg/kg), followed by the agricultural
(mean = 9.22 mg/kg, max = 16.25 mg/kg) and residential areas (mean = 6.44 mg/kg,
max = 13.23 mg/kg). None of the samples exceeded the allowable limit of 50 mg/kg.
The concentration of lead (Pb) was highest in the industrial area (mean = 11.42 mg/kg,
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max = 100.25 mg/kg), followed by the agricultural (mean = 6.49 mg/kg, max = 52.35 mg/kg)
and residential areas (mean = 4.79 mg/kg, max = 25.6 mg/kg). None of the samples ex-
ceeded the allowable limit of 140 mg/kg. Similarly, the concentration of vanadium (V)
was highest in the industrial area (mean = 13.11 mg/kg, max = 20.42 mg/kg), followed
by the agricultural (mean = 11.52 mg/kg, max = 21.89 mg/kg) and residential areas
(mean = 7.0 mg/kg, max = 17.73 mg/kg). None of the samples exceeded the allowable
limit of 130 mg/kg. The concentration of zinc (Zn) was highest in the industrial area
(mean = 65.44 mg/kg, max = 676.5 mg/kg), followed by the agricultural (mean = 12.43 mg/kg,
max = 46.25 mg/kg) and residential areas (mean = 8.47 mg/kg, max = 39.39 mg/kg). None
of the samples exceeded the allowable limit of 200 mg/kg.

3.2. Results of Multivariate Statistics

For the agricultural area, cluster analysis (CA) was performed to distinguish different
groups of elements with approximate geochemical behaviors. The results reveal that, based
on the close relations between heavy metals in the soil, As, Cd, Hg, Cu, V, and Pb could
be sorted into a single group; Ni, Zn, Cr, and Ba in another group, and Ti as the third
group To further explore the relationships among the eleven elements, PCA was performed.
The PCA showed that ~74.4% of the data variance could be explained by the first three
principal components (factors). These three principal components were extracted with an
eigenvalue >1. In particular, the eigenvalues of component 1 (~44% of inertia), component 2
(16.8% of inertia), and component 3 (13.6% of inertia) were 4.8, 1.8, and 1.5, respectively.
Component 1 was mainly related to V, Cr, and Cu, component 2 was associated mainly
with Pb and hg, and component 3 was related to As.

In addition, the CA analysis for the industrial area reveals that As, Hg, Cu, and Pb
could be sorted into a single group; V, Ni, Cr, Cd, and Zn in another group, and Ti and
Ba as the third group Furthermore, the PCA analysis shows that ~77% of the data variance
can be explained by the first three principal components (factors). Ni, Cr, and Cu are the
predominant elements in the first component, and Cd, V, and Ti are the predominant elements
in the second component, while the contribution to the third component was mainly due
to As and Hg. These components exhibit eigenvalues more significant than one and have
therefore been considered here. In particular, the eigenvalues of component 1 (~48.9% of
inertia), component 2 (17.4% of inertia), and component 3 (10.7% of inertia), were 5.38, and
1.91, and 1.18, respectively.

The CA analysis for the residential area reveals that As, Pb, Cu, V, Hg, and Zn could
be sorted into a single group; Ni, Cd, Ba, and Cr in another group, and Ti as the third group.
Moreover, PCA analysis reflects that ~78% of the data variance can be explained by the
first their principal components with the eigenvalues of component 1 (~52.7% of inertia),
component 2 (15.4% of inertia), and component 3 (9.9% of inactivity) as 5.79, 1.69, and 1.08,
respectively. V, Ti, Ni, and Ba are the predominant elements in the first component, Hg
and Cr are the predominant elements in the second component, while the contribution
to the third component was mainly due to As, Hg, and Pb. However, CA analysis for
the background area reveals that As, Hg, Cu, Pb, Ni, V, and Zn could be sorted into one
group; Ba, Cr, and Cd in another group, and Ti as the third group. PCA for the background
area shows that ~84.1% of the data variance can be explained by the first two principal
components (factors). Particularly, the eigenvalues of component 1 (~52.7% of inertia)
and component 2 (15.4% of inertia) were 5.8 and 1.7, respectively. V, Cu, Ti, and Ni were
the predominant elements in the first component, while the contribution to the second
component was mainly due to As, Hg, and Cr.
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3.3. Results for AI-Based Computational Models

