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Systemic hypoxia is a common element in most perinatal emergencies and is a known driver of Bnip3 expression in the neonatal
heart. Bnip3 plays a prominent role in the evolution of necrotic cell death, disrupting ER calcium homeostasis and initiating
mitochondrial permeability transition (MPT). Emerging evidence suggests a cardioprotective role for the prostaglandin E1 analog
misoprostol during periods of hypoxia, but the mechanisms for this protection are not completely understood. Using a combination
of mouse and cell models, we tested if misoprostol is cardioprotective during neonatal hypoxic injury by altering Bnip3 function.
Here we report that hypoxia elicits mitochondrial-fragmentation, MPT, reduced ejection fraction, and evidence of
necroinflammation, which were abrogated with misoprostol treatment or Bnip3 knockout. Through molecular studies we show that
misoprostol leads to PKA-dependent Bnip3 phosphorylation at threonine-181, and subsequent redistribution of Bnip3 from
mitochondrial Opal and the ER through an interaction with 14-3-3 proteins. Taken together, our results demonstrate a role for
Bnip3 phosphorylation in the regulation of cardiomyocyte contractile/metabolic dysfunction, and necroinflammation. Furthermore,
we identify a potential pharmacological mechanism to prevent neonatal hypoxic injury.
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INTRODUCTION
Systemic hypoxia is a major complication associated with nearly
all perinatal emergencies, including placental abnormalities,
preterm birth, impaired lung development, and cyanotic con-
genital heart disease, which are also leading causes of neonatal
mortality [1]. Moreover, hypoxic injury has been shown to alter
neonatal cardiac metabolism, resulting in diminished contractile
performance and compromised tissue perfusion, further com-
pounding neuro-cognitive and end-organ complications [2].
Bnip3 is a hypoxia-inducible pro-apoptotic member of the Bcl-2
family [3-7]. Bnip3 relies on a C-terminal transmembrane (TM)
domain for its pro-death functions [8]. This domain inserts through
the outer mitochondrial membrane to interact with optic atrophy-
1 (Opa1) to promote mitochondrial fission [8-10], and can also
drive mitochondrial bioenergetic collapse by affecting complexes
of electron transport chain, ultimately disrupting ATP production
[11]. Additionally, Bnip3 can localize to the endoplasmic reticulum

(ER), interrupting Bcl-2-induced gating of the inositol trispho-
sphate receptor (IP3R), resulting in ER calcium depletion and
mitochondrial matrix calcium accumulation [8, 12-15]. Elevated
matrix calcium is an important trigger for mitochondrial perme-
ability transition (MPT), a phenomena that is required for the
induction of necrotic cell death [16-23]. Taken together, these
observations have made Bnip3 an attractive therapeutic target in
the heart, but this has been met with limited success.
Prostaglandin signaling has pleiotropic effects on the cardio-
vascular system [24]. Although generally regarded as pro-
inflammatory, prostaglandin E1 (PGE1) has been associated with
the resolution of inflammation, T cell inhibition, and wound
healing [25-28]. Previous work has demonstrated that prostaglan-
dins, acting through the EP4 receptor, activates protein kinase A
(PKA) and improves cardiac function in mice following infarction
[29]. Recent work from our group demonstrated that misoprostol,
a PGE1 analog, is cytoprotective in cardiomyocytes exposed to
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hypoxia [4]. Moreover, loss of Bnip3 activity is protective in the
heart following ischemia-refusion [30, 31], and work in trans-
formed cell models identified that phosphorylation of Bnip3
within its TM domain can inhibit apoptosis [9]. However, the
upstream signaling pathways that regulate post-translational
modification of Bnip3 have not been previously described. In
addition, it is not currently known if Bnip3 phosphorylation can be
pharmacologically targeted to modulate cardiomyocyte MPT and
in vivo heart function during hypoxia. Thus, we examined if
misoprostol treatment is sufficient to alter Bnip3 function to
prevent mitochondrial and contractile dysfunction in the
neonatal heart.

In this report we provide evidence that misoprostol inhibits
hypoxia-induced neonatal contractile dysfunction resulting from
cardiomyocyte respiratory collapse and a necroinflammatory
phenotype. We show that this is a result of inhibiting Bnip3-
induced calcium transfer from the ER to the mitochondria, which
prevents MPT, ATP depletion, and necrosis. Mechanistically, we
demonstrate that this is regulated through EP4-mediated PKA
signaling, resulting in direct phosphorylation of Bnip3 at
threonine-181. We further demonstrate that the interaction
between 14-3-3(3 and Bnip3 is increased by misoprostol treatment,
facilitating Bnip3 trafficking from the ER and mitochondria. Given
the diverse roles of Bnip3 in hypoxic pathologies and cancer, this
mechanism may have broader implications to human disease.

MATERIALS AND METHODS

In vivo neonatal hypoxia model and adult coronary ligation
model

All procedures in this study were approved by the Animal Care Committee
of the University of Manitoba, which adheres to the principles for
biomedical research involving animals developed by the Canadian Council
on Animal Care (CCAC). N values were chosen based on predicted
statistical power of 80%. No formal randomization technique was used and
blinded animal studies was not possible with the use of hypoxia chambers.
Litters of wild-type and/or Bnip3-null (embryonic deletion described
previously [31]) B6;129 mouse pups and their dams were placed in a
hypoxia chamber with 10% O, (+1%) on postnatal day (PND) 3 for a period
of 7 consecutive days. Control litters were left in normoxic conditions at
21% O,. Animals received 10pg/kg misoprostol or saline control,
administered through subcutaneous injection daily from PND3-10. At
PND10 animals were euthanized and perfused with saline for tissue
collection. Both male and female mice were used and results were pooled.
This hypoxia protocol has been previously shown to induce cognitive
impairment consistent with hypoxic-ischemic encephalopathy [32, 33]. In
the in vivo rodent model of myocardial infarction, the left coronary artery
of male Sprague Dawley rats was ligated approximately 2 mm from its
origin, while sham operated rats serve as control [34, 35]. Following
recovery for 4 or 8 weeks, animals are anesthetized, the heart excised, and
the left anterior descending territory dissected for scar tissue and viable
border-zone myocardium.

In vivo assessment of cardiac function

Transthoracic echocardiography was performed on mildly anesthetized
mice (sedated with 3% isoflurane in oxygen at 1 L/min and maintained at
1-1.5% isoflurane in oxygen at 1 L/min) at PND10 using a Vevo 2100 High-
Resolution Imaging System equipped with a 30-MHz transducer (RMV-716;
VisualSonics, Toronto) as described previously [36].

Cell culture and transfections

Rat primary ventricular neonatal cardiomyocytes (PVNC) were isolated
from 1-2-day old pups using the Pierce Primary Cardiomyocyte Isolation
Kit (#88281), which includes a cardiomyocyte growth supplement to
reduce fibroblast contamination. H9c2 cells (ATCC CRL-1446) were
maintained in Dulbecco’s modified Eagle’s medium (DMEM; Hyclone),
containing penicillin, streptomycin, and 10% fetal bovine serum (Hyclone).
Media was supplemented with MEM Non-Essential Amino Acids Solution
(Gibco) for MEFs. Cells were incubated at 37°C and 5% CO2. Human
induced pluripotent stem cell-derived cardiomyocytes (H-iPSC-CMs) were
obtained from Cellular Dynamics (iCell Cardiomyocytes #01434). iCell
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Cardiomyocytes were cultured in maintenance medium as per the
manufacturer’s protocol and differentiated for 72h. Cell lines were
transfected using JetPrime Polyplus reagent, as per the manufacturer’s
protocol. For misoprostol treatments, 10 mM misoprostol (Sigma) in
phosphate buffered saline (PBS; Hyclone) was diluted to 10 uM directly
in the media and applied to cells for 24 h. To achieve hypoxia, cells were
held in a Biospherix incubator sub-chamber with 1% O, (£1%), 5% CO,,
balanced with pure N, (regulated by a Biospherix ProOx C21 sub-chamber
controller) at 37°C for 24h. BvO2, L161-982, L798-106, and H89
dihydrochloride (H89) were purchased from Sigma.

