
rsfs.royalsocietypublishing.org
Research
Cite this article: Åkerblom M, Raumonen P,

Casella E, Disney MI, Danson FM, Gaulton R,

Schofield LA, Kaasalainen M. 2018 Non-

intersecting leaf insertion algorithm for tree

structure models. Interface Focus 8: 20170045.

http://dx.doi.org/10.1098/rsfs.2017.0045

Accepted: 7 December 2017

One contribution of 12 to a theme issue ‘The

terrestrial laser scanning revolution in forest

ecology’.

Subject Areas:
biomathematics, computational biology,

mathematical physics

Keywords:
leaf insertion, leaf distribution, quantitative

structure model, laser scanning,

tree reconstruction

Author for correspondence:
Markku Åkerblom

e-mail: markku.akerblom@tut.fi
& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Non-intersecting leaf insertion algorithm
for tree structure models

Markku Åkerblom1, Pasi Raumonen1, Eric Casella2, Mathias I. Disney3,4,
F. Mark Danson5, Rachel Gaulton6, Lucy A. Schofield7 and Mikko Kaasalainen1

1Laboratory of Mathematics, Tampere University of Technology, PO Box 553, 33101 Tampere, Finland
2Centre for Sustainable Forestry and Climate Change, Forest Research, Farnham GU10 4LH, UK
3Department of Geography, University College London, Gower Street, London WC1E 6BT, UK
4NERC National Centre for Earth Observation (NCEO), UK
5School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
6School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
7School of Humanities, Religion and Philosophy, York St John University, York YO31 7EX, UK

MÅ, 0000-0002-6512-232X; PR, 0000-0001-5471-0970; EC, 0000-0002-5429-7159;
MID, 0000-0002-2407-4026; FMD, 0000-0002-3984-0432; RG, 0000-0002-0706-0298

We present an algorithm and an implementation to insert broadleaves or

needleleaves into a quantitative structure model according to an arbitrary

distribution, and a data structure to store the required information efficiently.

A structure model contains the geometry and branching structure of a tree.

The purpose of this work is to offer a tool for making more realistic simu-

lations of tree models with leaves, particularly for tree models developed

from terrestrial laser scanning (TLS) measurements. We demonstrate leaf

insertion using cylinder-based structure models, but the associated software

implementation is written in a way that enables the easy use of other types

of structure models. Distributions controlling leaf location, size and angles

as well as the shape of individual leaves are user definable, allowing any

type of distribution. The leaf generation process consist of two stages, the

first of which generates individual leaf geometry following the input distri-

butions, while in the other stage intersections are prevented by carrying

out transformations when required. Initial testing was carried out on English

oak trees to demonstrate the approach and to assess the required compu-

tational resources. Depending on the size and complexity of the tree, leaf

generation takes between 6 and 18 min. Various leaf area density distributions

were defined, and the resulting leaf covers were compared with manual leaf

harvesting measurements. The results are not conclusive, but they show great

potential for the method. In the future, if our method is demonstrated to work

well for TLS data from multiple tree types, the approach is likely to be very

useful for three-dimensional structure and radiative transfer simulation

applications, including remote sensing, ecology and forestry, among others.
1. Introduction
Leaves and needles are essential for the functioning of plants and their inter-

action with the environment. They are also the main part of the vegetation

interacting with remote sensing measurements. Thus, the ability to measure

and model leaf distributions of plants has great importance and many appli-

cations in ecology, forest research and remote sensing [1–3].

We will present an algorithm to generate leaf cover on any plant structure

model with any underlying distribution for the leaf parameters. Although

the process could be used with any type of plant, this article focuses only on

trees. The leaf parameter distributions are supported by quantitative structure

models (QSMs) of trees, and the generated leaves are non-intersecting. This

allows, among other things, the use of more realistic leaf distributions in

http://crossmark.crossref.org/dialog/?doi=10.1098/rsfs.2017.0045&domain=pdf&date_stamp=2018-02-16
mailto:markku.akerblom@tut.fi
http://orcid.org/
http://orcid.org/0000-0002-6512-232X
http://orcid.org/0000-0001-5471-0970
http://orcid.org/0000-0002-5429-7159
http://orcid.org/0000-0002-2407-4026
http://orcid.org/0000-0002-3984-0432
http://orcid.org/0000-0002-0706-0298
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


QSM-supported distribution generated leaves QSM with leaves

Figure 1. A QSM supports a leaf area distribution (grey: no leaves; green: some leaves; red: a lot of leaves), which can be sampled to generate non-intersecting
leaves and inserted into the structure model.

rsfs.royalsocietypublishing.org
Interface

Focus
8:20170045

2

gap fraction- and radiative transfer-based simulations, in

comparison with the previously suggested uniform layers

of possibly intersecting leaves [4].

The above-ground biomass of a tree consists mainly of leaves,

and woody material in the trunk and branches. In recent years,

various methods have been presented to reconstruct the woody

parts of a tree in a quantitative manner from terrestrial laser scan-

ning (TLS) data [5,6]. Furthermore, it is possible to estimate

foliage distribution from similar data [7] (for further information,

see [8]). However, reconstructing both the woody and leaf parts

at the same time is more challenging due to self-occlusion effects,

and the complex nature of leaf–wood separation from TLS data,

which has been studied extensively [9,10].

An alternative to extracting the leaves from TLS data is

scanning the tree during the leaf-off season, and then trying

to insert leaves after reconstructing the woody structure. To

generate a leaf cover that is statistically similar to the original,

certain leaf property distributions have to be estimated [11].

Such approaches do not aim to reconstruct real leaves but

rather the underlying leaf distribution, which can be sampled

to produce leaf covers that are statistically similar to the real

one. The approach is limited to deciduous, broadleaf cano-

pies. However, from this we may learn how to improve

and develop methods for separation and re-insertion of

green material in evergreen broadleaf and needleleaf trees.

Measuring leaf position, size and orientation by hand is

extremely laborious [11] as one can have millions of leaves

per tree. Great progress in measurement systems and data

analysis has meant that remote sensing can now be used to

detect leaf properties. Methods have been presented to esti-

mate the three-dimensional distribution of leaf material from

TLS data [7,12]. Furthermore, methods for measuring leaf

orientation distribution (LOD) from similar data have been pre-

sented in [13] and more recently in [14]. Determining leaf size

distribution (LSD) remotely is more challenging as it requires

the detection of leaf edges [15], which is also challenging due

to the decrease in data point density higher in the canopies,

when scanning from the ground. However, sampling leaf

size by hand is faster and less error prone than leaf angle,

especially when carried out in a destructive manner.

The algorithm we present in this paper populates a QSM

of the woody parts of a tree with leaves, resulting in a model
with inserted leaves (L-QSM). The algorithm generates leaves

based on user-defined leaf property distributions that may be

estimated with the methods presented above, or alternatively

by using distributions parametrized by branch properties

such as branch order. The basic steps of the procedure are

illustrated in figure 1, which shows an example leaf area distri-

bution supported by a QSM, leaves generated by sampling the

distribution and the final product, which is an L-QSM.

