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Background: A novel coronavirus, SARS-CoV-2, which 
emerged at the end of 2019 and causes COVID-19, has 
resulted in worldwide human infections. While geneti-
cally distinct, SARS-CoV-1, the aetiological agent 
responsible for an outbreak of severe acute respira-
tory syndrome (SARS) in 2002–2003, utilises the same 
host cell receptor as SARS-CoV-2 for entry: angioten-
sin-converting enzyme 2 (ACE2). Parts of the SARS-
CoV-1 spike glycoprotein (S protein), which interacts 
with ACE2, appear conserved in SARS-CoV-2. Aim: 
The cross-reactivity with SARS-CoV-2 of monoclonal 
antibodies (mAbs) previously generated against the 
S protein of SARS-CoV-1 was assessed. Methods: The 
SARS-CoV-2 S protein sequence was aligned to those 
of SARS-CoV-1, Middle East respiratory syndrome 
(MERS) and common-cold coronaviruses. Abilities of 
mAbs generated against SARS-CoV-1 S protein to bind 
SARS-CoV-2 or its S protein were tested with SARS-
CoV-2 infected cells as well as cells expressing either 
the full length protein or a fragment of its S2 subu-
nit. Quantitative ELISA was also performed to compare 
binding of mAbs to recombinant S protein. Results: An 
immunogenic domain in the S2 subunit of SARS-CoV-1 
S protein is highly conserved in SARS-CoV-2 but not 
in MERS and human common-cold coronaviruses. Four 
murine mAbs raised against this immunogenic frag-
ment could recognise SARS-CoV-2 S protein expressed 
in mammalian cell lines. In particular, mAb 1A9 was 
demonstrated to detect S protein in SARS-CoV-2-
infected cells and is suitable for use in a sandwich 

ELISA format. Conclusion: The cross-reactive mAbs 
may serve as useful tools for SARS-CoV-2 research 
and for the development of diagnostic assays for 
COVID-19.

Introduction
The severe acute respiratory syndrome coronavirus 
(SARS-CoV-1), a virus considered to have a zoonotic 
origin, is the aetiological agent for the infectious dis-
ease, SARS, which first emerged in 2002–2003 [1,2]. 
In December of 2019, another novel coronavirus (SARS-
CoV-2), which causes coronavirus disease (COVID-19), 
appeared to have crossed species barriers to infect 
humans and was effectively transmitted from person 
to person, leading to an outbreak in Wuhan, China 
[3-5]. This virus subsequently spread worldwide, lead-
ing the World Health Organization (WHO) to declare a 
pandemic on 11 March 2020 [6]. To date, SARS-CoV-2 
continues to pose a high global health and economy 
burden, and as at 3 May 2020, COVID-19 had affected 
215 countries with over 3.35 million confirmed cases.
To tackle the problems caused by SARS-CoV-2, improv-
ing its detection and knowledge of its infection mech-
anism is important. In this respect, the viral surface 
spike glycoprotein (S protein) has been demonstrated 
to play key role in host cell selectivity and binding. The 
S protein is functionally divided into two subunits, with 
the S1 subunit containing the receptor binding domain 
(RBD), which allows attachment to host cells, and the 
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S2 subunit mediating fusion between viral and host 
membranes (reviewed by Li, F.) [7].

Phylogenetic analysis revealed that like SARS-CoV-1 
and bat-derived SARS-like coronaviruses (SL-CoVs), 
SARS-CoV-2 belongs to lineage B of the betacorona-
virus genus [8,9]. A study of 56 complete and partial 
SARS-CoV-2 genomes isolated from COVID-19 patients 
showed very high sequence conservation of more than 
99%, indicating a recent introduction of the virus into 
the human population [10]. Although the animal source 
of SARS-CoV-2 is not clear, SARS-CoV-1 is believed to 
have originated from SL-CoVs residing in bats [11-14]. 
For the majority of SL-CoVs, the S1 subunit has low 
sequence identity to that of SARS-CoV-1, which sug-
gests species-dependent receptor binding [14,15]. On 
the other hand, the high amino acid sequence identity 
of more than 90% in the S2 subunit suggests that the 
fusion mechanism during virus infection is well-con-
served [14,15].