Traditional and classical trivial regression approaches have been utilized for the
extraction, analytical exploration, and estimation of trace metals, despite their numerous
issues and limitations. Based on this, the AI-based technique was developed to enhance
and improve the performance prediction of trace elements from the soil, water, and air.
One of the primary motivations of this article is the implementation of two different AI
techniques based on the most widely employed neural networks (NN). Different training
networks inform GRNN, and Elm NN models integrated with the MST linear approach
to predict Cr concentration (mg/kg) in the AG regions of Dammam, Saudi Arabia. The
proper selection of hyper tuning parameters plays a crucial role in the modeling process
and model accuracy. Therefore, the tuning parameters used for NN, for example, are 1000,
0.01, and 0.0001 for the maximum number of iterations, learning rate, and MSE, respectively.
For the development of NN, formulating a proper number of hidden nodes is the most
important aspect, as such hidden layers were identified using (2n1/2 + m) to (2n + 1),
where n is the number of input neurons and m is the number of output nodes. The optimal
structure was determined using the range of 2–10 hidden nodes, and 15–60 calibration
epochs. The major advantage of GRNN over other types of neural networks is that there
is only a single hyper-parameter, namely, the sigma. The random search strategy is to
find a close-to-optimal value of the sigma by using various random numbers. Elman NN
has been designed and trained with a conventional learning algorithm, with the values
obtained in the initial iteration of the learning process as the initial set values for optimal
tuning algorithms.

In the validation process, different types of validation approaches can be applied,
including cross-validation, which is called k-fold cross-validation; others are holdout, leave
one out, and so on. We applied k-fold cross-validation in this study. The sensitivity and
importance of the sampling sites and the nature of the dataset were currently considered
of global attention. Based on Yassen, [32], Cr is considered one of the most utilized heavy
metals using different computational approaches due to its hazardous impact on both hu-
mans and the environment. Moreover, the AI-based technique as a cost-effective approach
provides economical and efficient benefits to environmental policymakers, especially those
dealing with trace metals. The performance of the two classes (C1 and C2) of the utilized
models in the current study (GRNN, Elm NN, and MST) was determined using three
different performance metrics, NSE, PC, and RMSE, as mentioned in the previous section.

The predicted outcomes of the models in both the calibration and validation steps
are shown in Table 2. The calibration step and C2 class showed superior performance
to the validation step and C1 class, respectively. The comparative performance of the
models (GRNN, Elm NN, and MST) showed different predictability of the Cr concentration
(mg/kg) due to the reactive nature of each model network towards the learning process the
dataset. Furthermore, this indicates the need to utilize various metrics and visualizations
for comparative analysis of the models’ performance. The quantitative interpretation of the
models, as indicated in Table 2, shows the robustness of the AI-based models (GRNN and
Elm NN) over the classical MST model, even though only the GRNN showed a performance
with a minimum or higher NSE value of 0.8 in both the two input combinations (C1 and
C2) and two steps (calibration and verification), respectively.
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Table 2. Performance of the GRNN, Elm NN, and MST techniques.

Calibration Phase

NSE PC RMSE

GRNN-C1 0.998 0.999 0.990
GRNN-C2 0.999 0.999 0.027

Elm NN-C1 0.524 0.723 3.677
Elm NN-C2 0.898 0.948 6.503

MST-C1 0.481 0.693 14.688
MST-C2 0.731 0.855 10.575

Validation Phase

GRNN-C1 0.976 0.988 0.829
GRNN-C2 0.999 0.999 0.158

Elm NN-C1 0.407 0.638 15.689
Elm NN-C2 0.812 0.901 2.315

MST-C1 0.194 0.441 4.785
MST-C2 0.53 0.230 5.189

The Elm NN-C2 showed higher performance than Elm NN-C1 in the calibration
and validation steps. At the same time, both MST-C1 and MST-C2 failed to estimate the
Cr concentration (mg/kg) in both the calibration and validation phases with significant
performance. Moreover, the comparative performance of the models indicated in Table 2
depicts that GRNN as an AI-based model can boost the performance of the classical linear
MST model up to 27% and 94.6% in the calibration and validation phases, respectively, for
the C2 input combination. The performance of the models can be better pictured using
different visualizations to ease grasping of the performance results of the models. For
instance, Figure 7 indicates the comparative error performance of the models based on their
respective RMSE values in both the calibration and validation stages.
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Moreover, the comparative performance of the models based on their goodness-
of-fit in the form of PC and NSE can be visualized using the radar plot as shown in
Figure 8. To better understand the data-driven techniques’ performance of each of the input
combinations (C1 and C2), a visualization based on graphical illustration using time series
and scatter plots was performed. These graphs can be utilized in evaluating the precision
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of the developed models. Based on the goodness-of-fit-values, the scatter plots illustration
of the models is shown in Figure 9.
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The scatter plot is one of the effective visualizations used in evaluating the predictabil-
ity performance of various data-driven approaches, indicating the degree of deviation of
the predicted values against the experimental values. Moreover, as shown in Figure 10, the
time series depicts the trend of estimation of each data-driven approach (GRNN, Elm NN,
and MST models) against the experimental Cr concentration (mg/kg). Based on the numer-
ical and visualized performance of the models used in the current study for the estimation
of Cr concentration (mg/kg), the models can be arranged based on their performance skills
as follows: GRNN-C2 > GRNN-C1 > Elm NN-C2 > Elm NN-C1 > MST-C2 > MST-C1.
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3.4. Discussion of Spatiotemporal Analysis