The algorithm is designed to work with models consisting of

any type of geometry, but we use models that are a collection of

cylinders, i.e. cylindrical QSMs [5]. The leaf insertion procedure

works on blocks, which is essentially the largest unit of the struc-

ture model that can be assumed to have uniform leaf distribution

parameters that can define, for example, limits for the number of

leaves, leaf size and orientation. Because certain tree species can

have a different leaf density along branches, the blocks can be

smaller than the branch. Thus, the cylinders forming the QSM

geometry, and other similar small geometric primitives [16],

can be used directly as blocks. However, it would also be pos-

sible to divide the cylinders and form even smaller blocks. In

the case of voxel-based structure models a pre-processing step

is required to form blocks that are acollection of voxels. Similarly,

in continuous surface models the branch surfaces should be

divided into smaller sections that can be used as blocks.

As the leaf insertion algorithm is designed to be as gen-

eral as possible, i.e. any user-defined distribution can be

used, validation can take various forms. We carried out initial

validation using leaf area and count measurements from

three English oaks together with their QSMs reconstructed

from TLS data. Both the TLS and leaf measurements are pre-

sented in §2.1. The structure reconstruction process to create

the required cylindrical QSMs is briefly described in §2.2.

The leaf insertion algorithm is presented in §2.3 together

with the related distributions that control leaf position, size

and orientation. Although this paper focuses on sampling

the described distributions to produce individual leaves with

a known geometry, it is not always necessary, as discussed in

§2.4. Section 2.4 shows how the distributions define a leaf

density distribution around the structure model blocks, and

how that overall distribution can be used for computations

without generating the geometry of individual leaves.

Although we focus on broadleaves, the procedure can also



Table 2. Oak tree properties computed from reconstructed QSMs.

oak tree

property small medium large

branch count 1334 3579 6161

cylinder count 8429 23 539 35 428

DBH (mm) 298 432 848

height (m) 19.1 19.6 21.8

order max. 9 8 9

branch order
1 2 3 4 5 6 7

br
an

ch
 c

ou
nt

1500

1000

500

0

small
medium
large

Figure 2. Branch order – count distribution. The stem and branch orders 8
and 9 have been excluded due to their negligible portions. (Online version
in colour.)

Table 1. Leaf area and count measurements.

tree/layer leaf area (m2) leaf count

small oak 153 47 644

0.0 – 11.5 m 18 5432

11.5 – 19.6 m 135 42 212

medium oak 215 52 416

0.0 – 9.0 m 46 12 753

9.0 – 19.9 m 169 39 663

large oak 339 114 224

0.0 – 8.0 m 61 16 056

8.0 – 13.0 m 23 9399

13.0 – 18.4 m 49 19 597

18.4 – 22.4 m 206 69 172

rsfs.royalsocietypublishing.org
Interface

Focus
8:20170045

3

be used for generating needles. Approaches for working with

needles are presented in §2.5.

A Matlab implementation of the algorithm, including

descriptions of the related classes and the main function, is

introduced in §2.6. The Matlab implementation was used to

compute several leaf distributions for the oak trees. The

results are presented in §3. A discussion is included in §4

and conclusions are made in §5.
total length (m) 592 1552 2516

volume (l) 707 1169 2098
2. Material and methods
2.1. Laser scanning and leaf measurements
Our analysis was based on raw point-clouds recorded at Alice

Holt Forest, UK (51.1533 N, 0.8512 W), by a single-return phase-

shift Leica HDS-6100 TLS (Leica Geosystems Ltd, Heerbrugg)

on three 80-year-old oak trees (Quercus robur L.). Scans were per-

formed in March 2014, during winter time, under dry and low

wind speed (less than 1 ms21) conditions. Trees were recorded

from six scan positions around each tree (azimuth angle of

08 S, 608, 1208, 1808, 2408 and 3008) at a distance of 5 m from

the base of the tree and with a TLS sampling resolution level

of 0.0188 at each scan position. Six reflective targets were set out

around each tree to merge the multiple scans. Three-dimensional

reconstructions of the trees were then computer-generated using

the method described in [5].

The trees were harvested in June 2014. The foliage sampling

method consisted of a manual stripping-off of each leaf from the

branches and storage in bags labelled with the height stratum to

which they belonged (table 1). A second component of the

method involved the collection of a set of 100 leaves at random

from each stratum on each tree. Each stratum bag was then fresh-

weighed (Avery Berkel HL206, UK) and oven dried at 758C to

obtain their dry masses. From the subsets, individual leaf area

was measured in the laboratory with a laser area metre (CID-203,

Camas, WA, USA) and weighed (Mettler Toledo AG204, Switzer-

land) before and after oven drying at 758C. Specific leaf area (SLA)

was derived for each of the subsets and used to estimate the total

leaf area and the number of leaves for each stratum (e.g. [12,17]).

Additionally, the average area of the leaves was recorded from the

smallest to the largest tree as 33.71, 40.33 and 29.66 cm2, respectively.

2.2. Quantitative structure models
The three oak trees were reconstructed as cylindrical QSMs in

Matlab with the procedure detailed in [18]. The properties of

the resulting models are listed in table 2. Furthermore, the
branch count distribution per branch order is visualized in

figure 2. The count of the branches is important as leaves are

placed near the tips of the branches.

The small and medium oaks were similar in height, but the

latter had about 2.6 times more branches when measured in total

count and in length. The large oak had the most branches for all

branch orders, and almost twice the volume of the medium oak.

2.3. Leaf generation algorithm
This section describes an algorithm to populate QSMs with

leaves. The main inputs of the algorithm are distributions that

control the position, orientation and size of the leaves. These dis-

tributions are sampled to retrieve the parameters of individual

leaves. The approach can be described as simplified or naive,

for three reasons: (i) position, orientation and size are sampled

independently, which is to say that, for example, the size of a

leaf may not affect its orientation; (ii) simple controls for phyllo-

taxy and clumping effects are yet to be implemented (although

there is some control when generating the petioles); and (iii) the

only effect leaves have on one another is that they are prevented

from intersecting. We call this procedure the foliage and needles

naive insertion algorithm, or the FaNNI algorithm in short.

2.3.1. Overview of the procedure
The inputs of the algorithm are a collection of QSM blocks, leaf

basis geometry, target leaf area to be distributed, and petiole

and leaf parameter distributions. Details of the roles of the leaf

basis geometry and the distributions are presented in §§2.3.2

and 2.3.3, respectively. The process can be viewed as two separ-

ate stages: (I) generating candidate leaves and (II) accepting

candidates while preventing intersections. An overview of the

process is provided in figure 3.



Figure 3. Process overview of the leaf generation process. Leaf distributions are drawn in rectangular boxes, and functions and properties related to the QSM in
boxes with rounded corners. The main outputs are noted with a star. The two stages are presented on top of one another. (Online version in colour.)

rsfs.royalsocietypublishing.org
Interface

Focus
8:20170045

4

The first stage begins by distributing the available leaf area

onto the blocks. The leaf area density distribution (LADD)

determines the relative probability for a block with given par-

ameters to have leaf area. After sampling the distribution

with the block properties, each block has a target leaf area, or

a leaf area budget, that will be divided into individual leaves

by sampling the LSD.

For the leaf size determination the blocks are processed in

random order. To match the target leaf area as closely as possible

the cumulative area difference with respect to the target is

updated after each leaf. While there is room in the current

block, or the cumulative area budget, a new leaf is added to

that block. The algorithm assumes that all the generated leaves

have the same geometry, and thus we can sample a leaf length

value which can be converted to area. After this step, the

number of generated leaves and the block parent of each leaf

are known.