While SARS-CoV-2 shares higher whole-genome 
sequence identity with bat-SL-CoVZC45 and bat-SL-CoV-
ZXC21 (88–89%) than with SARS-CoV-1 (79–82%), the 
RBD of SARS-CoV-2 is more similar to SARS-CoV-1 RBD 
[8,9]. In line with this, several research groups have 
demonstrated that SARS-CoV-2 utilises the same host 
receptor, angiotensin-converting enzyme 2 (ACE2), as 
SARS-CoV-1 for viral entry [3,16-18]. Due to its role in 
virus entry, the S protein has been the target for the 
generation of monoclonal antibodies (mAb).

In our previous work, we used five different frag-
ments of SARS-CoV-1 S protein to immunise rabbits. 

A fragment corresponding to residues 1029 to 1192 in 
the S2 subunit of SARS-CoV-1 was found to stimulate 
neutralising antibodies against SARS-CoV-1 [19]. This 
fragment was subsequently used to generate a panel 
of murine mAbs with their respective binding domains 
characterised and described in Lip et al. [20]. One of 
them, mAb 1A9, which binds to the S protein through 
a recently identified epitope within the S2 subunit 
at amino acids 1111–1130, has the ability to bind and 
cross-neutralise pseudotyped viruses expressing the 
S protein of human SARS-CoV-1, civet SARS-CoV and 
bat SL-CoV strains [21]. In this study, we aim to verify 
if the sequence of the immunogen used to generate 
mAb 1A9, as well as three other mAbs, is conserved 
in different coronaviruses and if these mAbs bind to 
the S protein of SARS-CoV-2 expressed in mammalian 
cell lines. Importantly, mAb 1A9 is investigated for its 
ability to detect the S protein in SARS-CoV-2 infected 
cells and purified S protein in a sandwich ELISA format 
when paired with another mAb binding to the S1 subu-
nit of SARS-CoV-2.

Methods

Cells
Vero E6 and COS-7 cells were purchased from the 
American Type Culture Collection (Manassas, VA, 
United States) and cultured in Dulbecco’s Modified 
Eagle’s Medium (DMEM; Thermo Fisher Scientific, 
Waltham MA, United States) supplemented with 10% 
fetal bovine serum (FBS; HyClone, Logan, UT, United 
States), 100 units/mL penicillin and 100 µg/mL strepto-
mycin (Thermo Fisher Scientific). 293FT cells were pur-
chased from Invitrogen (Carlsbad, CA, United States) 

Figure 1
Multiple sequence alignment for the S2 subunit fragment of SARS-CoV-1 spike glycoprotein with other relevant 
coronaviruses
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MERS: Middle East respiratory syndrome; SARS: severe acute respiratory coronavirus 1; SARS-CoV-2: severe acute respiratory coronavirus 2.

The name of the viruses, for which sequences are being compared figure on the left side of the alignment, together with the respective 
sequences’ GenBank accession numbers.

Colour schemes represent the following categories of amino acids: blue – hydrophobic, cyan – aromatic, green – polar, magenta – negative 
charge, orange – glycines, pink – cysteines, red – positive charge, yellow – prolines, white – unconserved.
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and grown in DMEM supplemented with 10% FBS, 
100 units/mL penicillin, 100 µg/mL streptomycin and 
500 µg/mL geneticin (Thermo Fisher Scientific). Cells 
were maintained at 37 °C with 5% CO2.

Purification of monoclonal antibody 1A9
The hybridoma for mAb 1A9 was previously generated 
[20]. All mAbs were purified from cell culture superna-
tants using HiTrap protein G HP affinity columns (GE 
Healthcare, Chicago, IL, United States) and stored at 
−80 °C. The purity of the mAb was confirmed by sodium 
dodecyl sulphate-polyacrylamide gel electrophoretic 
(SDS-PAGE) analysis. The concentration of the purified 
mAb was determined using the Coomassie Plus protein 
assay reagent (Thermo Fisher Scientific).

