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Diabetic peripheral neuropathy (DPN) remains one of the most common and serious 
complications of diabetes. Currently, pharmacological agents are limited to treating the 
pain associated with DPN, and do not address the underlying pathological mechanisms 
driving nerve damage, thus leaving a significant unmet medical need. Interestingly, 
research conducted using exercise as a treatment for DPN has revealed interleukin-6 
(IL-6) signaling to be associated with many positive benefits such as enhanced blood 
flow and lipid metabolism, decreased chronic inflammation, and peripheral nerve fiber 
regeneration. IL-6, once known solely as a pro-inflammatory cytokine, is now under-
stood to signal as a multifunctional cytokine, capable of eliciting both pro- and anti- 
inflammatory responses in a context-dependent fashion. IL-6 released from muscle in 
response to exercise signals as a myokine and as such has a unique kinetic profile, 
whereby levels are transiently elevated up to 100-fold and return to baseline levels within 
4 h. Importantly, this kinetic profile is in stark contrast to long-term IL-6 elevation that is 
associated with pro-inflammatory states. Given exercise induces IL-6 myokine signaling, 
and exercise has been shown to elicit numerous beneficial effects for the treatment of 
DPN, a causal link has been suggested. Here, we discuss both the clinical and preclinical 
literature related to the application of IL-6 as a treatment strategy for DPN. In addition, 
we discuss how IL-6 may directly modulate Schwann and nerve cells to explore a mech-
anistic understanding of how this treatment elicits a neuroprotective and/or regenerative 
response. Collectively, studies suggest that IL-6, when administered in a low-dose 
pulsatile strategy to mimic the body’s natural response to exercise, may prove to be an 
effective treatment for the protection and/or restoration of peripheral nerve function in 
DPN. This review highlights the studies supporting this assertion and provides rationale 
for continued investigation of IL-6 for the treatment of DPN.

Keywords: diabetic peripheral neuropathy, interleukin-6, nerve regeneration, myokine, neurocytokine

BACKGROUnD: DiABeTiC PeRiPHeRAL neUROPATHY (DPn)

A growing diabetes pandemic is unfolding not only in the United States, but also globally. According 
to the American Diabetes Association (ADA), the prevalence of diabetes in 2012 was 9.3%, with 86 
million people in prediabetes staging. The cost of diabetes, in the US alone was reported to be 245 
billion dollars in 2012, and diabetes is ranked the seventh leading cause of death. DPN is the most 
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common complication associated with type 1 or type 2 diabetes 
(T1D, T2D), and has an expected lifetime prevalence of 50% of 
individuals suffering with diabetes (1, 2). It is noteworthy, that 
outside of blood glucose management, drug treatment strategies 
for DPN are currently limited to analgesic agents targeting the 
neuropathic pain associated with DPN (3). Besides their partial 
efficacy on pain, these treatments do not address the non-painful 
symptoms of the disease nor halt worsening of symptoms. DPN 
is the primary risk factor associated with foot ulceration, 
amputation, falls, fractures, and traumatic brain injury; these 
serious complications highlight the importance of finding disease 
modifying treatment strategies to retard DPN progression and/or  
severity (4).