Next, the locations of the leaves are determined by physically

attaching them to their branches by the petioles. Because TLS

measurements usually cannot capture petioles as they are too

small to be detected reliably, all the petioles are generated: the

petiole’s starting point, orientation and length are determined

by sampling appropriate parameter distributions given by the

user. The end point of a petiole also determines the origin of

the respective leaf. Although the exact petiole geometry is com-

puted, they are considered insignificant compared with the

blocks and the leaves, and thus they are excluded later from

the intersection detection process.

The final property to sample is the leaf orientation. The LOD

is used to determine the direction and the surface normal of each

leaf. Once this is done, all leaves have a fixed position, orien-

tation and scale, and their geometry can be computed by

transforming the leaf basis geometry accordingly.

At this point it is possible, and even likely with a high leaf

count, that some of the leaf candidates intersect one another, or

the blocks, as they were generated independently. However,

the goal is to produce a model without leaf intersections, and
thus in the second stage the leaves are checked one by one for

intersections before adding them to the list of accepted leaves.

If a leaf candidate intersects a block or an accepted leaf, it is

possible to try to change the position, orientation and scale of the

leaf and check whether the intersection was avoided. If it was,

the leaf candidate is accepted; if not, the process can be repeated

any number of times with a different transformation applied to

the parameters. If, despite all the transformations, intersections

cannot be avoided the candidate is discarded. An example of

how intersection prevention can be implemented is described

in §2.3.4. The leaf generation process stops when all the leaves

have been processed, unless some other stopping condition has

been given, such as a target leaf area of accepted leaves.
2.3.2. Leaf model
The leaf model defines the basis geometry of an individual leaf.

This geometry is the same for all the sampled leaves, but it is

scaled, rotated and translated to receive the final leaf geometry,

during the generation process. Thus all the generated leaves

have the same shape but the size and orientation can vary. In

the simplest case, the basis geometry can be a single triangle,

allowing fast leaf cover generation due to simple intersection

detections. For examples of basis geometries consisting of tri-

angles, see §2.6. On the other hand, there is no upper limit for

the complexity of the basis geometry, other than computational

time requirements to ensure non-intersecting leaves. Thus, it is

possible to represent more complicated shapes, e.g. a leaf with

three-dimensional curvature, or a compound leaf with several

leaflets, that do not have to lie on the same plane. However, to

simplify the generation process, it is possible to use a simplified

basis geometry while generating the leaves, which is then

replaced with something more complex, as long as the change

does not introduce additional intersections.

The origin of the leaf basis coordinate system is assumed to be

the point where the petiole connects to the leaf. Leaf direction is

the direction from the origin towards the tip of the leaf, and



perspective front view orthographic side view

Figure 4. Two views of an example ray (blue) travelling through the leaf
density cylinder (yellow) that is supported by one of the branch cylinders (brown).

rsfs.royalsocietypublishing.org
Interface

Focus
8:20170045

5
perpendicular to this lies the leaf normal that defines the direction

to which (most of) the leaf area is facing. The length of the basis

geometry, i.e. leaf length, is fixed at unity. Other dimensions

are given with respect to that. During leaf parameter sampling

only the leaf length is sampled as it determines the leaf area

when the basis geometry is fixed. Note that it is not required to com-

pute the exact geometry of the leaf candidates before the intersection

prevention stage.

2.3.3. Leaf and petiole parameter distributions
Leaf and petiole properties are controlled by multiple user-defin-

able distributions which are sampled when leaves are generated.

The properties fix the number of leaves, their position, size and

orientation. In theory, these distributions are multidimensional

as they may depend on any number of block properties, such as

height from the ground, radius and orientation. They can also

be formed as a weighted product or sum of one-dimensional mar-

ginal distributions. The purpose of each distribution is described

below in the order they are sampled in the implementation.

2.3.3.1. Leaf area density distribution
Total leaf area is one of the inputs of the algorithm, and leaf area

density distribution defines how that area should be distributed

to the blocks. Thus, the leaf area density distribution can allocate

more leaf area towards the top of the tree and towards the tips

of the branches. One could also prevent leaf area from being

attached directly to stem blocks by using branch order informa-

tion. Furthermore, the distribution produces a relative mapping

of area on the blocks, allowing the distribution to assign any

given total area of leaves to the structure model.

2.3.3.2. Leaf size distribution
After a leaf area target has been assigned to each block, the LSD

is used to sample leaf count and size, so that the target area is

matched as closely as possible. This distribution determines the

number of leaves to be generated Ninit. However, as no intersec-

tions between leaves or between blocks and leaves are tolerated,

the final number of leaves may be smaller than initially gener-

ated if intersection cannot be avoided with transformations, i.e.

Nfinal � Ninit holds.

2.3.3.3. Petiole generation
After size distribution sampling, the number of leaves is known

and it becomes possible to sample the petioles that connect the

leaves to their block parents. Similarly to leaves, petiole par-

ameters include the starting point, orientation and length of

the petiole, which effectively also determine the starting points,

or origins, of the leaves. It would be possible to model the

petioles as three-dimensional objects, like small cylinders, but

the implementation considers them only as line segments, and

they are excluded from the intersection prevention step.

2.3.3.4. Leaf orientation distribution
The final distribution controls the orientation of the leaves. This

distribution controls the directions and normals of the leaves,

and can be used to describe, for example, which parts of the

tree are erectophile and which are planophile.

2.3.4. Intersection prevention
Sampling the presented leaf and petiole parameter distributions

results in a list of Ninit candidate leaves. But because each sample

is independent of the rest, the leaves may intersect with other

leaves in the list, or blocks of the QSM. To avoid intersections,

leaves are only accepted to the final collection of leaves if they

do not intersect with other geometry.
The accepted leaves list is initialized as empty. One by

one, the initial leaves are checked, so that they do not intersect

with any of the blocks or the accepted leaves. To avoid a low

acceptance rate, an intersecting leaf is not discarded instantly.

Instead, a number of preselected user-defined transformations

are applied to the leaf candidate, and intersection checking is

repeated. A transformation may consist of any combination of

scaling, rotation and translation, but they are applied in that

order. Only if none of the preselected transformations prevent

all the intersections, the candidate is discarded.

2.4. Leaf density model
Section 2.3 described an algorithm to generate exact leaf geome-

try by sampling certain distributions that depended on

individual block parameters. However, in some cases it is not

necessary to compute the exact geometry, but rather to view

the leaves as an abstract density around the branches [19].

Such an approach saves computational resources as there is no

need to compute and store a lot of geometry. This is especially

relevant for computations with needles as their number often

far exceeds the number of broadleaves for similar sized trees.

This abstract approach without exact leaf realizations can be

suitable for many applications, e.g. ray tracing operations in

radiative transfer and gap fraction computations. However,

exact geometry may be better suited for some applications, e.g.

requiring realistic visualization, and it is also a more straight-for-

ward way to study effects on a single broadleaf of needle scale.

The distributions defined earlier depended on block proper-

ties, which essentially means that each block defines a density,

size and angle distribution around itself. In the case of a cylind-

rical QSM, this can be viewed as a leaf density cylinder around the

block (figure 4). The radius (and length) of the leaf cylinder is

defined by petiole length and LSDs. Let us next briefly justify

the leaf cylinders as potentially useful and consider ray tracing

with leaf cylinders as an example. One possible approach for

ray tracing applications would be to determine an absorption

rate for the leaf cylinder, which can depend on the distance

from the cylinder axis, and where the rate can be stochastic (cf.

the turbid medium analogy [4]). Branch cylinders can be

viewed as infinitely dense, and thus hits occur at their surface.