Plasmids for expression of full spike protein 
and fragments
SARS-CoV-2 S-protein-expressing plasmids were 
codon-optimised and generated by gene synthesis (Bio 
Basic Asia Pacific, Singapore) according to GenBank 
accession number: QHD43416.1. One plasmid is for 
expressing untagged full-length S protein while the 
other is for expressing a Myc-tagged S-protein frag-
ment consisting of residues 1048–1206 (SARS-CoV-2 
numbering). The pXJ40-Myc expression vector was 
used as an empty vector control and pXJ40-Myc-HBcAg 
plasmid expressing Myc-tagged hepatitis B virus core 
antigen (HBcAg) was used as a negative control.

Transient transfection and western blot 
analysis
293FT cells were seeded onto 6-cm dishes 24 hours 
before transient transfection using X-tremeGENE HP 
DNA transfection reagent (Roche, Basel, Switzerland) 
according to the manufacturer’s protocol. At 24 hours 
post-transfection, cells were harvested, spun down by 
centrifugation and washed with cold phosphate buff-
ered saline (PBS) twice. Cells were then resuspended 
in 2× Laemmli sample buffer, boiled and sonicated. 
Clarified supernatant containing the protein of inter-
est was obtained by spinning down the cell lysate at 
13,000 rpm at 4 °C to remove the cell debris and fur-
ther analysed by western blot (WB) analysis. Equal 
amounts of total cell lysates were loaded per lane 
and resolved using electrophoresis on SDS-PAGE gels 
and transferred onto nitrocellulose membrane (Bio-
Rad, Hercules, CA, United States). The membrane was 
blocked in 5% skimmed milk in Tris-buffered saline 
with 0.05% Tween 20 (TBST) for 1 hour at room tem-
perature (RT) and incubated with primary antibodies at 
4 °C overnight. After the membrane was washed with 
TBST, it was incubated with a horseradish peroxidase 
(HRP)-conjugated secondary antibody (Thermo Fisher 
Scientific) at RT for 1 hour. The membrane was then 
washed with TBST again and bound antibodies visu-
alised with enhanced chemiluminescence substrate 
(Thermo Fisher Scientific) using ChemiDoc MP Imaging 
System (Bio-Rad).

Table 
Pairwise amino-acid identity across relevant coronaviruses in the sequence fragment of the spike glycoprotein S2 subunit 
recognised by monoclonal antibody 1A9 or the sequence of the full spike glycoprotein

Query/reference
Pairwise amino-acid identity (%)

SARS-CoV-2 BatRaTG13 SARS-CoV-1 MERS OC43 HKU1 229E NL63
Fragment region of spike S2
SARS-Co-V2 100.00 SB SB SB SB SB SB SB
BatRaTG13 99.40 100.00 SB SB SB SB SB SB
SARS 93.10 92.50 100.00 SB SB SB SB SB
MERS 39.00 39.00 39.00 100.00 SB SB SB SB
OC43 39.00 39.00 38.40 51.20 100.00 SB SB SB
HKU1 32.70 32.70 30.80 50.60 68.40 100.00 SB SB
229E 30.80 30.20 32.10 31.50 29.70 30.40 100.00 SB
NL63 30.80 30.20 30.20 32.10 31.60 33.50 64.20 100.00
Full spike protein
SARS-CoV-2 100.00 SB SB SB SB SB SB SB
BatRaTG13 97.70 100.00 SB SB SB SB SB SB
SARS-CoV-1 77.80 78.20 100.00 SB SB SB SB SB
MERS 35.40 35.40 35.20 100.00 SB SB SB SB
OC43 37.30 37.10 36.90 39.50 100.00 SB SB SB
HKU1 35.20 35.30 35.00 39.00 67.00 100.00 SB SB
229E 41.70 41.50 41.80 41.80 43.50 43.50 100.00 SB
NL63 36.30 36.20 36.20 35.40 39.70 37.80 64.70 100.00