Plasmids

Mito-Emerald (mEmerald-Mito-7) was a gift from Michael Davidson
(Addgene #54160) [37]. The endoplasmic reticulum (CMV-ER-LAR-GECOT1),
and mitochondrial (CMV-mito-CAR-GECO1) targeted calcium biosensors
were gifts from Robert Campbell (Addgene #61244, and #46022) [38]. CMV-
dsRed was a gift from John C. McDermott. The FRET-based ATP biosensor
(ATeam1.03-nD/nA/pcDNA3) was a gift from Takeharu Nagai (Addgene
plasmid #51958) [39]. The dimerization-dependent PKA biosensor (pPHT-
PKA) was a gift from Anne Marie Quinn (Addgene #60936) [40]. pcDNA3-
HA-14-3-3 beta (14-3-3p) was a gift from Michael Yaffe (Addgene #13270).
pclbw-opal(isoform 1)-myc (myc-Opal) was a gift from David Chan
(Addgene plasmid # 62845) [41]. The generation of mouse myc-Bnip3
(Addgene #100796) was described previously [42]. The phospho-neutral
mouse myc-Bnip3-T181A was generated by PCR using the New England
Biolabs Q5 Site-Directed Mutagenesis Kit and primers Forward: 5-
CTAGTCTAGA ATGTCGCAGAGCGGGGAGGAGAAC-3’ and Reverse: 5%
GATCGGATCCTCAGAAGGTGCTAGTGGAAGTtgcCAG-3".

Fluorescent staining, live cell imaging, and
immunofluorescence

MitoView Green, TMRM, Calcein-AM, ethidium homodimer-1, and Hoechst
33342 were purchased from Biotium. MitoSox was purchased from Life
Technologies. MPTP imaging was described previously [19]. Dye based
calcium imaging was done with Rhod-2AM (Invitrogen, R1245MP) as per
manufacturer’s protocol (including the production of dihyrdorhod-2 AM).
Immunofluorescence with HMBG1 (CST # 3935), Bnip3 [CST # 3769 and Ab-
196706 (Alexa Fluor 647)], 14-3-3B [sc-25276 (Alexa Fluor 488)], and Opa1l
[sc-393296 (Alexa Fluor 488)] antibodies were performed in conjunction
with fluorescent secondary antibodies conjugated to Alexa Fluor 466 or
647 (Jackson), when primary antibodies were not conjugated to a
fluorophore. All epifluorescent imaging experiments were done on a Zeiss
Axiovert 200 inverted microscope fitted with a Calibri 7 LED Light Source
(Zeiss) and Axiocam 702 mono camera (Zeiss) in combination with Zen 2.3
Pro imaging software. Confocal imaging was done on a Zeiss LSM700
Spectral Confocal Microscope in combination with Zen Black, which was
also used for colocalization analysis, while FRET imaging was done using a
Cytation 5 Cell Imaging Multi-Mode Reader. Quantification, scale bars, and
processing including background subtraction, was done on Fiji (ImageJ)
software. Quantification of mitochondrial morphology was performed as
previously described [43].

In vitro assessment of cellular viability

MTT assays were performed according to a protocol described previously [44].
Briefly, H9c2 cells were incubated with cell culture media and MTT reagent [3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (5 mg/ml)] for 3 h,
at which point media and MTT are removed and replaced with control solvent
(DMSO) to solubilize the MTT product. The absorbance of the MTT product
was then measured at 570 nm on a plate reader following 20 min incubation
at room temperature. Annexin-V FITC and 7-AAD staining was performed
according to manufacturer’s instructions (Invitrogen 88-8102-74). Stained cells
were analyzed on a Thermo Scientific Attune NXT flow cytometer with a
488 nm laser, as described previously [44].

Transmission electron microscopy (TEM)

TEM imaging was performed according to a protocol described previously
[44]. Briefly, PND10 hearts were fixed (3% glutaraldehyde in PBS, pH 7.4) for
3 h at room temperature. Hearts were treated with a post-fixation step
using 1% osmium tetroxide in phosphate buffer for 2h at room
temperature, followed by an alcohol dehydration series before embedding
in Epon. TEM was performed with a Philips CM10, at 80 kV, on ultra-thin
sections (100 nm on 200 mesh grids). Hearts were stained with uranyl
acetate and counterstained with lead citrate.

Cell Death and Disease (2021)12:1105



Immunoblotting

Protein isolation and quantification was performed as described previously
[4]. Extracts were resolved via SDS-PAGE and later transferred to a PVDF
membrane using an overnight transfer protocol. Immunoblotting was
carried out using primary antibodies in 5% powdered milk or BSA (as per
the manufacturer’s instructions) dissolved in TBST. Horseradish peroxidase-
conjugated secondary antibodies (Jackson ImmunoResearch Laboratories;
1:5000) were used in combination with enhanced chemiluminescence

A B
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(ECL) to visualize bands. The following antibodies were used: HMGB1 (CST
# 3935), Rodent-specific Bnip3 (CST # 3769), Myc-Tag (CST # 2272), HA-Tag
(CST # 3724), AIF (CST # 5318), MEK1/2 (CST # 8727), SERCA (Sigma MA3-
919), DRP1 (CST # 8570), phospho-DRP1 [(ser616), (CST # 3455)], OPA1 (CST
# 80471), Actin (sc-1616), and Tubulin (CST #86298). For detection of
phosphorylation of Bnip3 at threonine-181, a custom rabbit polyclonal
antibody was generated by Abgent using the following peptide sequence:
AIGLGIYIGRRLp(T)TSTSTF.
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Fig. 1 Misoprostol prevents hypoxia-induced contractile and mitochondrial dysfunction in vivo. A Schematic of the mouse model of
neonatal hypoxia, where mice are exposed to hypoxia (10% O,) with or without 10 pg/kg misoprostol daily from PND3-10. B Fractional
shortening, (C) Ejection fraction, and (D) E'/A’ ratio, for 4-6 post-natal day (PND10) mice treated as in (A), as determined by transthoracic
echocardiography. E PCR-based array performed on RNA isolated from PND10 mouse ventricles (n =3 animals per group) treated as in
(A), where green indicates a downregulation of expression (<1), and red indicates an upregulation of expression (>1), relative to the normoxic
control (1). F Measurement of ATP content in PND10 mouse ventricles (n = 6-8 animals per condition) treated as in (A). G Measurement of
cardiac lactate content in the PND10 mouse ventricle (n = 6-8 animals per condition) treated as in (A). H PND10 hearts treated as in (A) and
imaged via transmission electron microscopy. Images showing mitochondrial morphology. | PND10 hearts treated as in (A) and stained with
DAPI (Blue) and probed for high mobility group box 1 (HMGB1, red). Hearts were imaged via confocal microscopy. J Representative
immunoblot of heart protein extracts from post-natal day (PND10) mice treated as in (A). Extracts were immunoblotted as indicated. K Relative
Bnip3 gene expression from the PND10 mouse ventricles of animals (n = 6-9 animals per group) treated as in (A). All data are represented as
mean = S.E.M. *P < 0.05 compared with control, while **P < 0.05 compared with hypoxia treatment, determined by 1-way ANOVA or 2-way
ANOVA where appropriate. Three * indicates P < 0.05 compared to both control and treatment conditions.

Real-time PCR

Total RNA was extracted from pulverized frozen tissue or from cultured
cells by TRIzol method. cDNA was generated using SuperScript IV VILO
Master Mix with ezDNase (Thermo #11766050) and g-RT-PCR performed
using TagMan Fast Advanced master mix (Thermo #4444965) on a CFX384
Real-Time PCR Instrument. The primers used were provided through
ThermoFisher custom plating arrays (see Supplement 1 and 2 for assay list).