When enough of the energy of a simulated beam is absorbed, a

hit occurs inside a leaf cylinder. If the application requires it,

an incidence angle can be sampled from the orientation

distribution stored in the respective block.

2.5. Inserting needles
Although this paper focuses on demonstrating broadleaf inser-

tion, it is possible to use the algorithm with needles in

different ways. The most obvious method is to use a tiny cylinder



Figure 5. An example of a needle bud three-dimensional model without a
strict phyllotaxy. (Online version in colour.)

rsfs.royalsocietypublishing.org
Interface

Focus
8:20170045

6

to represent a single needle and use that as a basis geometry.

However, the computational requirements of the insertion

would be enormous (but not impossible [20]), as they would

be for any further application using the resulting model.

A less resource-consuming approach would be a modifi-

cation of the leaf density cylinder approach described in §2.4.

Rather than inserting needles at all, they could be viewed as a

density distribution around the blocks (cf. [19]). Note that the

distribution does not have to be uniform, and thus it can be

used to account for needle phyllotaxy. Additional buds could

also be introduced as density cylinders if the QSM does not con-

tain the level of detail in terms of branching structure required by

the user. Even though exact needle geometry is not generated, it

is important to incorporate the needle phyllotaxy in any ray tra-

cing operations inside needle density cylinders, as it is key in

simulations including needles [21].

A third option would be to use a needle bud as the basis

geometry. An example of a needle bud suitable for visualization

applications can be seen in figure 5. Even though the model is

complex, it can be simplified to a cylinder during the inter-

section checking stage. The complex model can still be used for

visualizations, or in further computations when required.

2.6. A Matlab implementation
The leaf insertion algorithm was implemented in Matlab [22].

The supporting classes and the main function of the imple-

mentation are presented below. Currently the implementation

works with leaves, where the basis geometry is a collection of

triangles, and cylindrical QSMs, but the structure of the

implementation is modular, so that it is easy to extend to other

types of leaves and blocks as necessary.

2.6.1. Classes
The following classes were written to make the implementation

as modular as possible. Especially, the LeafModel and QSMB
abstract classes were designed to define interfaces for easy

extendibility when using other structures than cylindrical

QSMs, or triangle-based leaf models.

2.6.1.1. LeafModel
The objects of this class have two main purposes in terms of the

data they hold. First, they contain the leaf basis geometry, which

is transformed to determine the geometry of the generated

leaves. Second, they hold the parameters of the accepted leaves,

i.e. leaf origin, scale, direction and normal. In terms of functional-

ity the class is responsible for defining an intersection detection

method for two leaves. There is also a method for converting

the geometry of a leaf into a collection of triangles. The tri-

angles method is required mainly when detecting intersections

between a leaf and a block.1 There is also a method for adding

a new, accepted leaf to the model.

LeafModel is an abstract class, used only for defining the

required interface for subclasses rather than actually creating

instances. This allows the class to be extended by creating sub-

classes, such as the implemented LeafModelTriangle class

for leaf models, where the leaf basis geometry consists of vertices

and triangular faces. This class already allows numerous leaf

shapes, as seen in figure 6, but the user can extend the possibili-

ties by implementing a subclass of LeafModel, e.g. for leaf

geometry defined with Bézier curves, or other vertex–face-based

geometries but with more optimized intersection detection than

checking each triangle separately.

2.6.1.2. QSMB
The class name is an acronym for quantitative structure model

blocks (QSMBs), and it essentially acts as a container for QSMB

information. The class is abstract and used to define an interface

for its subclasses. The interface includes a method for reading

block properties, such as position, orientation and branch order,

and to detect intersection between blocks and triangles. Further-

more, a QSMB object is responsible for generating the petioles of

the leaves using the block geometry. Finally, there is a method

for converting the blocks of a QSM into a CubeVoxelization

object, which is used to optimize intersection detection.

As an example subclass, the QSMBCylindrical was cre-

ated to contain cylindrical QSM data. In this class, the block

data consist of cylinder parameters for the geometry, and branch-

ing topology, such as branch order information. The user can

extend the implementation to work on other types of structure

models, by providing the appropriate subclass definition.

The QSMBCylindrical class also defines default uniform

distributions for the petiole parameters. In this initial imple-

mentation, the petiole parameters are the following, with

the lower and upper limits in parentheses: relative position

along the cylinder axis (0, 1); relative position in the radial direc-

tion when connected to the end circle of the last cylinder in a

branch (0, 1); rotation around the cylinder axis (2p, p); petiole

elevation (2p/2, p/2); petiole azimuth (2p/2, p/2); and

petiole length (2 cm, 5 cm).

2.6.1.3. CubeVoxelization
An object of this class is a voxelization of a fixed three-

dimensional space into cubical voxels with a fixed edge length.

A CubeVoxelization object has a minimum and a maximum

point and the space between them is divided into a finite number

of cells. Object references can be stored in the cells to indicate that

the objects occupy at least a part of that voxel. In the main func-

tion of the leaf insertion implementation, voxelizations are used

to store and find candidate leaves and blocks, to perform more

accurate intersection detection. Furthermore, the edge length of

the voxelizations is set as the maximum leaf size produced by

sampling the LSD function.



polygon (8) polygon (20)

ba
se

 le
ng

th
 =

 1

triangle (1) quadrangle (2)

Figure 6. Triangular basis leaf geometries. The number of triangles is given in parentheses. The origin of the leaf is marked with a circle, and the length of a basis
geometry always equals 1. (Online version in colour.)

leaf area (m2)
0.5

800

600

400

200

0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

co
m

pu
ta

tio
na

l t
im

e 
(s

)

triangle
tetragon
polygon (8)
polygon (20)

Figure 7. Computational time as a function of total generated leaf area for a
single test cylindrical block. The values are averages over the 10 repeats.

rsfs.royalsocietypublishing.org
Interface

Focus
8:20170045

7

2.6.2. Main function
qsm_fanni is the main function that receives the QSM as a

QSMB object, an initialized LeafModel object that contains the

leaf basis geometry, and total leaf area to be distributed. The

leaf area parameter can have two components; one for the initial

leaf area Ainit to be generated, and one for the target leaf area

Atarget � Ainit. This can be used to increase the probability that

the target area is reached, even if some of the generated leaves

are discarded due to unavoidable intersections.

There are also numerous optional inputs for the user to cus-

tomize, such as the distribution functions and transformations

during the intersection prevention step. However, default

options are available for all the remaining parameters.

The main output of the function is a LeafModel object

derived from the corresponding input, but it now contains the

accepted leaves, petiole start points and a vector of parent

block indices of each accepted leaf.

2.6.3. Default leaf parameter distributions
The implementation contains default distribution functions for

leaf parameter properties, and they are described below. At the

moment these defaults are not designed to be biologically accu-

rate, but rather just to provide an example of distributions.

However, there are plans to improve the realism and usability

of the default options in future versions, by offering the user a

choice between common options, such as a spherical distribution

for the leaf orientation.

2.6.3.1. Leaf area density distribution
By default the available leaf area is distributed equally to all the

last cylinders in the branches of the QSM. All other cylinders

remain leafless.