MERS: Middle East respiratory syndrome; SARS-CoV-1: severe acute respiratory coronavirus; SARS-CoV-2: severe acute respiratory 
coronavirus; SB: shown below. High to low pairwise amino-acid identity are coloured coded respectively by contrasting green to red 
backgrounds.
The sequence identity is not affected by the order in which paired sequences are compared so only one-way comparisons are shown to avoid 
redundancies; the abbreviation ‘SB’ is used when the pairwise amino-acid identity in question is already shown in a further cell of the table.
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Transient transfection and 
immunofluorescence analysis
For immunofluorescence (IF) analysis, COS-7 cells on 
glass coverslips were transfected as above and fixed 
at 24 hours post-transfection in 4% paraformaldehyde 
for 10 min at RT followed by permeabilisation with 
0.2% Triton X-100 (Sigma-Aldrich, St. Louis, MO, United 
States) for 5 min. Fixed cells were then blocked with PBS 
containing 10% FBS for 30 min at RT. Cells were immu-
nolabelled for 1 hour at RT with the indicated murine 
mAb and 45 min with Alexa Fluor 488-conjugated goat 
anti-mouse IgG antibody (Life Technologies, Carlsbad, 
CA, United States). Immunolabelled coverslips were 

counterstained with 4′,6-diamidino-2-phenylindole 
(DAPI; Sigma-Aldrich), and mounted using ProLong 
Gold Antifade Mountant (Molecular Probes, Eugene, 
OR, United States). Images were acquired with Olympus 
CKX53 microscope using Olympus (Tokyo, Japan) LCAch 
N 20×/0.40 iPC objective lens and Olympus DP27 colour 
camera with Olympus cellSens software. Each channel 
was collected separately, with images at 1024 × 1024 
pixels.

ELISA
Whole ectodomain of SARS-CoV-2 S protein with His 
Tag (Sino Biological Inc., Beijing, China; catalogue 

Figure 2
Monoclonal antibodies expected to target a SARS-CoV-2 S protein S2 fragment, (A) hybridise to the peptide fragment in 
western blot and (B) recognise cells expressing the peptide as shown by immunofluorescence
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aa: amino acid; HBcAg: hepatitis B virus core antigen; DAPI: 4′,6-diamidino-2-phenylindole; SARS-CoV-2: severe acute respiratory syndrome 
coronavirus 2; S protein: spike protein; vec: pXJ40-Myc expression vector used as an empty vector control.

A. Each photo depicts a western blot using the primary antibody indicated below it (Myc, 2B2, 1A9, 4B12, or 1G10). Empty vector-transfected 
293FT cell products are on the lanes labelled as ‘Vec’, while products of 293FT cells expressing Myc-tagged SARS-CoV-2 S protein fragment 
(aa 1048–1206; SARS-CoV-2 numbering) or Myc-tagged HBcAg are on the lanes respectively labelled ‘S’ or ‘HBcAg’. Primary antibodies were 
labelled with horseradish peroxidase-conjugated secondary antibodies. A ladder indicative of the molecular weights in kD of the proteins 
relative to their vertical position on the blots, is indicated on the left of the panel.

B. Each photo depicts an immunofluorescence assay using either no primary antibody, or the primary antibody indicated below it (Myc, 2B2, 
1A9, 4B12, or 1G10). Immunofluorescence assay results of COS7 cells expressing Myc-tagged HBcAg (top photos) or a Myc-tagged fragment 
(aa1048–1206) of SARS-CoV-2 S protein (bottom photos) using the indicated primary antibodies, followed by Alexa Fluor 488-conjugated 
secondary antibody (green) are shown. Cell nuclei were counterstained with DAPI (blue). Scale bar = 50 µm.
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Figure 3
Antibodies expected to target SARS-CoV-2 S protein, (A) hybridise to the denatured protein in western blot, (B) bind to the 
protein in ELISA and (C) recognise cells expressing the protein as shown by immunofluorescence
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DAPI: 4′,6-diamidino-2-phenylindole; mAb: monoclonal antibody: OD: optical density; SARS-CoV-2: severe acute respiratory syndrome 
coronavirus 2; S protein: spike protein; vec: pXJ40-Myc expression vector used as an empty vector control.

A. Each photo depicts a western blot using the primary antibody indicated below it (2B2, 1A9, 4B12, or 1G10). Empty vector-transfected 293FT 
cell products are on the lanes labelled as ‘Vec’, while products of 293FT cells expressing full-length SARS-CoV-2 S protein are on the lanes 
labelled ‘SARS-CoV-2 S’. Primary antibodies were labelled with horseradish peroxidase-conjugated secondary antibodies. A ladder indicative 
of the molecular weights in kD of the proteins relative to their vertical position on the blots, is indicated on the left of the panel.