Cardiac and cellular lactate, ATP and extracellular acidification
Cardiac lactate was quantified using the bioluminescent Lactate-Glo™
Assay (Promega #J5021) in deproteinized PND10 heart samples, as per the
manufacturer’s protocol. Luminescence was detected and quantified using
a Fluostar Optima microplate reader (BMG Labtech, Ortenberg, Germany).
Cardiac and H9c2 ATP content was determined using a the Adenosine 5'-
triphosphate (ATP) Bioluminescent Assay Kit (Sigma #FLAA-1KT), and
normalized to DNA content as described previously [45]. Extracellular
acidification and oxygen consumption was determined on a Seahorse XF-
24 Extracellular Flux Analyzer in combination with Seahorse Mitochondrial
Stress Test with drug concentrations as follows: 1 uM Oligomycin, 2 uM
FCCP and 1 puM rotanone/antimycin A (Agilent Seahorse #1030f15-100).
Calculated oxygen consumption rates were determined as per the
manufacturer’s instructions (Mitochondrial Stress Test; Seahorse).

Mitochondrial swelling and CRC assays

Mitochondrial swelling and calcium retention capacity (CRC) assays were
performed using a cuvette-based fluorometric system (Horiba Scientific)
which allows for the simultaneous detection of both fluorescence and
absorbance, as described previously [46]. Hearts were minced in mitochon-
drial isolation buffer and homogenized using a 2mL Teflon-glass homo-
genizer. Mitochondria were enriched by differential centrifugation at 4 °C. The
mitochondrial isolation buffer consisted of 225 mM mannitol, 75 mM sucrose,
5mM HEPES, and 1mM EGTA, pH 7.4. Within the cuvette, 2mg of
mitochondria were incubated with 250 nM Calcium Green-5N (Invitrogen),
7 mM pyruvate (Sigma-Aldrich), and 1 mM malate (Sigma-Aldrich) in 1 ml of
hypotonic KCl buffer (125 mM KCl, 20 mM HEPES, 2 mM KH2PO4, 40 uM EGTA,
pH 7.2). In some experiments, mitochondria were incubated with 10 pM
misoprostol for 5 min prior to the start of the assay. Mitochondria were then
pulsed with sequential additions of CaCl2 (20 uM) over specific increments of
time until mitochondrial swelling occurred.

Phospho peptide mapping

Synthetic peptides (GeneScript) were resuspended at a concentration of
1 mg/ml. These peptides were used as the substrate in a PKA kinase assay kit
(New England Biolabs, #P6000S) according to the manufacturer’s instructions,
with the exception that [32 P]-ATP was replaced with fresh molecular biology
grade ATP. The Kemptide substrate (Enzo Life Sciences; #P-107; LRRASLG) was
used as a positive control in each assay. Before mass spectrometry analysis,
kinase assays were prepared using C18 ZipTips (EMD Millipore, Etobicoke, ON,
Canada). Samples in 50% acetonitrile and 0.1% formic acid were introduced
into a linear ion-trap mass spectrometer (LTQ XL: ThermoFisher, San Jose, CA,
USA) via static nanoflow, using a glass capillary emitter (PicoTip: New
Objective, Woburn, MA, USA), as described previously [47].

Statistics
Data are presented as mean * standard error (S.E.M.) from 3 independent
cell culture experiments. Differences between groups in imaging
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experiments with only 2 conditions were analyzed using an unpaired
two-sided t-test, where (¥*) indicates P <0.05 compared with control.
Experiments with 4 or more conditions were analyzed using a 1-way
ANOVA, or 2-way ANOVA where appropriate, with subsequent Tukey test
for multiple comparisons, where (*) indicates P<0.05 compared with
control, and (**) indicates P < 0.05 compared with treatment. All statistical
analysis was done using GraphPad Prism software. Exact N values are
provided within the figure legends.

RESULTS

Misoprostol prevents hypoxia-induced contractile and
mitochondrial dysfunction in vivo

Given that cardiac dysfunction has been implicated in neonatal
hypoxic injury, we performed echocardiography in mice exposed
to 10% oxygen from PND 3-10 (Fig. 1A) [4, 48]. This revealed
significant contractile dysfunction in hypoxic mice, including
reductions in fractional shortening (FS), ejection fraction (EF), and
alterations in left ventricle filling (E'/A’) (Fig. 1B-D). However, when
hypoxic mice were treated with misoprostol, contractility and
filling of the heart returned to control levels (Fig. 1B-D).

We also performed PCR arrays to assess the expression of genes
associated with mitochondrial metabolism, cell death pathways,
and inflammatory cytokines (Fig. 1E; Supplementary 1-2). We
observed changes in mRNA associated with the mitochondrial
electron transport chain (ETC), including of NADH ubiquinone
oxidoreductase and ATP synthase; however, very few of these
genes were returned to control levels with misoprostol treatment.
Interestingly, interleukins (IL) 17a and 123, involved in innate- and
T cell-mediated inflammation, were increased during hypoxia and
reduced below detectable levels by misoprostol (Fig. 1E).

Next, we determined if the hypoxic neonatal heart demon-
strated signs of mitochondrial dysfunction. We assessed cardiac
ATP and lactate content and observed a significant reduction in
cardiac ATP along with a corresponding increase in lactate (Fig. 1F,
G). Importantly, misoprostol treatment reduced lactate content,
whereas ATP levels were elevated beyond that observed in the
normoxic animals. We then used transmission electron micro-
scopy (TEM) to visualize mitochondrial morphology, which
revealed that hypoxia altered mitochondrial structure; however,
these changes were prevented when hypoxic animals were
treated with misoprostol (Fig. TH).