2.6.3.2. Leaf orientation distribution
The default LOD is such that most of the leaf area faces upwards,

but there is some random variation. The LOD computes an initial

leaf normal estimate as a cross product of the petiole direction

and a side direction on a horizontal plane. If the initial direction

differs by less than 208 from a reference direction (straight up in

this case), then the final normal direction is the reference direc-

tion. Otherwise, the final normal is the initial direction rotated

towards the reference direction by 208.

2.6.3.3. Leaf size distribution
The default LSD samples a leaf length value from a uniform dis-

tribution with given limits. That value is then scaled with a value

based on the relative height of the parent block to ensure that

leaves are a little bit larger at the top of the tree.
3. Results
3.1. Leaf geometry complexity test
The LeafModelTriangle class enables the use of leaf

basis geometries with an arbitrary number of triangles.

However, the detection of intersections between leaves

requires that all those triangles are checked, which has an

enormous effect on computational time. To study the effect

of the number of triangles on the basis geometry, a single

cylindrical block (length 1 m, radius 0.25 m) was fitted

with an increasing total area of leaves. The area varied

from 0.25 to 5 m2 for the four basis geometries in figure 6.

The process was repeated 10 times for each leaf area–basis

geometry pair. The average computational time results are

shown in figure 7.

When using a single triangle, generating non-overlapping

leaves was very fast even with the maximum leaf area, 5 m2,

taking only 11 s on average. With the two-triangle quadran-

gle, the times increased 1.8-fold to 4.3-fold in comparison

with the single triangle when moving from the lowest to

the highest leaf area. For the polygon with eight triangles,

the required time was 8.1-fold already at 1 m2 and 16-fold

at the maximum. The respective multipliers for the 20-tri-

angle polygon were 35.9 and a 79.7, which translate to 31

and 891 s, respectively.
3.2. Leaf area density distribution definitions
To demonstrate the leaf insertion algorithm, we defined the

two following parametrized leaf area density distributions.

While we tested other distributions and parametrizations,

these two were chosen because of the low parameter count

and overall simplicity.



scaling factor at ground

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8

cu
m

ul
at

iv
e 

ar
ea

 d
if

fe
re

nc
e

small oak
medium oak
large oak
total

Figure 9. Cumulative area difference curves for the LADD 1 distribution as a
function of the height scaling parameter. (Online version in colour.)

relative position on branch

1.0

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1.0

re
la

tiv
e 

le
af

 a
re

a

branch order
0
1
2
3
≥4

Figure 8. Piecewise linear polynomials defining the branch order-dependent
LADD 2 scaling factor y4 ¼ 0.4.

Table 3. Optimal parameter values for LADD 2 distribution. Parameter y0

controls the vertical distribution and parameter y4 the distribution along
the branch length.

tree y0 y4

small oak 0.1 0.7

medium oak 0.6 0.5

large oak 0.2 0.9

total 0.2 0.5

rsfs.royalsocietypublishing.org
Interface

Focus
8:20170045

8

LADD 1 initialized the last 5% of each branch to have an

equal portion of leaves, then scaling these proportions

with a factor dependent on the relative height of the

respective cylinder. The factor had a value of the par-

ameter y0 at ground level and 1 at the top of the tree.

Values in between were interpolated linearly.

LADD 2 had an additional parameter to define a cut-off

point along a branch. The branch did not have any

leaves before this point, which was dependent on the

branch order. For the stem the cut-off was at 95%. For

branch orders 4 and above, the cut-off was at y4, and for

lower branch orders the cut-off was interpolated linearly.

For cylinders after the cut-off point, the probability of

leaves was interpolated linearly between 0 at the cut-off

and 1 at the tip of the branch. Furthermore, the probabil-

ities were scaled with a factor depending on the relative

cylinder height as with LADD 1. The scaling factor y4 is

visualized in figure 8 for a parameter value of 0.4.

To find the optimal values for the parameters, we performed

a simple grid search by varying the values of y0 and y4 in the

closed intervals (0, 1) and (0, 0.9), respectively. For LADD 1,

which only depends on the y0 parameter, the results are shown

in figure 9; for LADD 2, the optimal parameter values are listed

in table 3. Optimization was done on the cumulative area differ-

ence that was computed as the sum of unsigned leaf area

differences in the vertical layers of the trees. The error was nor-

malized with the measured total leaf area of the tree. The total

error was computed as a sum over all the trees.

For LADD 1 the total optimal value was y0 ¼ 0.2, which

was close to those of the small and large oak trees. However,

the optimal value of the medium oak tree was different at 0.7.

For LADD 2 the total optimum values were y0 ¼ 0.2 and
y4 ¼ 0.5, but there were differences in the optimal parameter

values between the individual trees.

Figure 10 visualizes the LADD 2 distribution with the opti-

mal parameter values on the small and medium oak trees. Grey

parts have no leaves, green parts have some, and red parts have

a lot of leaves. Furthermore, figure 11 shows similar LADD

heat maps and corresponding generated leaves. Note that in

figure 11 LADD 1 is the same as LADD 2 with parameter

value y4 ¼ 0.95. Going from top to bottom the regions of

high probability of leaves spread from the very tip towards

the base of the branch. In the top two rows, the leaves are

very concentrated at the tips, whereas in the latter two the

leaves are more evenly spread along the high-order branches.
3.3. Leaf insertion test for oak trees
Each of the three oak trees was inserted with their measured leaf

area (highlighted in table 1). The two LADDs described above

with the optimal parameters were used, and all tree–LADD

pairs were repeated 10 times. As we lacked reference data for

the leaf orientation and LSDs, defaults from the Matlab

implementation were used. To match the measured leaf sizes

for each tree, the limits for the default uniform leaf length distri-

bution were derived from the average leaf area measurements.

The mean leaf length li for tree i was computed as follows:

li ¼
ffiffiffiffiffi

Ai
p

r=2
, ð3:1Þ

where Ai is the average leaf area for tree i, r � 0.6 is the ratio

between the width and length of the leaf basis geometry,

which in this case was the quadrangle from figure 6 to keep

the triangle count low. The leaf length limits were computed

for each tree as l+1 cm.

The computations were done on a quad-core computer

(Intel Core i7-6700 K 4 GHz, 32 Gb RAM). The computational

mean times and standard deviations over the 10 repeats are

listed in table 4. The average computational time per QSM

block was between 20 and 40 ms for all the trees. Most of

the computational time (95.3%) was spent on detecting inter-

sections, which further supports using the simplest possible

leaf basis geometry. The table also lists the average number

of required block and leaf neighbour computations, the

average number of performed transformations to avoid inter-

sections, and the discarded leaf candidate percentage. The

small oak tree had twice the leaf area per branch in com-

parison with the other two trees, which explains why there

were twice as many neighbouring leaf computations and dis-

carded leaves. The results suggest that it would be sufficient

to sample 5–10% more leaves than the target leaf area to

account for discarded leaves. The results show that the vast



small oak medium oak

5 m

Figure 10. Example leaf area density distribution (LADD 2) for the small and medium oak trees as heat maps. As branch tips are small in size all cylinder radii have
been scaled up to four times larger according their LADD value for a better visualization.

rsfs.royalsocietypublishing.org
Interface

Focus
8:20170045

9

majority of leaf candidates are accepted without any trans-

formation as the average number of tried configurations

was between 1.0 and 1.5 for all the trees.