B. The abilities of 2B2, 1A9, 4B12 and 1G10 monoclonal antibodies to bind to SARS-CoV-2 S protein was determined by ELISA. Individual 
wells were coated with 20 ng of SARS-CoV-2 S protein and incubated with serially diluted mAbs as indicated. A representative plot from three 
independent experiment is show for each antibody and error bars correspond to standard deviations of each mAb experiment carried out in 
triplicates.

C. Each photo depicts an immunofluorescence assay using either no primary antibody, or the primary antibody indicated below it (Myc, 2B2, 
1A9, 4B12, or 1G10). Immunofluorescence analysis was performed on empty vector-transfected COS-7 cells (top photos) and cells expressing 
full-length SARS-CoV-2 S protein (bottom photos). The indicated primary antibodies were used followed by Alexa Fluor 488-conjugated 
secondary antibody (green). Cell nuclei were counterstained with DAPI (blue). Scale bar = 50 µm.
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number: 40589-B08V1) was diluted with coating buffer 
(0.1 M NaHCO3, 34 mM Na2CO3) and a total of 20 ng of 
protein was loaded into individual wells of a 96 well 
plate (Nunc, Roskilde, Denmark) and allowed to coat 
overnight at 4 °C. Plates were then washed four times 
with 0.05% Tween 20 in PBS (PBST) and blocked with 
5% bovine serum albumin (BSA)/PBST for 30 min 
before murine antibodies serially diluted with block-
ing buffer were added to desired wells for 1 hour. Plate 
were washed four times with PBST before incubation 
for 1 hour with HRP-conjugated goat anti-mouse IgG 
(Thermo Fisher Scientific) secondary antibodies diluted 
in blocking buffer, and washed four times with PBST. 
Visualisation of bound secondary antibodies was done 
by the addition of 3,3’,5,5’-tetramethylbenzidine (TMB) 
substrate (Thermo Fisher Scientific) for 5 min in the 
absence of light and the reaction was stopped with 2 M 
sulphuric acid. Optical density at 450 nm (OD450nm) 
was determined by a Tecan (Männedorf, Switzerland) 
Infinite M1000 reader and normalised OD450nm was 
obtained by subtracting background absorbances 
determined in BSA coated wells.

Production of monoclonal antibody CR3022
The human mAb CR3022 was expressed in a simi-
lar manner as previously described [22]. The variable 
heavy (VH; GenBank accession number: DQ168569) 
and variable light (VL; GenBank accession number: 
DQ168570) genes of CR3022 were generated by gene 
synthesis (Bio Basic Asia Pacific) and cloned into 
pFUSEss-CHIg-hIgG1 and pFUSE2ss-CLIg-hK cloning 
vectors (InvivoGen, San Diego, CA, United States) 
respectively. Transfection of suspension FreeStyle 
293 cells (Thermo Fisher Scientific) and purification of 
antibodies by fast protein liquid chromatography is as 
described in our previous study [23].

Sandwich ELISA
Mab 1A9 was diluted with coating buffer (0.1 M NaHCO3, 
34 mM Na2CO3) and 0.1 µg of antibody was coated onto 
individual wells of a Maxisorp flat-bottom plate (Nunc) 
overnight at 4 °C. The plate was washed three times 
with PBST before blocking was done using 5% BSA/
PBST at 37 °C for 60 min. Dilutions of His-tagged full 
length SARS-CoV-2 S protein (Sino Biological Inc., cata-
logue number: 40589-B08V1) and His-tagged H7N7-HA 
(Sino Biological Inc., catalogue number: 11082-V08B) 
were added to desired wells and incubated at 37 °C 
for 90 min followed by three washes with PBST. 100 µL 
of CR3022 antibody was added at a concentration of 
1 µg/mL and incubated at 37 °C for 60 min followed by 
three PBST washes before HRP-conjugated goat anti-
human IgG (Thermo Fisher Scientific) was added for 
60 min at 37 °C. Finally, after three PBST washes, TMB 
(Sigma-Aldrich) was added for 5 min and the reaction 
was stopped by 2 M sulphuric acid. The OD450nm 
was determined by a Tecan Infinite M1000 reader. 
Statistical analyses were performed using an unpaired, 
one-tailed Student’s t-test with Welch’s correction for 
unequal variances. p values < 0.05 were considered sta-
tistically significant.