Based on the changes in mRNAs involved necrosis and
inflammation, we examined the subcellular distribution of HMGB1,
a nuclear protein that is released into the interstitium during
necrosis where it acts as an alarmin or damage-associated
molecular pattern (DAMP) to engage an inflammatory response.
Using confocal immunofluorescence, hypoxia elicited a marked
decrease in HMGB1 nuclear localization; however, when combined
with misoprostol treatment, HMGB1 remained in the nucleus (Fig.
11). Given the central role of Bnip3 in hypoxia-induced necrosis, we
also assessed its expression by western blot, and observed that
Bnip3 expression was increased by hypoxia, and partially reduced
by misoprostol treatment (Fig. 1J, K).
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These results indicate that hypoxia leads to cardiac bioenergetic
collapse resulting in alterations to contractile function and a
necroinflammatory phenotype. Treatment with misoprostol at
least transiently maintains mitochondrial function, despite
changes in mitochondrial gene expression, while preventing the
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necroinflammatory and contractile dysfunction. Finally, although
misoprostol can repress Bnip3 expression in other tissues, it only
partially reduced Bnip3 in the hypoxic neonatal heart, suggesting
that additional pharmacodynamic mechanisms operate in
this organ.
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Fig. 2 Misoprostol prevents hypoxia-induced mitochondrial perturbations in primary neonatal cardiomyocytes. A Primary ventricular
neonatal cardiomyocytes (PVNCs) treated with 10 pM misoprostol (Miso) with or without exposure to 1% O, (HPX) for 24 h. MitoView Green was
included in all conditions to show mitochondrial morphology. Cells were stained with hoechst (blue) and imaged by standard fluorescence
microscopy. B Quantification of cells in (A), where the number of cells with elongated and fragmented mitochondria are expressed as a
percentage of all transfected cells in 30 random fields, across 3 independent experiments. C Quantification of PVNC's treated as in (A). Cells were
stained with TMRM (red) and hoechst (blue) and imaged by standard fluorescence microscopy. Red fluorescent signal was normalized to cell area
and quantified in 30 random fields, across 3 independent experiments. D Human induced pluripotent stem cell-derived cardiomyocytes (H-iPSC-
CMs) treated as in (A). Cells were stained with TMRM (red) and hoechst (blue) and imaged by standard fluorescence microscopy. E Quantification
of cells in (D), as in (C). F PVNC'’s treated as in (A). Cells were stained with MitoSOX (Red) and hoechst (blue) and imaged by standard fluorescence
microscopy. G Quantification of cells in (F), as in (C). H Quantification of PVNC's treated as in (A). Cells were stained with dihydrorhod-2AM (Red)
and hoechst (blue) and imaged by standard fluorescence microscopy and quantified as in (C). | H-iPSC-CMs treated as in (A). Cells were stained
with dihyrorhod-2AM (Red) and hoechst (blue) and imaged by standard fluorescence microscopy. J Quantification of cells in (I), as in
(©). K Quantification of PVNC'’s treated as in (A). Cells were stained with hoechst (blue) and calcein-AM quenched by cobalt chloride (CoCly, 5 pM)
to assess permeability transition, where green fluorescent signal was normalized to cell area and quantified in 30 random fields, across 3
independent experiments. L H9c2 cells treated as in (A), GW-1-Mito-pHred (red) was included in all conditions to visualize mitophagy. Cells were
stained with hoechst (blue) and imaged by standard fluorescence microscopy. M Quantification of cells in (L), where red fluorescent signal was
normalized to cell area and quantified in 15 random fields, across 3 independent experiments. N Calculated oxygen consumption rates (OCR)
determined by Seahorse XF-24 analysis to evaluate mitochondrial function. O Quantification of PVNC's treated as in (A). Live cells were stained
with calcein-AM (green), and necrotic cells were stained with ethidium homodimer-1 (red). Percent (%) dead was calculated across 30 random
fields, across 3 independent experiments. P Quantification of PVNC's treated as in (A). Cells were fixed, stained with hoechst (blue), and
immunofluorescence was performed using a HMGB1 primary antibody (green). Cells were then imaged by standard fluorescence microscopy.
Green fluorescent signal was then normalized to nuclear area and quantified in 30 random fields, across 3 independent experiments. All data are
represented as mean + S.E.M. *P < 0.05 compared with control, while **P < 0.05 compared with hypoxia treatment, determined by 1-way ANOVA

or 2-way ANOVA where appropriate. Three * indicates P < 0.05 compared to both control and hypoxia treatment.

Misoprostol prevents hypoxia-induced mitochondrial
dysfunction in rodent and human cardiomyocytes

To investigate how misoprostol regulates mitochondrial function,
we employed primary ventricular neonatal cardiomyocytes
(PVNCs). When exposed to hypoxia, we observed a significant
increase in mitochondrial fragmentation (Fig. 2A, B). However,
when PVNCs were concurrently treated with misoprostol, mito-
chondria returned to their normal networked appearance (Fig. 2A,
B). Next, we used TMRM to assess mitochondrial membrane
potential (AYm), and observed that hypoxia significantly reduced
AWm, which was restored by misoprostol treatment (Fig. 2Q).
Further, we determined that this response was conserved in
hypoxia-exposed human induced pluripotent stem cell (iPSC)-
derived cardiomyocytes (H-iPSC-CMs)(Fig. 2D, E). We also assessed
mitochondrial superoxide using MitoSOX staining, and observed
increased superoxide production in hypoxic cells, which was
abrogated in the presence of misoprostol (Fig. 2F, G).

To investigate how hypoxia alters subcellular calcium dynamics,
we stained cardiomyocytes with a reduced form of Rhod-2AM
(dihydrorhod2-AM), which provides specificity for mitochondrial
calcium imaging. We observed that hypoxia significantly increased
mitochondrial calcium content in both PVNCs and H-iPSC-CMs
(Fig. 2H-J). However, when hypoxic cardiomyocytes were treated
with misoprostol, mitochondrial calcium accumulation was pre-
vented (Fig. 2H-J). We also assessed MPT in hypoxic cardiomyo-
cytes using the calcein-CoCl, method, where hypoxia resulted in a
loss of mitochondrial puncta, indicative of permeability transition,
while cells that were treated with misoprostol maintained
mitochondrial staining (Fig. 2K). Using a mitophagy biosensor,
called Mito-pHred, we observed that hypoxia significantly
increased mitochondrial autophagy; however, this was also
prevented by misoprostol (Fig. 2L, M).

We also examined the effect of misoprostol on mitochondrial
respiration. As shown in Fig. 2N, hypoxia significantly reduced
basal, maximal, and spare respiratory capacity, resulting in a
reduction in the calculated mitochondrial ATP production.
Consistent with our observations in vivo, misoprostol treatment
abrogated this effect (Fig. 2N). Next, we determined if improved
mitochondrial function, elicited by misoprostol, delayed cell death.
We performed MTT assays and observed that hypoxia significantly
reduced cell viability, which was attenuated in the presence of
misoprostol (Supplement 3A). Next, we performed live/dead
assays using ethidium homodimer-1 to mark the nuclei of cells
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with disrupted membrane integrity [49]. We observed that
hypoxia significantly increased the percentage of red staining
nuclei, which was prevented in myocytes treated with misoprostol
(Fig. 20). To confirm necrotic cell death, we also assessed
HMGB1 subcellular distribution. While hypoxic PVNCs demon-
strated a significant decrease in nuclear HMGB1 immunofluores-
cence, the addition of misoprostol restored HMGB1 staining (Fig.
2P). Collectively, these results indicate that misoprostol prevents
hypoxia-induced mitochondrial dysfunction, necrosis, and alar-
min/DAMP release in neonatal cardiomyocytes.

Misoprostol prevents Bnip3-induced mitochondrial
dysfunction and cell death
Using PVNCs and mouse embryonic fibroblasts (MEFs), we
observed that hypoxia increased Bnip3 expression (Fig. 3A-C).
Consistent with our previously results, misoprostol treatment
reduced Bnip3 expression; however, it still remained elevated
relative to control cells [4]. To determine the necessity of Bnip3
during hypoxia-induced mitochondrial dysfunction, we used MEFs
isolated from Bnip3™/~ embryos, described previously [6, 31].
TMRM analysis revealed that hypoxic WT MEFs displayed a
significant reduction in AWm, which was prevented in the
Bnip3~/~ MEFs, or misoprostol treatment of WT MEFs (Fig. 3D).
Hypoxia also increased mitochondrial calcium in the WT MEFs, but
not in the Bnip3™'~ MEFs, while misoprostol provided protection
against mitochondrial calcium accumulation in the WT cells (Fig.
3E, F). In addition, Bnip3~/~ MEFs were less susceptible to hypoxia-
induced MPT, while misoprostol protected WT MEFs (Fig. 3G).
Next, we used H9c2 cardiomyoblasts to determine if misopros-
tol could inhibit Bnip3 function. Using mito-Emerald to visualize
mitochondrial morphology (Fig. 3H, 1), Bnip3 expression resulted in
a fragmented mitochondrial appearance. However, when Bnip3-
expressing cells were treated with misoprostol, mitochondria
retained a networked appearance (Fig. 3H, I). Given previous
reports of Bnip3 regulating mitochondrial morphology through an
interaction with Opal, we also tested if overexpression of Opal
rescues Bnip3-induced mitochondrial fragmentation. Shown in
Fig. 3J, Bnip3 induced mitochondrial fragmentation was pre-
vented with the co-expression of Opal. We also evaluated
phosphorylated DRP1 and Opal expression in Bnip3-expressing
H9c2 cells, and observed no impact on these targets (Supple-
mentary 3B, C). Using TMRM we observed that Bnip3 expression
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induced mitochondrial depolarization, which was restored in the
presence of misoprostol (Fig. 3K, L).