Figure 12 shows a top view of all the oak trees with leaves

generated with both LADDs, and figure 13 shows a side view

of the LADD 1-generated leaf covers for the medium and

large oaks. The differences between the leaf covers generated

with LADD 1 and LADD 2 are subtle, but notable. As the

higher order branches have a lower cut-off point along the

relative position on the branch, leaf cover is more even,

making the gap fraction smaller on LADD 2 covers.

To compare the generated leaf distributions with the

measured data, the leaves were placed in the same vertical

bins listed in §2.1 according to their centre. The signed differ-

ence between generated and measured leaf count and area

are listed in table 5. Negative values mean that the tree or

layer should have had more leaves or leaf area; positive

values are the opposite. Both LADDs were able to match

the measured leaf area at the tree level because that was the

stopping condition. The tree-level leaf counts are only
between 500 and 3500 below the target values. Relative to

the total leaf count the differences were 7.5%, 0.9% and

2.0% for the small, medium and large oaks, respectively.

The layer-level differences were much higher, which

suggests that the vertical distribution generated by the pro-

posed LADDs did not match the measurements. With LADD

2 the top layer of the large oak was missing over 90 m2 of leaf

area while the layer below that had an excess of about 60 m2.

Results for the small oak were similar, which suggests lowering

the y0 parameter. However, the opposite was true for the

medium oak, which had about 6 m2 of extra leaf area in the

upper layer.
4. Discussion
The above results presented two relatively simple LADD

functions that used branch order, relative height and relative

position along a branch to determine the portion of leaf area

to be assigned to a block. However, the implementation



LADD 1/LADD 2, y4 = 0.95

LADD 2, y4 = 0.9

LADD 2, y4 = 0.5

LADD 2, y4 = 0.1

(b)(a)

Figure 11. LADD examples on a single branch from the small oak tree. The distributions control how leaf area is distributed on the supporting branching structure.
The parameter y4 controls the cut-off point along the branch length, starting from the branch base, before which there can be no leaves. (a) Distribution as a heat
map; (b) sampled leaves based on the corresponding heat map.

Table 4. Oak tree average leaf generation results. The properties are computational mean time, time standard deviation, average block and leaf neighbour
counts, and average number of transformation configurations tried before accepting or discarding a leaf.

tree/LADD time time std block neigh. leaf neigh. transforms discard (%)

LADD 1

small oak 6 min 12 s 7 s 13.1 32.8 1.4 7.3

medium oak 7 min 55 s 9 s 15.7 16.3 1.0 3.4

large oak 17 min 48 s 30 s 11.8 16.2 0.9 3.5

LADD 2

small oak 6 min 32 s 4 s 13.6 33.9 1.4 7.8

medium oak 8 min 07 s 5 s 16.1 16.2 1.0 3.6

large oak 18 min 19 s 8 s 12.4 16.5 1.0 3.6

rsfs.royalsocietypublishing.org
Interface

Focus
8:20170045

10



2 m

sm
al

l
m

ed
iu

m
la

rg
e

2 m

LADD 1 LADD 2

2 m 2 m

2 m 2 m

Figure 12. Top view of the three oaks with leaves generated with the two LADDs. (Online version in colour.)

rsfs.royalsocietypublishing.org
Interface

Focus
8:20170045

11
allows for the user to write more complex LADD functions

that make use of additional information, such as absolute

height (whether the block is above the surrounding canopies)

and absolute orientation (north or south side of the stem).

Owing to limited reference data only the LADD was opti-

mized. However, if detailed leaf angle or leaf size

measurements are available, it is possible to optimize the

respective distribution in a similar manner.

The LADD parameter optimization results and the con-

flicting layer difference results show that the presented

LADDs are not able to capture the differences in the leaf

area distributions of the three oak trees. Further studies

should be carried out to assess whether the underlying leaf

distributions differ between these three trees, or whether it

is simply a matter of choosing a better LADD. It should

also be noted that the manual leaf measurements were
limited with only eight data points in total for the three

trees, and, as such, more detailed and comprehensive

measurements would be beneficial. Some of the leaf area

difference can also be explained by uncertainties in estimat-

ing leaf area and count for the vertical layers, and by

missing branches in the upper canopy in the QSMs.

The parameters of the two LADDs were optimized by

using a grid search where exact leaf geometry was generated

at each grid position. This made the optimization computa-

tionally intensive as 95% of the computational time was

spent on intersection prevention, which forced a low par-

ameter count. However, in retrospect it was unnecessary

to generate leaf geometry, because as the results showed

the discard rate was very low, which means that the

LADD of the output was very close to the input. Thus,

optimization according to, for example, vertical layers can



2 m 2 m

medium oak large oak

Figure 13. Side view of the medium and large oak with leaves generated with LADD 1. (Online version in colour.)

Table 5. Difference between oak leaf count and leaf area in total and in vertical layers.

LADD 1 LADD 2

tree/layer D count D area (m2) D count D area (m2)

small oak 23561 þ0.0 23581 þ0.0

0.0 – 11.5 m þ1707 þ5.7 þ1002 þ3.3

11.5 – 19.6 m 25268 25.7 24583 23.3

medium oak 2473 þ0.0 2432 þ0.0

0.0 – 9.0 m 23339 28.1 22811 26.0

9.0 – 19.9 m þ2866 þ8.1 þ2379 þ6.0

large oak 22275 20.1 22157 þ0.0

0.0 – 8.0 m þ9507 þ12.9 þ10 748 þ16.6

8.0 – 13.0 m þ2758 þ13.1 þ3254 þ14.5

13.0 – 18.4 m þ15 634 þ58.7 þ15 883 þ59.4

18.4 – 22.4 m 230 174 284.8 232 040 290.5

rsfs.royalsocietypublishing.org
Interface

Focus
8:20170045

12
be simplified to only include distributing the available leaf

area onto the structure model and exclude both leaf size

and orientation sampling and especially the computation

of exact geometry.
Future research should also include testing the impor-

tance of the intersection prevention for various applications,

i.e. whether possibly intersecting and non-intersecting

leaves differ significantly in terms of required resources and



rsfs.royalsocietypublishing.org
Interface

Focus
8:20170045

13
produced level of detail. This way we would know whether it

is sensible to perform the intersection prevention step, e.g. for

simulations studying light use efficiency.

In this paper, the proposed method was only used to

generate leaf covers according to user-given distributions.

However, it would also be interesting to see whether this algor-

ithm could be used to invert or approximate the real-leaf

distributions of a given tree, with simple non-destructive

and non-direct measurements. For example, it would be

possible to test whether gap-fraction measurements and

suitable parametrizations of the leaf distributions can be

used to optimize the distribution parameters, to derive a

mathematical or even a biological explanation for the real

leaf distribution. With this method, it is possible to make

such simulations and study this inverse problem. It should

be noted that such inversion does not reconstruct exact

leaf geometry but rather gives an approximation of their distri-

butions. Such an approach could produce new understanding

of what affects the distribution of leaves for a specific tree.

Furthermore, it would allow the generation of leaf covers

that follow the reconstructed distribution for the same tree

or some other tree.

Currently the algorithm views each leaf independent

from the others (apart from intersection prevention),

which is one of the reasons for calling the algorithm naive.

However, in most tree species leaves follow a certain phyllo-

taxy or the leaves are clumped together, e.g. their petioles

originate near one another, or even from the very same

spot [23]. We are planning to implement simple phyllotaxy

controls in future versions of the FaNNI implementation.

The level of clumping could be defined as a separate distri-

bution that would be used to sample the size of a clump and

variation in petiole and leaf parameters for the leaves within

the clump.