Figure 4
Performance of monoclonal antibody 1A9 for detection of 
(A) S protein in a sandwich ELISA format and (B) SARS-
CoV-2 infected cells
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HA: haemagglutinin; H7N7: influenza A (H7N7); mAb: monoclonal 
antibody; MOI: multiplicity of infection; OD: optical density; SARS-
CoV-2: severe acute respiratory syndrome coronavirus 2.

A. Sandwich ELISA assay to determine mAb 1A9 ability to pair 
with the human mAb CR3022 for the detection of a His-tagged 
SARS-CoV-2 spike protein. 1A9 and CR3022 were used as capture 
and detector antibodies respectively. His-tagged HA protein of 
influenza A (H7N7) virus was used as a negative control. Averaged 
readings across three replicate experiments are presented. Error 
bars represent standard deviations across the three replicate 
experiments. Asterisks indicate significantly increased binding of 
the antibody pairs to SARS-CoV-2 S protein compared to influenza 
A (H7N7) HA at p < 0.05.

B. Vero E6 cells were mock-infected (left panel) or infected with 
SARS-CoV-2 (right panel; MOI of 1). At 24 hour post infection, 
the cells were stained with mAb 1A9 (5 µg/mL) followed by Alexa 
Fluor 488-conjugated secondary antibody (green). Nuclei were 
counterstained with 4′,6-diamidino-2-phenylindole (DAPI; blue).
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Virus infection and immunofluorescence
All works with live virus were performed in the 
biosafety level (BSL)3 facility at the Public Health 
Agency of Sweden. Vero-E6 cells were infected with 
SARS-CoV-2 (SARS-CoV-2-Iso/01/human/2020/SWE; 
GenBank accession number: MT093571) at a multiplic-
ity of infection (MOI) of one in DMEM 2% FBS (Thermo 
Fisher Scientific). At 24 hour post-infection, cells were 
fixed with chilled methanol/acetone and the cells were 
kept at −20 °C overnight. Cells were then stained using 
mAb 1A9 at 5 µg/mL at 37 °C for 30 min in IF buffer (BSA 
0.2%, Triton ×100 0.1% in PBS, pH 7.4). The cells were 
washed three times with PBS and incubated, subse-
quently with Alexa Fluor 488-conjugated goat anti-
mouse IgG antibody (Thermo Fisher Scientific) in IF 
buffer containing DAPI for an additional 30 min. Cells 
were washed three times with PBS before visualisation 
and image acquisition with fluorescent microscopy.

Bioinformatics analysis
S protein reference sequences for SARS-CoV-1, SARS-
CoV-2, batRaTG13, Middle East respiratory syndrome 
(MERS) and human common-cold coronaviruses 229E, 
NL63, OC43 and HKU1 were downloaded from the 
National Center for Biotechnology Information (NCBI). 
A multiple sequence alignment was created with mul-
tiple alignment using fast Fourier transform (MAFFT) 
using the slow but accurate L-INS-I parameter set-
tings [24] and the alignment curated, cut to the target 
region 1029–1192 (SARS-CoV-1 numbering) and visual-
ised with Jalview [25]. We used Molecular Evolutionary 
Genetics Analysis (MEGA) X [26] to calculate the num-
ber of amino-acid differences for all sequence pairs 
in the alignment of the mAb target region and the 
full S protein normalised by the length of the aligned 
sequence of the respective reference protein to obtain 
per cent amino acid identities.

To determine SARS-CoV-2 sequence diversity in the 
S protein within the current pandemic, 230 human 
and environmental viral sequences were downloaded 
from GISAID’s EpiCoV database on 1 March 2020. 
We gratefully acknowledge the authors, originat-
ing and submitting laboratories of the sequences on 
which this part of the research is based. The list is 
detailed in  Supplementary Table 1. The nt sequences 
were searched with basic local alignment search tool 
(BLAST)X against the reference S protein. 174 hits cov-
ered the full length of the S protein and amino-acid 
mutations were counted and tabulated using a custom 
Perl script (Supplementary Table 2).