An analysis of topsoil can be used to estimate trace metal pollution in our environ-
ment [33]. Therefore, regular assessment of metal contamination in topsoil is necessary [34].
The USA’s standards for maximum contaminant levels are even higher than the Canadian
allowable limits. The abundance of As in agricultural areas can be attributed to insecticides
such as hydrogen arsenate on fruit trees [35]. Another valid reason for high levels of As in
agricultural areas can also be attributed to the use of arsenic as a food additive in poultry
to boost their weight, enhance their feeding, and preclude diseases [36], or the use of Ba
titanate in a promising electro-ceramic procedure [37] and the use of mineral barite as an
additive in oil well-drilling muds.

Further analysis indicated that the result of Cd is within the standard allowable limit
for the three sample locations (background, residential, industrial). It is indicated in the
industrial and residential zones that one sample has exceeded the allowable limit. This
could be due to several industrial activities in the study locations. However, it can also be
seen that some deposited material forms the illegal sources and other sources contained
Cd. For Cr, the elevated levels might be associated with both natural, manmade, and
atmospheric deposition of compound containing Cr. Samples 3, 5, 18, and 24 displayed
high levels of Cr in the residential soil samples due to accidental release, wood additives, or
atmospheric deposition of compounds. The Cr compound was also found to be at elevated
levels for samples 13, 14, 15, 17, 18, and 30, which is due to the industrial application of Cr
such as in the paint industry, tanning, roofing, dyes, etc. [38].

With regards to Cu compounds, the increasing levels in 2 out of 33 industries were
linked to the substantial production of electrical cables, plumbing indifferent industries
across the study area [39]. Other factors could also be attributed to atmospheric deposition
or accidents containing Cu compounds. Meanwhile, in order to reduce human exposure to
Cu compounds, extreme care needs to be exercised when working with Cu compounds [40].
The adopted guidelines for the level of Zn in the soil specify 200 mg/kg as the allowable
limit, and all the analyzed samples fell within this range. Thus, no immediate threat is in
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sight from the tested trace metals in the studied areas of Dammam. However, proper moni-
toring is essential to keep these levels of metals in check. Rules must also be implemented
to transport and handle chemicals that contain these trace metals. The predicted spatial
analysis results using AI-based models are presented in Figure 11.
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4. Conclusions and Recommendations

Research on the soil environment is necessary for sustainable development and im-
provement of the quality of life. As mentioned in the previous sections, there is very little
information available regarding toxic metal contamination of topsoil in the Dammam area.
So, the main motivation for this study was to assess the topsoil in the area to determine
trace metal concentration, their “hot spot” (area of high concentrations of trace metals), and
spatial distribution. These will help in assessing the health conditions of the topsoil in the
region and may later be used for setting up remediation measures or land use allocations.
This study outcome may also create further research in environmental assessment and
monitoring. The current study analyzed various soil samples from different locations in
the Dammam region of the Saudi Area, which equally determined the concentration of ten
other heavy metals. The attention to these heavy metals almost follows the same trend,
whereby they were all found at relatively higher amounts in the study locations. Most
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of the concentrations of the heavy metals were found to be within the accepted range,
but some were found to exceed the accepted range. Conversely, based on their average
concentrations, none of the heavy metals exceed their allowable threshold in the whole
experiment. These findings, at first instance, provide a relief that the concentration of these
heavy metals determined was found to be within the allowable range. Hence, there is no
alarming threat to human life and the ecosystem.

Most of the metals followed a general trend in concentration with the highest means
found in the sample from the industrial region, then agricultural, and subsequently, the
residential locations. The lowest means were found in the background area. The amount
of Cr was found to be more prevalent in the industrial samples than in the residential soil
samples and agricultural areas. The relative average of the total samples measured was
above the permissible concentration. The concentration of copper (Cu) was highest in the
industrial area, followed by the agricultural and residential areas. Nevertheless, higher
concentrations of these metals compared to the control and residential areas suggest careless
handling of chemicals in these areas. It is, therefore, evident that if proper monitoring
schemes are not devised to plug any existing loopholes, it can lead to greater exposure of
these metals into the ecosystem. Eventually, various aquatic life, animals, and plants might
be at risk, which is related to heavy metals exposure. Furthermore, the prediction approach
showed the performance abilities of the AI-based models (GRNN and Elm NN) over the
classical linear MST approach in predicting the concentration (mg/kg) of Cr trace elements.
However, the results based on the numerical and visualized performance obtained at
a particular stage indicate the need for employing more robust techniques such as the
metaheuristic approaches and ensemble machine learning to improve the performance
prediction. The research also indicated the smaller number of the data instances as the
limitation of the research as the machine learning needs a huge amount of data in order to
represent the real information of the scenario.
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