In nature, leaves are often connected to branches that

are small in diameter. Because of the limitations of the

TLS technology, such branches are often poorly sampled

in the resulting point clouds. Therefore, they can be

excluded from the reconstructed QSM also, which means

that, when leaves are inserted, they are connected to

branches that are too large. To counter this shortcoming,

it is possible to perform a pre-processing step that inserts

small branches into the structure model, which will be

given a high probability of leaves when defining the

LADD function.

Although the implementation enables the use of leaf

basis geometries consisting of any number of triangles, the

results show that additional complexity multiplies the

expected computational time by large factors. However, if

detailed leaf geometry is required for later computations,

it is possible to use a simplified stand-in basis geometry

that encapsulates the complex shape to prevent overlapping

during generation and replace the geometry afterwards.

Such a procedure could even be built in to an extension of

the LeafModel class.
5. Conclusion
We have presented an algorithm to generate non-intersecting

leaves to a QSM that follow user-defined position, size and

orientation distributions. A Matlab implementation of the

algorithm was also presented. Currently, the implementation
allows the use of any leaf shape consisting of an arbitrary

number of triangles.

In order to present leaf property distributions in a com-

pact yet versatile format, we propose a scheme where a

QSM is divided into blocks that determine, and can be

used to contain, property information for leaves that are to

be connected to it. This means that we can assign the avail-

able leaf area, leaf size and orientation parameters to the

blocks of a QSM even without generating leaves. Then we

can do one of the following.

— Visualize the property distributions by colouring the

blocks according to their respective property values as

seen in the case of leaf area density distributions, e.g.

in figures 10 and 11.

— Sample the user-defined distribution with the parameter

values and generate exact leaf geometry as was done in §3.

— View the leaves as a probability distribution around the

QSM blocks, and rather than computing exact leaf geo-

metry do computations by determining the probability

of a hit and the incidence angle when a beam enters

the vicinity of a block.

Although any triangle-based geometry is possible for the

leaves, a simple test of adding an increasing area of leaves to

a single cylindrical block showed that complex leaf shapes

can drastically increase the computational time, at least

with the current implementation. Thus, the leaf basis geome-

try should be kept as simple as possible, or optimization is

required for intersection detection.

To demonstrate leaf generation, we presented two

different LADDs and applied them to three oak trees

trying to match field measured leaf count and areas. The

measurements were done with two–four vertical bins per

tree, and the average leaf area was also recorded for each

tree. Simple uniform LSD (with some scaling based on

height) and planophile orientation distribution were used,

while the main focus was on optimizing the LADDs.

The two suggested LADDs were able to match leaf

area and count per tree, but the vertical distribution of

leaves had major errors despite the optimization. Further

research is required to understand the cause of the leaf

area differences.

A further goal is to use the leaf-augmented QSM (L-QSM)

to incorporate a number of biological principles such as the

availability of resources (mass and energy exchanges between

vegetation and atmosphere, and phyllotaxy) to construct as

many self-consistent tree models as possible. One can include

stochastic variations in the same sense as in the creation of

four-dimensional QSMs [24], extending that scheme to fully

functional trees. This approach would enable a large number

of applications to verify and refine assumed biological postu-

lates of theoretical models, and then use the resulting full-

scale three- and four-dimensional models for predictions

and the modelling of ecological systems at various size and

complexity scales, including large-scale statistical (allometric)

estimates.

Data accessibility. The Matlab implementation of the FaNNI algorithm
is available on GitHub (https://github.com/InverseTampere/
qsm-fanni-matlab). The three oak tree QSMs are available from
Eric Casella (Eric.Casella@forestry.gsi.gov.uk) upon request.

Authors’ contributions. M.Å. developed the FaNNI algorithm, wrote the
implementation, carried out the computations and drafted the

https://github.com/InverseTampere/qsm-fanni-matlab
https://github.com/InverseTampere/qsm-fanni-matlab
https://github.com/InverseTampere/qsm-fanni-matlab
mailto:Eric.Casella@forestry.gsi.gov.uk


rsfs.royalsocietypublishing.o

14
manuscript. E.C. acquired the TLS measurements, computed the
QSMs and led the destructive leaf sampling experiment. M.D.,
F.M.D., R.G. and L.A.S. participated in that experiment. P.R., M.K.,
E.C., M.D., F.M.D., R.G. and L.A.S. helped draft the manuscript.
All authors gave final approval for publication.

Competing interests. The authors have no competing interests.

Funding. This study was funded by the Academy of Finland research
project Centre of Excellence in Inverse Problems (284715) and by
the Forestry Commission GB. M.D. is supported in part by funding
from NERC NCEO and NERC Standard grants NE/N00373X/1
and NE/P011780/1.
Acknowledgements. The following additional people participated in the
oak tree leaf measurements: Ian Craig, Steve Coventry, Marc Sayce
and David Payne from Forest Research UK; Andrew Burt, Ross
Hawton, Jingjing Yan and Meng Yu from University College
London; Ewan Pinnington from the University of Reading; and
Amy Danson and Jennifer Danson.

Endnote
1Otherwise you would have to write a separate intersection detection
function for each leaf and block type pair.
 rg

Interfac
References
e
Focus

8:20170045
1. Casella E, Sinoquet H. 2007 Botanical determinants
of foliage clumping and light interception in two-
year-old coppice poplar canopies: assessment from
3-D plant mock-ups. Ann. For. Sci. 64, 395 – 404.
(doi:10.1051/forest:2007016)

2. Newnham GJ, Armston JD, Calders K, Disney MI,
Lovell JL, Schaaf CB, Strahler AH, Danson FM. 2015
Terrestrial laser scanning for plot-scale forest
measurement. Curr. Forestry Rep. 1, 239 – 251.
(doi:10.1007/s40725-015-0025-5)

3. Woodgate W et al. 2015 An improved theoretical
model of canopy gap probability for Leaf Area Index
estimation in woody ecosystems. For. Ecol. Manage.
358, 303 – 320. (doi:10.1016/j.foreco.2015.09.030)

4. Ross J. 1981 The radiation regime and architecture of
plant stands. Tasks for Vegetation Science 3. The
Hague, The Netherlands: Springer. See http://doi.
org/10.1007/978-94-009-8647-3.

5. Raumonen P, Kaasalainen M, Åkerblom M,
Kaasalainen S, Kaartinen H, Vastaranta M,
Holopainen M, Disney M, Lewis P. 2013 Fast
automatic precision tree models from terrestrial
laser scanner data. Remote. Sens. (Basel) 5,
491 – 520. (doi:10.3390/rs5020491)

6. Hackenberg J, Spiecker H, Calders K, Disney M,
Raumonen P. 2015 Simpletree—an efficient
open source tool to build tree models from TLS
clouds. Forests 6, 4245 – 4294. (doi:10.3390/
f6114245)

7. Grau E, Durrieu S, Fournier R, Gastellu-Etchegorry
JP, Yin T. 2017 Estimation of 3D vegetation density
with terrestrial laser scanning data using voxels.
A sensitivity analysis of influencing parameters.
Remote Sens. Environ. 191, 373 – 388. (doi:10.1016/
j.rse.2017.01.032)

8. Disney MI, Boni Vicari M, Burt A, Calders K,
Lewis SL, Raumonen P, Wilkes P. 2018 Weighing
trees with lasers: advances, challenges and
opportunities. Interface Focus 8, 20170048. (doi:10.
1098/rsfs.2017.0048)