Ethical statement
Ethical approval was not required for this study.

Results

An immunogenic domain in the S2 subunit 
of SARS-CoV-1 is highly conserved in 

SARS-CoV-2 but not in MERS and common 
cold HCoV
Sequence alignment of the S2 fragment correspond-
ing to residues 1029 to 1192 shows that this fragment, 
which encompasses the heptad repeat (HR)2 but not 
HR1, is highly conserved in SARS-CoV-1 and SARS-CoV-2 
(Figure 1). When compared with additional reference 
sequences from bat RaTG13 (closest bat precursor), 
MERS and human common cold coronaviruses 229E, 
NL63, OC43 and HKU1 (Figure 1), it becomes apparent 
that the amino-acid identity between SARS-CoV-2 and 
SARS-CoV-1 is much higher in this region (93%, Table) 
than over the full protein length (78%,  Table) and the 
similarity drops sharply (< 40% in this region) when 
considering MERS and the other coronaviruses infect-
ing humans regularly.

We also studied the sequence diversity across 174 
SARS-CoV-2 S proteins derived from nt sequences 
shared via the GISAID platform [27]. Only four amino-
acid mutations were found within the putative anti-
body-binding region compared with 30 mutations over 
the full length protein (Supplementary Table 2). Two of 
these four amino-acid mutations are from a sequence 
flagged in GISAID’s EpiCoV database as lower quality 
due to many undetermined bases.

Four murine monoclonal antibodies bind to a 
fragment of the spike protein of SARS-CoV-2
Four mAbs with distinct binding profiles to SARS-CoV-1, 
as previously mapped by internal deletion mutagen-
esis study, were selected for testing to determine if 
they cross-react with SARS-CoV-2. A fragment contain-
ing residues 1048 to 1206 of SARS-CoV-2 S protein 
was expressed in 293FT cells via transient transfection 
and WB analysis was performed using the four mAbs, 
namely 2B2, 1A9, 4B12 and 1G10. As shown in  Figure 
2A, all four mAbs detected this fragment of SARS-
CoV-2, which is consistent with the sequence align-
ment shown in Figure 1. Due to the easy detachment of 
293FT cells, COS-7 cells were used for IF assay instead. 
IF analysis performed on transiently transfected COS-7 
cells showed binding of the four mAbs to this S protein 
fragment of SARS-CoV-2 (Figure 2B). These interactions 
are also specific for the SARS-COV-2 S protein (1048–
1206) fragment as all four mAbs did not show binding 
to the negative control HBcAg. 

Four murine monoclonal antibodies bind to 
the full-length S protein of SARS-CoV-2
Next, the full-length S protein of SARS-CoV-2 was over-
expressed in 293FT and COS-7 cells and detected with 
each of the mAbs using WB and IF analyses. As shown 
in  Figure 3, all four mAbs bound to the full-length S 
protein of SARS-CoV-2 (Figure 3A).

The binding of these mAbs to recombinant purified S 
protein was also determined using indirect ELISA where 
different concentrations of antibodies were used for 
binding. Binding to S protein was observed for all four 
mAbs with 1A9 showing the strongest binding (Figure 
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3B). Similarly, all four mAbs bound to the full-length 
S protein of SARS-CoV-2 when tested via IF (Figure 
3C). Collectively our data demonstrates the ability of 
all four mAbs to bind full-length S protein in both its 
native and denatured forms.

Utility of monoclonal antibody 1A9 for detection of S 
protein in a sandwich ELISA format and in SARS-CoV-2 
infected cells

Based on indirect ELISA data, mAb 1A9 has the strong-
est binding to S protein when compared with the other 
three mAbs. Hence, a sandwich ELISA was performed 
to determine if it can be paired with the human mAb 
CR3022 which is known to bind to the S1 subunit of 
SARS-CoV-2. As shown in  Figure 4A, recombinant S 
protein was detected at 15.6 ng/mL and above when 
1A9 was used as a capture antibody and CR3022 was 
used as a detector antibody. Since the S protein was 
His-tagged, a His-tagged haemagglutinin (HA) protein 
of influenza A virus was used to check for specificity of 
binding. The absorbance readings in the presence of S 
protein were significantly higher than that in the pres-
ence of HA for protein concentrations of 15.6 ng/mL and 
above. 