Diabetic peripheral neuropathy as described by the Toronto 
Consensus Panel on Neuropathies is “a symmetrical, length-
dependent sensorimotor polyneuropathy attributable to metabo -
lic and microvessel alterations as a result of chronic hyperglycemia  
exposure (diabetes) and cardiovascular risk covariates” (5). 
Symptomatology for DPN includes pain, burning, itching, 
tingling, and numbness displaying predominately a “glove and 
stocking” (hands and feet) distribution. Intraepidermal nerve 
fibers (IENF), those fibers found in the epidermis, are the nerves 
most associated with the symptoms of DPN. Sensory fibers, 
rather than motor, that conduct both pain and mechanical sen-
sory inputs are the primary fiber type affected in DPN (6, 7).  
The etiology of sensory nerve dysfunction and degeneration 
in DPN, while inextricably linked to extended hyperglycemia, 
insulin deficiency, and dyslipidemia are not yet fully understood 
(5, 8). Additional associated co-factors such as oxidative stress, 
mitochondrial dysfunction, advanced glycation end products,  
activated protein kinase C, polyol pathway activation, and 
decreased neurotrophin production have also been identified as 
playing potential causative roles in the development and/or pro-
gression of DPN (9, 10). Some of the known anatomical changes 
to nerve fibers that occur in the DPN setting include axonal 
degeneration, Schwann cell loss, focal demyelination, decreased 
IENF density, and blood vessel loss (11). These pathological 
changes result in nerve dysfunction including decreased nerve 
conduction velocity and endoneurial perfusion resulting in DPN 
symptomatology. Given the multifactorial nature of the underly-
ing pathophysiologies driving development of DPN, it follows 
that an ideal disease modifying treatment should be multimodal 
in nature to best restore nerve function.

inTeRLeUKin-6 (iL-6), eXeRCiSe, AnD 
DPn: MAKinG THe COnneCTiOn

There are no Food and Drug Administration (FDA)-approved 
therapeutics for the regeneration and/or repair of peripheral 
nerves in DPN, currently the recommended treatments are 
limited to diet and exercise (12). Of note, ongoing studies using 
the anti-convulsant topiramate are showing promising results for 
nerve regeneration as well as metabolic improvements. The ADA 
has added it to their recommended treatment regimen; however, 
additional studies will be required to garner FDA approval for the 
indication (13–15). Controlling glucose in the T1D population 
was shown to reduce the development of DPN by 64% (16). The 

potential of this strategy for treating DPN in the T2D population 
remains to be confirmed (1, 17, 18). Therefore, glycemic control 
alone, when attainable, does not confer complete protection, 
leaving a susceptible population (T2D) that requires additional 
treatment strategies.

By its nature, exercise provides multifactorial benefits in the 
prevention and treatment of DPN through stimulating blood 
flow and insulin response, modifying lipid metabolism, reducing 
chronic inflammation (19, 20), and more importantly stimu-
lating IENF regeneration (21, 22). Exercise stimulates secretion 
of neurotrophic factors such as brain-derived neurotrophic 
factor (BDNF) (23), and IL-6 (24). It is noteworthy that the 
beneficial effects of exercise on DPN (21, 22, 25) or in healthy 
persons have been partially attributed to the transient secretion 
of IL-6 that occurs rapidly during/post exercise. IL-6 was first 
identified in 1985 as a B-cell stimulatory factor and described 
as a pro-inflammatory cytokine integral in initiating the acute 
phase response of the immune system (26, 27). Research now 
supports IL-6 as a multifunctioning cytokine capable of eliciting 
both pro- and anti-inflammatory effects in a context-dependent 
fashion (28).

Observations that IL-6 is acutely released from muscle cells 
in response to exercise have led to its further characterization as 
a myokine (29). In this role, IL-6 stimulates glucose uptake and/
or increases insulin sensitivity (30–34). Subsequent to strenuous 
exercise in humans, the plasma concentration of IL-6 can increase 
up to 128 fold (marathoners pre-race <1.0  pg/mL, ~80  pg/mL 
post-race), returning to near baseline within 4  h (35). IL-6 
response to exercise is seemingly dependent on type, duration, 
and intensity of exercise performed, e.g., in 2 min of sprint cycling 
IL-6 levels peaked at 10 vs. 35 pg/mL after 2.5 h of treadmill run-
ning (36–38). It is important to emphasize that the robust and 
transient elevation of IL-6 levels due to exercise is distinct from 
the chronically elevated IL-6 levels associated with T2D (non- 
diabetic healthy controls ~1.5 pg/mL vs. T2D patients ~2–5 pg/mL)  
(39–42). As exercise produces both an anti-inflammatory res-
ponse and a transient elevation of IL-6, the two phenomena 
have been causally linked (34). Similarly, as the beneficial role 
of exercise in the treatment of DPN is paralleled by a transient 
increase in IL-6 levels (21, 35), we have hypothesized that a con-
nection exists. Therefore, we have conducted a review of literature 
to further investigate how IL-6 may play a beneficial role in DPN.