We next investigated the role of subcellular calcium as a
mechanism of Bnip3-induced mitochondrial dysfunction, using
organelle-targeted calcium biosensors called GECOs. When
expressed with the ER-targeted biosensors (ER-LAR-GECO),
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Bnip3 significantly reduced ER calcium stores (Fig. 3M). Concur-
rently, using the mitochondrial targeted biosensor (Mito-CAR-
GECO), Bnip3 increased mitochondrial calcium (Fig. 3N), suggest-
ing a shift of calcium from the ER to the mitochondria.
Furthermore, this shift in calcium was prevented by misoprostol
(Fig. 3M, N). We also observed that Bnip3 expression caused MPT,
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Fig. 3 Misoprostol prevents Bnip3-induced mitochondrial perturbations and cell death in MEFs and H9c2 cells. A PVNC’s treated with
10 uM misoprostol (Miso) with or without exposure to 1% O, (HPX) for 24 h. Cells were fixed, stained with hoechst (blue), and immunofluorescence
was performed using a Bnip3 primary antibody (green). Cells were then imaged by standard fluorescence microscopy. B Quantification of cells in
(A), where green fluorescent signal was normalized to cell area and quantified in 30 random fields, across 3 independent experiments. C
Immunoblot for Bnip3 in protein extracts from WT and Bnip3 ™/~ MEFs treated as in (A). D Quantification of WT and Bnip3~/~ mouse embryonic
fibroblasts (MEFs) treated as in (A). Cells were stained with TMRM (red) and hoechst (blue) and imaged by standard fluorescence microscopy. Red
fluorescent signal was normalized to cell area and quantified in 15 random fields, across 3 independent experiments. E WT and Bnip3~/~ MEFs
treated as in (A). Cells were stained with hoechst (blue) and dihydrorhod-2AM to stain mitochondrial calcium. F Quantification of (E) as in (D) in 15
random fields, across 3 independent experiments. G Quantification of WT and Bnip3~'~ MEFs treated as in (A). Cells were stained with hoechst
(blue) and calcein-AM quenched by cobalt chloride (CoCl,, 5 pM) to assess permeability transition. Green fluorescent signal was normalized to cell
area and quantified in 15 random fields, across 3 independent experiments. H H9c2 cells transfected with pcDNA3 (control) or Myc-Bnip3 and
treated with 10 uM misoprostol (Miso) or PBS control for 16 h. Mito-Emerald (green) was included in all conditions to show transfected cells and
mitochondrial morphology. Cells were stained with hoechst (blue) and imaged by standard fluorescence microscopy. I Quantification of cells in
(H), where the number of cells with elongated and fragmented mitochondria are expressed as a percentage of all transfected cells in 30 random
fields, across 3 independent experiments. J Quantification of H9c2 cells transfected with pcDNA3 (control), Myc-Bnip3 and/or myc-Opal. Mito-
Emerald (green) was included in all conditions as in (H) and cells were stained with hoechst (blue) and imaged by standard fluorescence
microscopy. Quantification as in (I). K H9c2 cells treated as in (H). CMV-GFP (outline) was included in all conditions to indicate transfected cells Cells
were stained and imaged as in (D). L Quantification of cells in (K) as in (D). M Quantification of H9c2 cells treated as in (H). ER-LAR-GECO (red) was
included in all conditions to indicate ER calcium content. Cells were stained and imaged as in (H). Quantification was performed as in (D) in 30
random fields, across 3 independent experiments. N Quantification of H9c2 cells treated as in (H). Mito-CAR-GECO (red) was included in all
conditions to indicate mitochondrial calcium content. Cells were stained and imaged as in (D). Quantification was performed as in (D) in 30
random fields, across 3 independent experiments. O Quantification of HIc2 cells treated as in (H) and CMV-ds-RED was included in all conditions
to indicate transfected cells. Cells were stained, imaged and quantified as in (G) across 30 random fields, across 3 independent experiments.
P H9c2 cells treated as in (H). LC3-GFP (green) was included in all conditions to show transfected cells and autophagic puncta. Cells were stained
with hoechst (blue) and MitoTracker red (red) and imaged by standard fluorescence microscopy. Q Quantification of cells in (P), where the number
of cells with LC3-GFP and MitoTracker co-localization are expressed as a percentage of all transfected cells in 10 random fields. R Quantification of
H9c2’s treated as in (H). ATeam was used to indicate cytosolic ATP content. Cells were imaged by FRET-based microscopy. FRET-YFP (ATP) signal
was divided by the YFP (unbound biosensor) signal in 15 random fields across 3 independent experiments. S Quantification of H9¢c2 cells treated
as in (H). Live cells were stained with calcein-AM (green), and necrotic cells were stained with ethidium homodimer-1 (red) and are expressed as
percent (%) dead in 30 random fields, across 3 independent experiments. All data are represented as mean + S.E.M. *P < 0.05 compared with
control, while **P < 0.05 compared with hypoxia or Bnip3 treatment, determined by 1-way ANOVA or 2-way ANOVA where appropriate. Three *
indicates P < 0.05 compared to both control and treatment conditions.

which was opposed by misoprostol (Fig. 30). Additionally, we
assessed mitophagy by assessing the colocalization of LC3 with
mitochondria in cells expressing Bnip3 and observed punctate
colocalization, suggesting enhanced mitophagy. However,
this observation was absent with the addition of misoprostol
(Fig. 3P, Q).

Next, we determined if Bnip3-induced mitochondrial dysfunc-
tion led to a depletion of cellular ATP. Using the ATeam biosensor
[39], we observed that ATP content was significantly reduced in
Bnip3-expressing H9c2 cells and that this effect was prevented by
misoprostol (Fig. 3R). In addition, Bnip3 increased in the number
dead cells per field in a live/dead assay, which was also prevented
with misoprostol (Fig. 3S). We also performed Annexin V/7-AAD
staining and flow cytometry analysis, and observed that Bnip3
enhanced necrotic cell death (7-AAD staining), but had little
impact on Annexin V staining (Supplement 3D). Furthermore,
treatment with misoprostol attenuated the increases in 7-AAD
staining induced by Bnip3 (Supplement 3D). Together this data
indicates that misoprostol is capable of inhibiting Bnip3 function
and preventing mitochondrial perturbations associated with
necrosis.

Misoprostol modulates a novel PKA phosphorylation site on
Bnip3 at Thr-181

We sought to determine if misoprostol was acting directly on the
mitochondria or if a plasma membrane mediator was involved.
Thus, we isolated cardiac mitochondria and treated directly with
misoprostol or vehicle, followed by mitochondrial calcium
retention capacity (CRC) and mitochondrial swelling assays.
Shown in Fig. 4A, B, misoprostol had no direct effect on isolated
mitochondria treated with exogenous calcium.

Next, we investigated the role of prostaglandin cell surface
receptors. Monitoring AWYm, we applied L161,982, an EP, receptor
antagonist, in combination with hypoxia and misoprostol treat-
ments. Misoprostol treatment prevented hypoxia-induced mito-
chondrial depolarization, but this rescue was lost when the
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EP, receptor was inhibited (Fig. 4C, D). Conversely, EP; receptor
antagonism with L798106 had no effect (Fig. 4E, F). In addition, we
expressed a PKA biosensor and treated with misoprostol, which
demonstrated peak activation 30 min following misoprostol
treatment (Supplementary 4A). These results suggest that EP,
activation of PKA might be a mechanism by which misoprostol
prevents MPT. To explore the role of PKA in misoprostol-induced
protection, we used H89, a PKA inhibitor, in combination with
hypoxia and misoprostol treatments. Hypoxia exposure reduced
AWm, which was restored with misoprostol; however, when
combined with H89, this restoration was lost (Fig. 4G).