9. Béland M, Baldocchi DD, Widlowski JL, Fournier RA,
Verstraete MM. 2014 On seeing the wood from the
leaves and the role of voxel size in determining leaf
area distribution of forests with terrestrial LiDAR.
Agric. Forest Meteorol. 184, 82 – 97. (doi:10.1016/j.
agrformet.2013.09.005)

10. Ma L, Zheng G, Eitel JUH, Moskal LM, He W, Huang
H. 2016 Improved salient feature-based approach
for automatically separating photosynthetic and
nonphotosynthetic components within terrestrial
lidar point cloud data of forest canopies. IEEE Trans.
Geosci. Remote Sens. 54, 679 – 696. (doi:10.1109/
TGRS.2015.2459716)

11. Casella E, Sinoquet H. 2003 A method for describing
the canopy architecture of coppice poplar with
allometric relationships. Tree. Physiol. 23,
1153 – 1170. (doi:10.1093/treephys/23.17.1153)

12. Béland M, Widlowski JL, Fournier RA, Côté JF,
Verstraete MM. 2011 Estimating leaf area
distribution in savanna trees from terrestrial LiDAR
measurements. Agric. Forest Meteorol. 151,
1252 – 1266. (doi:10.1016/j.agrformet.2011.05.004)

13. Zheng G, Moskal LM. 2012 Leaf orientation retrieval
from terrestrial laser scanning (TLS) data. IEEE Trans.
Geosci. Remote Sens. 50, 3970 – 3979. (doi:10.1109/
TGRS.2012.2188533)

14. Bailey BN, Mahaffee WF. 2017 Rapid measurement of
the three-dimensional distribution of leaf orientation
and the leaf angle probability density function using
terrestrial LiDAR scanning. Remote Sens. Environ. 194,
63 – 76. (doi:10.1016/j.rse.2017.03.011)

15. Hétroy-Wheeler F, Casella E, Boltcheva D. 2016
Segmentation of tree seedling point clouds
into elementary units. Int. J. Remote Sens. 37,
2881 – 2907. (doi:10.1080/01431161.2016.
1190988)
16. Åkerblom M, Raumonen P, Kaasalainen M, Casella E.
2015 Analysis of geometric primitives in quantitative
structure models of tree stems. Remote Sens. (Basel)
7, 4581 – 4603. (doi:10.3390/rs70404581)

17. Clawges R, Vierling L, Calhoon M, Toomey M. 2007
Use of a ground-based scanning LiDAR for
estimation of biophysical properties of western
larch (Larix occidentalis). Int. J. Remote Sens. 28,
4331 – 4344. (doi:10.1080/01431160701243460)

18. Calders K et al. 2015 Nondestructive estimates of
above-ground biomass using terrestrial laser
scanning. Methods Ecol. Evol. 6, 198 – 208. (doi:10.
1111/2041-210X.12301)

19. Perttunen J, Sievänen R, Nikinmaa E. 1998 LIGNUM:
a model combining the structure and the
functioning of trees. Ecol. Modell. 108, 189 – 198.
(doi:10.1016/S0304-3800(98)00028-3)

20. Disney M, Lewis P, Saich P. 2006 3D modelling of
forest canopy structure for remote sensing
simulations in the optical and microwave domains.
Remote. Sens. Environ. 100, 114 – 132. (doi:10.
1016/j.rse.2005.10.003)

21. Cannell MGR, Bowler KC. 1978 Phyllotactic
arrangements of needles on elongating conifer
shoots: a computer simulation. Can. J. Forest Res. 8,
138 – 141. (doi:10.1139/x78-022)

22. Åkerblom M. 2017 QSM-FaNNI Matlab
implementation source code. See http://www.https.
com//doi.org/10.5281/zenodo.800496.

23. Niklas KJ. 1988 The role of phyllotatic pattern as a
‘developmental constraint’ on the interception of
light by leaf surfaces. Evolution 42, 1 – 16. (doi:10.
2307/2409111)

24. Potapov I, Järvenpää M, Åkerblom M, Raumonen P,
Kaasalainen M. 2016 Data-based stochastic
modeling of tree growth and structure
formation. Silva Fennica 50, 1413. (doi:10.14214/
sf.1413)

http://dx.doi.org/10.1051/forest:2007016
http://dx.doi.org/10.1007/s40725-015-0025-5
http://dx.doi.org/10.1016/j.foreco.2015.09.030
http://doi.org/10.1007/978-94-009-8647-3
http://doi.org/10.1007/978-94-009-8647-3
http://doi.org/10.1007/978-94-009-8647-3
http://dx.doi.org/10.3390/rs5020491
http://dx.doi.org/10.3390/f6114245
http://dx.doi.org/10.3390/f6114245
http://dx.doi.org/10.1016/j.rse.2017.01.032
http://dx.doi.org/10.1016/j.rse.2017.01.032
http://dx.doi.org/10.1098/rsfs.2017.0048
http://dx.doi.org/10.1098/rsfs.2017.0048
http://dx.doi.org/10.1016/j.agrformet.2013.09.005
http://dx.doi.org/10.1016/j.agrformet.2013.09.005
http://dx.doi.org/10.1109/TGRS.2015.2459716
http://dx.doi.org/10.1109/TGRS.2015.2459716
http://dx.doi.org/10.1093/treephys/23.17.1153
http://dx.doi.org/10.1016/j.agrformet.2011.05.004
http://dx.doi.org/10.1109/TGRS.2012.2188533
http://dx.doi.org/10.1109/TGRS.2012.2188533
http://dx.doi.org/10.1016/j.rse.2017.03.011
http://dx.doi.org/10.1080/01431161.2016.1190988
http://dx.doi.org/10.1080/01431161.2016.1190988
http://dx.doi.org/10.3390/rs70404581
http://dx.doi.org/10.1080/01431160701243460
http://dx.doi.org/10.1111/2041-210X.12301
http://dx.doi.org/10.1111/2041-210X.12301
http://dx.doi.org/10.1016/S0304-3800(98)00028-3
http://dx.doi.org/10.1016/j.rse.2005.10.003
http://dx.doi.org/10.1016/j.rse.2005.10.003
http://dx.doi.org/10.1139/x78-022
http://www.https.com//doi.org/10.5281/zenodo.800496
http://www.https.com//doi.org/10.5281/zenodo.800496
http://dx.doi.org/10.2307/2409111
http://dx.doi.org/10.2307/2409111
http://dx.doi.org/10.14214/sf.1413
http://dx.doi.org/10.14214/sf.1413

	Non-intersecting leaf insertion algorithm for tree structure models
	Introduction
	Material and methods
	Laser scanning and leaf measurements
	Quantitative structure models
	Leaf generation algorithm
	Overview of the procedure
	Leaf model
	Leaf and petiole parameter distributions
	Leaf area density distribution
	Leaf size distribution
	Petiole generation
	Leaf orientation distribution

	Intersection prevention

	Leaf density model
	Inserting needles
	A Matlab implementation
	Classes
	LeafModel
	QSMB
	CubeVoxelization

	Main function
	Default leaf parameter distributions
	Leaf area density distribution
	Leaf orientation distribution
	Leaf size distribution



	Results
	Leaf geometry complexity test
	Leaf area density distribution definitions
	Leaf insertion test for oak trees

	Discussion
	Conclusion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