Next, 1A9 was tested on SARS-CoV-2-infected Vero-E6 
cells. As shown in Figure 4B, mAb 1A9 stained a consid-
erable number of SARS-CoV-2-infected cells at 24 hours 
post-infection showing that it is sensitive enough to 
detect the expression of S protein during infection.

Discussion
Numerous mAbs against the S protein of SARS-CoV-1 
have been generated for research and diagnostic assay 
development. Some of these may be able to cross-react 
with the S protein of SARS-CoV-2 and serve as tools to 
aid research on this newly emerged virus. In this cur-
rent study, an immunogenic domain in the S2 subunit 
of SARS-CoV-1 was found to be highly conserved in 
multiple strains of SARS-CoV-2 (Figure 1  and  Table). 
Consistently, WB and IF analyses showed that four dif-
ferent mAbs generated using this SARS-CoV-1 domain 
were cross-reactive against the S protein of SARS-
CoV-2 (Figures 2 and 3).

Recent cross-reactivity studies have evaluated SARS-
CoV-1 neutralising antibodies that bind to the RBD-
containing S1 subunit. Although both SARS-CoV-1 and 
SARS-CoV-2 use ACE2 as a receptor for viral entry 
[3,16], several SARS-CoV-1 RBD-directed mAbs did not 
cross-react with SARS-CoV-2 RBD [28,29]. Interestingly, 
CR3022, which was isolated from a SARS convalescent 
patient [22], showed cross-reactivity to SARS-CoV-2 
RBD and recognises an epitope that does not overlap 
with the ACE2 binding site [28]. Among the four mAbs 
tested in this study, indirect ELISA showed that 1A9 
binds strongest to the S protein of SARS-CoV-2 (Figure 
3B). To determine if 1A9 is useful for detection of S pro-
tein in a sandwich ELISA, it was paired with CR3022 
since 1A9 binds to S2 subunit while CR3022 binds to 

S1 subunit. As would be expected, these two antibod-
ies can be paired to detect S protein from 15.6 ng/mL 
(Figure 4A). In addition, mAb 1A9 stained a consider-
able number of SARS-CoV-2-infected cells at 24 hours 
post-infection showing that it is sensitive enough to 
detect the expression of S protein during infection 
(Figure 4B). Thus, mAbs 1A9 will be useful for study-
ing the kinetics of SARS-CoV-2 replication in vitro and 
development of diagnostic assays for COVID-19. It is 
noteworthy that cytotoxic T-lymphocyte (CTL) epitopes 
also reside at residues 884–891 and 1116–1123 within 
the S2 subunit of SARS-CoV-1 [30]. Interestingly, the 
latter CTL epitope overlaps with the epitope recognised 
by mAb 1A9 [21]. Hence, the S2 subunit may serve as 
an important antigen for inducing both humoral as well 
as cell-mediated immunity against SARS-CoV-1 and 
SARS-CoV-2.

To our knowledge, this is the first study showing that 
mAbs targeting the S2 domain of SARS-CoV-1 can 
cross-react with SARS-CoV-2 and this observation is 
consistent with the high sequence conservation in the 
S2 subunit. The ability of these antibodies, particularly 
1A9, to detect SARS-CoV-2 S protein in indirect and 
sandwich ELISAs demonstrate their utility for detection 
of SARS-CoV-2 infections in a public health setting. 
Whether or not the current sensitivity of these antibod-
ies are sufficient for robust detection of SARS-CoV-2 
infections in a clinical setting and how they compare 
to existing PCR-based detection remains to be deter-
mined. Successful development of these antibodies 
into a point of care diagnostic kit will provide a com-
plementary approach to existing detection methods. 
Besides the mAbs characterised here, several other 
mAbs have been reported to bind to epitopes in the S2 
subunit of SARS-CoV-1 [31-33]. Thus, it will be impor-
tant to determine if these mAbs can also cross-react 
with SARS-CoV-2.
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