To investigate if PKA can directly phosphorylate Bnip3, we
analyzed the mouse Bnip3 amino acid sequence, and identified
conserved PKA phosphorylation motifs at serine (Ser)-107 and
threonine (Thr)-181. We engineered peptides spanning these
regions and performed in vitro kinase reaction with purified PKA,
followed by mass spectrometry analysis. For the peptides
spanning Ser-107, no discernible peaks corresponding to phos-
phorylation were observed (Supplementary 4). However, for the
peptides spanning Thr-181, single ion monitoring (SIM) displayed
a predominant peak at m/z of 836.92 (z=2") for the control.
Following incubation with PKA, the peptide m/z increased by
40 suggesting phosphorylation (m/z 876.86 z=2"; mass =
80.00 Da) (Fig. 4H). We also evaluated if this peptide could be
phosphorylated at more than one residue, but we did not detect
an increased m/z of 80 (Supplement 4). Next, we analyzed the MS?
spectra produced by collision-induced dissociation (CID) of the
mass-shifted peptide with m/z 876.86 (z=2"). CID fragments
phospho-residues resulting in the loss of HsPO, and the
generation of a product-ion with a mass less 98 Da (m/z =49 for
z=2%). CID yielded a product-ion with m/z=827.92 (delta =
48.94), also indicating phosphorylation (Fig. 4l). Next, we subjected
the triply charged phospho-peptide (m/z = 585.27; not shown) to
electron transfer dissociation (ETD). This technique breaks peptide
bonds but retains side-chain phosphorylation’s to determine
specific phospho-residues. Using the ETD MS? spectra, Mascot
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software identified threonine-181 of Bnip3 as the phosphorylated

residue (Fig. 4J).

To confirm that PKA phosphorylates Bnip3, we used a custom
phospho-antibody targeted to Thr-181, and co-expressed the
catalytic subunit of PKA and Bnip3 and observed a marked
increase in phosphorylation (p-Bnip3) (Fig. 4L). We next exposed
H9c2 cells and PVNCs to misoprostol and observed an increase in
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endogenous Bnip3 phosphorylation (Supplementary 4). Finally, to

determine if Bnip3 phosphorylation is regulated in vivo, we

performed western blots on from neonatal mice exposed to
hypoxia and observed a significant reduction in p-Bnip3, which
was restored when mice were treated with misoprostol (Fig. 4M,
N). In addition, we evaluated Bnip3 phosphorylation in adult
rodent hearts and observed a significant decrease in p-Bnip3 in
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10

Fig. 4 Misoprostol stimulates EP4 receptors to activate PKA and promote the modulation of a novel PKA phosphorylation site on Bnip3
at Thr-181 in cells and the PND10 neonatal heart. A Mitochondrial calcium retention capacity (CRC) in isolated mitochondria exposed to 10 pM
misoprostol (Miso) or PBS control. B Mitochondrial swelling assay in isolated mitochondria treated as in (A). C H9¢2 cells exposed to 1% O, (HPX) or
21% O, (control) and treated with 10 pM misoprostol (Miso) or PBS control for 24 h. 10 pM L161,982 was also included in half of the conditions.
Cells were stained with TMRM (red) and hoechst (blue) and imaged by standard fluorescence microscopy. D Quantification of cells in (C), where
red fluorescent signal was normalized to cell area and quantified in 30 random fields, across 3 independent experiments. E HI¢c2 cells treated,
stained and imaged as in (C). 1 uM L798106 was also included in half of the conditions. F Quantification of cells € (E), as in (D). G Quantification of
H9c2 cells treated as in (C) with the addition of 10 uM H-89 for 24 h. Cells were imaged as in (C) and quantified as in (D). H SIM scan of the wild-
type peptide spanning the PKA site of Bnip3. The unphosphorylated pe _})tlde has a 837 m/z (z=2") (Left), putative phosphorylation showing an
increased m/z of 40 that corresponds to PO; (M = 80.00 Da) (Right). I MS” spectra foIIowmg collision induced dissociation (CID) of the mass shifted
ion from (H) yielding a product-ion consistent with a neutral loss of HsPO,. J MS? spectra following electron transfer dissociation (ETD) of a triply
charged mass-shifted ion following kinase reaction (not shown). Analysis of this fragmentation spectra confirmed that threonine-181 is the
preferred phosphorylation residue. K Alignment of evolutionarily conserved T181 phosphorylation site (bold and underlined), and 14-3-3 binding
motifs (Red) for Bnip3 in human, mouse and rat. L Immunoblot of H9c2 cells transfected with Myc-Bnip3 and/or PKA for 16 h. M Representative
immunoblot of heart protein extracts from post-natal day (PND10) mice exposed to hypoxia (10% O,) £+ 10 ug/kg misoprostol from PND3-10.
Extracts were immunoblotted as indicated. N Phospho-Bnip3 densitometry for extracts in (M), representing an N of 3 male PND10 mouse hearts.
All data are represented as mean = S.E.M. *P < 0.05 compared with control, while **P <0.05 compared with hypoxia treatment, determined by
1-way ANOVA or 2-way ANOVA where appropriate.
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Fig. 5 Misoprostol Inhibits Bnip3-induced mitochondrial perturbations and cell death through Thr-181 phosphorylation in H9¢c2 cells.
A SIM scan of a mutated peptide where the PKA site at Threonine-181 is replaced with Alanine (left). On the right, phosphorylation of this
mutate peptide is negligible at the predicted m/z that corresponds to the addition of a PO3; (M = 80.00 Da). B H9c2 cells transfected with
pcDNA3 (control) or Myc-T181A and treated with 10 pM misoprostol (Miso) or PBS control for 16 h. Mito-Emerald (green) was included in all
conditions to show transfected cells and mitochondrial morphology. Cells were stained with hoechst (blue) and imaged by standard
fluorescence microscopy. € Quantification of cells in (B), where the number of cells with elongated and fragmented mitochondria are
expressed as a percentage of all transfected cells in 30 random fields, across 3 independent experiments. D H9c2 cells treated as in (B). CMV-
GFP (outline) was included in all conditions to indicate transfected cells Cells were stained with TMRM (red) and hoechst (blue) and imaged by
standard fluorescence micros€y. E Quantification of cells in (D), where red fluorescent signal was normalized to cell area and quantified in 30
random fields, across 3 independent experiments. F Bnip3’/’ mouse embryonic fibroblasts (MEFs) treated as in (B) where either Myc-Bnip3
(WT) or Myc-Bnip3(T181A) was transfected in Cells were stained with TMRM (red) and hoechst (blue) and imaged by standard fluorescence
microscopy. G Quantification of cells in (F), where red fluorescent signal was normalized to cell area and quantified in 15 random fields, across
3 independent experiments. H H9c2 cells treated as in (B). ER-LAR-GECO (red) was included in all conditions to indicate ER calcium content.
Cells were stained with hoechst (blue) and imaged by standard fluorescence microscopy. I Quantification of cells in (€as in (E) in 30 random
fields, across 3 independent experiments. J H9c2 cells treated as in (B). Mito-CAR-GECO (red) was included in all conditions to indicate
mitochondrial calcium content. Cells were stained with hoechst (blue) and imaged by standard fluorescence microscopy. K Quantification of
cells i€)) as in (E) in 30 random fields, across 3 independent experiments. L Quantification of H9c2 cells treated as in (B) and CMV-ds.RED was
included in all conditions to indicate transfected cells. Cells were stained with hoechst (blue) and calcein-AM quenched by cobalt chloride
(CoCly, 5 uM) to assess permeability transition. Quantification was done by calculating the percentage of cells with mitochondrial puncta in 30
random fields, across 3 independent experiments. M Quantification of H9c2 cells treated as in (B). Live cells were stained with calcein-AM
(green), and necrotic cells were stained with ethidium homodimer-1 (red) and are expressed as percent (%) dead in 30 random fields, across 3
independent experiments. All data are represented as mean £ S.E.M. *P < 0.05 compared with control, while **P < 0.05 compared with Bnip3

treatment, determined by 1-way ANOVA or 2-way ANOVA where appropriate.
<

the viable border zone following 4-weeks of coronary ligation.
However, by 8 weeks post ligation p-Bnip3 returned to control
levels (Supplementary 5A-C). These results implicate Bnip3
phosphorylation at Thr-181 as a regulated event in vivo.

Misoprostol inhibits Bnip3 through Thr-181

To understand the cellular role of Bnip3 phosphorylation, we first
generated both a peptide and a plasmid replacing Thr-181 with an
alanine residue (T181A). Using mass spectroscopy, we observed
that the T181A peptide can no longer be phosphorylated (Fig. 5A).
To demonstrate specificity, we engineered a peptide replacing the
threonine at position-182 with an alanine and observed phos-
phorylation similar to the WT peptide (Supplementary 4). Next, we
employed gain-of-function transfection studies with the Bnip3-
T181A construct, in combination with mito-Emerald, to visualize
mitochondrial morphology. Expression of T181A resulted in a
fragmented mitochondrial phenotype; however, the T181A
mutant was not inhibited by misoprostol treatment (Fig. 5B, C).
In addition, misoprostol was not able to overcome the reduction
in AWYm induced by T181A (Fig. 5D, E). To determine the necessity
of Thr-181 as a down-stream target of misoprostol treatment, we
reconstituted WT or T181A Bnip3 expression in Bnip3 '~ MEFs. We
observed that both WT and T181A reduced AWm; however,
misoprostol treatment restored AWm to control in the WT Bnip3
transfected cells but failed to restore AWm in the presence of
T181A (Fig. 5F, G).

When we investigated underlying calcium phenomena, we
observed that T181A expression shifted calcium from the ER into
the mitochondria. However, misoprostol was unable to prevent
this calcium shift induced by T181A (Fig. 5H-K). Likewise,
misoprostol was unable to prevent MPT and cell death elicited
by the T181A mutant (Fig. 5L, M). These data demonstrate that
phosphorylation of Bnip3 at Thr-181 is necessary for misoprostol
to inhibit Bnip3 function.

Thr-181 phosphorylation retains Bnip3 in the cytosol

To determine how phosphorylation at Thr-181 inhibits Bnip3
function, we expressed matrix-targeted mito-emerald, and per-
formed confocal immunofluorescence for Bnip3 following expo-
sure to hypoxia and/or misoprostol. As shown in Fig. 6A, B, we
observed very little interaction between mito-emerald and Bnip3;
however, when H9c2 cells were exposed to hypoxia the
colocalization coefficient increased. Interestingly, we observed

Cell Death and Disease (2021)12:1105

that this colocalization was abrogated by misoprostol (Fig. 6A, B).
Using a similar approach, we assessed the colocalization between
Bnip3 and Opal in the neonatal heart. At baseline there was very
little interaction between the two proteins, which was significantly
increased by hypoxia, but disrupted by misoprostol (Fig. 6C,
Supplementary 6A). Similar results were obtained using an ER/SR-
targeted emerald (Fig. 6D). Next, we determined the subcellular
localization of p-Bnip3 through fractionation studies. We observed
that Bnip3 is predominantly localized to the mitochondria, and to
a lesser extent at the ER, while p-Bnip3 is cytosolic (Fig. 6E).

Analysis of Bnip3 sequence predicted that Thr-181 lies within a
14-3-3 domain. This family interacts with a RxxpTx motif (Bnip3:
RRLpTT), which are commonly found within PKA and CaMKIl sites
(See Fig. 4K for alignment). As we recently determined that PKA-
dependent phosphorylation of Nix (Bnip3L) increases its interac-
tion with 14-3-33 [43], we investigated the role of these
chaperones as a mechanism by which misoprostol inhibits Bnip3.
Using hypoxia and misoprostol exposed PVNCs, we applied BvO2,
a pan-14-3-3 inhibitor, and assessed AWYm and MPT. We observed
that misoprostol’s ability to rescue of AWm and MPT was
prevented by BvO2 (Fig. 6F, G).

Next, we expressed Bnip3 and 14-3-3pB, alone and in combina-
tion, in H9c2 cells. TMRM staining revealed that 14-3-3f3 was able
to rescue Bnip3-induced mitochondrial depolarization (Fig. 6H).
Similar experiments were conducted using 14-3-3g, which was
unable to restore AWm, demonstrating some degree of isoform
specificity (Fig. 6l). We also observed that 14-3-33 expression is
sufficient to prevent the ER calcium depletion and mitochondrial
calcium accumulation triggered by Bnip3 expression (Fig. 6J, K),
and prevent MPT (Fig. 6L).

To determine if 14-3-38 and Bnip3 physical interact, we
performed immunofluorescence targeting both Bnip3 and 14-3-
3B following exposure to hypoxia and/or misoprostol in the
neonatal heart. Although we observed little colocalization at
baseline, possibly due to low expression of Bnip3 in the normoxic
conditions, the combination of hypoxia and misoprostol treatment
increased the colocalization coefficient between Bnip3 and 14-3-
3B (Fig. 6M, Supplement 6B). To overcome the challenges
associated with altered Bnip3 expression between normoxic and
hypoxic conditions, we overexpressed both Bnip3 and 14-3-38 in
H9c2 cells and performed confocal immunofluorescence. As
shown in Fig. 6N and O, misoprostol was sufficient to increase
colocalization. Next, we co-expressed HA-14-3-33 and myc-Bnip3
in H9c2 cells that were concurrently treated with misoprostol,
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and performed immunoprecipitation with an HA antibody. We
detected myc-Bnip3 from the immunoprecipitation when cells
were treated with misoprostol (Fig. 6P). Finally, we tested whether
14-3-33 expression could inhibit Bnip3 T181A function. We
expressed T181A with and without 14-3-3 and assessed TMRM
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and Mito-CAR-GECO (Supplement 7A-D). Interestingly, 14-3-3(3
was ineffective at inhibiting the Bnip3 T181A mutant. Collectively,
these data indicate that misoprostol promotes p-Bnip3 trafficking
away from the mitochondria and ER through an interaction with
14-3-3B.
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Fig. 6 Bnip3 phosphorylation at Thr-181 retains Bnip3 in the cytosol through inhibitory interactions with 14-3-3f in H9c2 cells. A H9c2
cells treated with 10 pM misoprostol (Miso) + 1% O, (HPX) for 24 h. Myc-Bnip3 and Mito-Emerald (green) were included in each condition to
visualize localization. Cells were fixed, stained with hoechst (blue), and immunofluorescence was performed using a Myc-tag primary antibody
(Red). Cells were then imaged by standard confocal microscopy. B Quantification of cells in (A), where colocalization coefficient was calculated
for 30 cells per condition across 10 random fields. C Quantification of immunofluorescence in PND10 hearts exposed to hypoxia (10% O,) +
10 pg/kg misoprostol from PND3-10. Hearts were probed for Bnip3 (Red), Opal (Green), and stained with DAPI (Blue). Hearts were imaged by
standard confocal microscopy and the colocalization coefficient was calculated in 20 fields per condition (n =4 animals/conditions). D
Quantification of H9c2 cells treated as in (A). ER-Emerald (green) was transfected in all conditions. Cells were fixed, stained with hoechst (blue),
and immunofluorescence was performed using a Myc-tag primary antibody (Red). Cells were then imaged by standard confocal microscopy.
Colocalization coefficient was calculated for 30 cells per condition across 10 random fields. E Fractionation of control treated H9c2. Protein
extracts were fractionated and immunoblotted, as indicated. F Quantification of primary ventricular neonatal cardiomyocytes (PVNCs) treated
with 10 pM misoprostol (Miso) £ 1% O, (HPX) for 24 h. 5 pM BvO2 was included in half of the conditions to inhibit 14-3-3 protein activity. Cells
were stained with TMRM (red) and hoechst (blue) and imaged by standard fluorescence microscopy. Red fluorescent signal was normalized to
cell area and quantified in 20 random fields, across 2 independent experiments. G Quantification of PVNCs treated as in (E). Cells were stained
with hoechst (blue) and calcein-AM quenched by cobalt chloride (CoCl,, 5pM) to assess permeability transition, and imaged by standard
fluorescence microscopy. The percentage of cells with mitochondrial puncta was calculated in 20 random fields, across 2 independent
experiments. H Quantification of H9c2 cells transfected with pcDNA3 (control) or Myc-Bnip3 with and without HA-14-3-3p. CMV-GFP (outline)
was included in all conditions to indicate transfected cells Cells were stained with TMRM (red) and hoechst (blue) and imaged by standard
fluorescence microscopy. Red fluorescent signal was normalized to cell area and quantified in 30 random fields, across 3 independent
experiments. | Quantification of H9c2s treated as in (G), with and without 14-3-3¢. Cells were stained and imaged as in (H) and quantified as an
(1) across 30 random fields, in 3 independent experiments. J Quantification of H9c2's treated as in (H). ER-LAR-GECO (red) was included in all
conditions to indicate ER calcium content. Cells were stained and imaged as in (H). Red fluorescent signal was normalized to cell are in 30
random fields, across 3 independent experiments. (K) Quantification of H9c2's treated as in (H). Mito-CAR-GECO (red) was included in all
conditions to indicate mitochondrial calcium content. Quantification performed as in (J) in 30 random fields, across 3 independent
experiments. L Quantification of H9c2's treated as in (H), and CMV-ds.RED was included in all conditions to indicate transfected cells. Cells
were stained with hoechst (blue) and calcein-AM quenched by cobalt chloride (CoCl,, 5pM) to assess permeability transition. Where the
percentage of cells with mitochondrial puncta was calculated in 30 random fields, across 3 independent experiments. M Quantification of
immunofluorescence in PND10 hearts exposed to hypoxia (10% O,) + 10 pg/kg misoprostol from PND3-10. Hearts were probed for Bnip3
(Red), 14-3-3p (Green), and stained with DAPI (Blue). Hearts were imaged by standard confocal microscopy and the colocalization coefficient
was calculated in 20 fields per condition (n = 4 animals/conditions). N H9c2 cells transfected with Myc-Bnip3 + 10 pM misoprostol (Miso) 18 h.
Cells were fixed, stained with hoechst (blue), and immunofluorescence was performed using a Myc-tag (Red), and 14-3-3p (Green). Cells were
then imaged by standard confocal microscopy. O Quantification of cells in (N), where colocalization coefficient was calculated for 30 cells per
condition across 10 random fields. P Co-immunoprecipitation of HCT-116 cells expressing HA-14-3-3 and Myc-Bnip3. Proteins were pulled
down with Myc and probed for HA-tag. Immunoblot was probed as indicated. All data are represented as mean = S.E.M. *P < 0.05 compared
with control, while **P < 0.05 compared with hypoxia or Bnip3 treatment, determined by 1-way ANOVA or 2-way ANOVA where appropriate.

Bnip3 ablation prevents hypoxia-induced contractile
dysfunction and necroinflammation in the neonatal heart

To determine if a direct link existed between hypoxia-induced
alterations in contractile function and Bnip3 protein expression
in vivo, we exposed neonatal WT and Bnip3™'~ mice to hypoxia
[31]. Using transthoracic echocardiography, we observed that
hypoxia induced significant contractile dysfunction in WT mice,
including reductions in ejection fraction (EF), and alterations in left
ventricular filling (E'/A) (Fig. 7A-C), which remained unaffected in
Bnip3™/~ mice (Fig. 7A-C). These results phenocopy what we
observed using misoprostol drug treatments. In addition, we
investigated the subcellular distribution of HMGB1 in neonatal
hearts, and observed a decrease in nuclear localization in hypoxic
WT animals, but was retained in the nucleus of hypoxia-exposed
Bnip3 ™/~ mice (Fig. 7D).

DISCUSSION

Systemic hypoxia results in cardiac contractile impairment,
resistance to inotropic therapy, end-organ perfusion defects, and
contributes to the majority of neonatal deaths within the first
week of life [50-56]. In this study we provide evidence that
hypoxia-induced necroinflammation and neonatal cardiac dys-
function occur in a Bnip3-dependent manner. In addition, Bnip3
directly alters mitochondrial calcium homeostasis, resulting in
MPT, necrosis and the release of the pro-inflammatory HMGB1 in
the neonatal heart. Furthermore, we demonstrate that Bnip3
function can be pharmacologically modulated by misoprostol (see
Fig. 7E for overview).

These results unify previous reports demonstrating the deleter-
ious role of Bnip3 at multiple subcellular locations. At the ER/SR,
we demonstrate that Bnip3 alters calcium homeostasis, consistent
with previous studies where elevated mitochondrial calcium

Cell Death and Disease (2021)12:1105

drives a loss of membrane potential, ROS production, MPT, and
caspase-independent necrosis [8, 12, 57]. However, Bnip3 is a
dual-regulator of cell death, where it also inserts through the outer
mitochondrial membrane and uses its TM domain to interact with
Opal [10, 58, 59]. While Opal is associated with maintaining
cristae structure and mitochondrial fusion, genetic deletion of
Opa1 results in ETC dysfunction, mitochondrial fragmentation and
cell death [9, 60, 61]. Previous work demonstrates that
cardiomyocyte-specific overexpression of Bnip3 results in
complex-1 and -4 degradation, suppressing respiratory activity,
while enhancing mitochondrial fragmentation [11]. ETC dysfunc-
tion is further tied to mitochondrial ROS production, which
synergizes with MPT [62, 63]. Collectively, this suggests that Bnip3
functions to depress energy production and promote necrotic cell
death in the heart through convergent pathways.

We also demonstrate that these pathways can be pharmaco-
logically modulated through misoprostol-induced Bnip3 phos-
phorylation. While a previous study demonstrated that Bnip3
phosphorylation inhibits its interactions with Opal, we provide
mechanistic evidence both in vivo and in cardiomyocytes that
misoprostol activates PKA, resulting in an inhibitory phosphoryla-
tion of Bnip3's TM domain at Thr-181 [9]. Furthermore, we propose
a mechanism by which 14-3-3f translocates Bnip3 to the cytosol,
which likely prevents interactions with factors at ER and
mitochondrial, including Bcl-2 and Opal, respectively [64-68].

The results presented in this study strongly implicate Bnip3 as a
regulator of mitochondrial calcium homeostasis and a necroin-
flammatory phenotype in the hypoxic neonatal heart. Additionally,
the data in this preclinical study builds on the accumulating
evidence that misoprostol directly regulates Bnip3 function, with
potential meaningful implications for neonatal and adult hypoxia-
induced cardiac pathologies, and stem cell-based cardiac thera-
pies where promoting cardiomyocyte survival would be of benefit.
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Fig. 7 Bnip3 ablation prevents hypoxia-induced contractile dysfunction and necroinflammation in the PND10 neonatal heart. A Post-
natal day 2 (PND2) Bnip3-WT and Bnip3-null mice are exposed to hypoxia (10% O,) from PND3-10, hearts were imaged and collected on
PND10. B Ejection fraction and (C) E'/A’ ratio for PND10 animals treated as in (A), in 3-5 mice per group, as determined by transthoracic
echocardiography. D PND10 hearts treated as in (A) and stained with DAPI (Blue) and probed for high mobility group box 1 (HMGB1, red).
Hearts were imaged via €focal microscopy. E Proposed mechanism by which misoprostol inhibits Bnip3 at the mitochondria and ER to prevent
necrotic cell death and necroinflammation. All data are represented as mean + S.E.M. *P < 0.05 compared with WT control, while **P < 0.05
compared with WT hypoxia treatment, determined by 1-way ANOVA.
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