CLiniCAL STUDieS: iL-6 
ADMiniSTRATiOn TO MiMiC eXeRCiSe

Numerous clinical studies have been conducted to investigate 
the effects of acutely administering exogenous IL-6 in both non-
diabetic healthy and diabetic subjects. This transient elevation 
of IL-6 has been reported to increase circulating levels of the 
anti-inflammatory cytokines IL-10, IL-1ra (IL-1 receptor antago-
nist), and cortisol that result in leukocytosis similar to that seen 
after exercise (43). Additionally, IL-6 administration attenuates 
endotoxin-induced TNF-alpha production, further supporting 
an anti-inflammatory role of IL-6 (44).

Acute administration of IL-6 was shown to stimulate fat 
metabolism vs. glucose metabolism in skeletal muscle in healthy  
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subjects (45). However, in a study in T2D subjects, IL-6 admin-
istration had no effect on insulin-stimulated glucose metabolism 
(46). Nevertheless, in this study as well as in several other studies 
performed in healthy volunteers (34, 35, 43, 47, 48) or T2D 
patients (34, 47), IL-6 infusion induced a significant decrease 
in circulating insulin, concomitantly with increases in lipoly-
sis, without impacting glycemia or glucose uptake or release. 
Emerging preclinical research shows that IL-6 signaling follow-
ing exercise increases glucose-transporter 4 (GLUT-4) expres-
sion resulting in increased insulin sensitivity (49). Altogether, 
these data suggest that, in addition to its activities on lipolysis, 
transient IL-6 might decrease insulin secretion and improve 
glycemia but not necessarily through a direct effect on glucose 
uptake but rather potentially through indirect mechanisms sec-
ondary to increased insulin sensitivity. It is important to note that 
these referenced studies all utilized a dosing paradigm designed 
to mimic the transient, pulsatile, and moderate elevation of IL-6 
blood concentration (10–100 pg/mL) that occurs during exercise.  
In contrast, low-level chronically elevated circulating IL-6 
(2–3 pg/mL) has been reported to be associated with an increased 
risk of developing diabetes and is reviewed elsewhere (33, 50, 51).

Of interest, T2D patients exhibit lower levels of exercise-
induced IL-6 as compared to healthy individuals, suggesting 
that exercise does not fully activate repair mechanisms in these 
patients (42). It is therefore likely that exercise in T2D patients 
might exhibit reduced beneficial effects in regards to inflamma-
tion, glucose metabolism, and nerve regeneration than in healthy 
subjects. As more work is being performed to unravel the com-
plexities of IL-6 signaling in the pre-diabetic and diabetic states, 
this seeming paradox of displaying both beneficial (when dosed 
to mimic exercise-induced IL-6) and detrimental (chronically 
elevated) effects may be better understood. Preclinical research 
in rodent DPN models utilizing a dosing strategy to reproduce 
IL-6 kinetics seen during exercise is beginning to shed some light 
on this topic.

PReCLiniCAL STUDieS: iL-6 
ADMiniSTRATiOn in RODenT MODeLS 
OF DiABeTiC neUROPATHieS

The most widely used model of diabetic neuropathy is the 
streptozotocin (STZ)-induced rat model that displays decreased 
nerve blood flow, decreased nerve conduction velocity, and axonal 
degeneration of both sensory and motor fibers (52, 53), all patho-
logical hallmarks of DPN. In the first study using the STZ model 
to investigate IL-6 as a treatment investigators compared various 
treatment regimens [subcutaneous vs. intra-peritoneal; daily, 
three times in a week (TIW) or weekly injections] of 1, 10, and 
30 µg/kg body weight of recombinant glycosylated human IL-6 
in young rats. For all regimens, IL-6 treatment dose-dependently 
improved muscle action potential (motor function), sensory 
nerve conduction velocity, IENF density, nerve fiber morphology 
(myelin thickness of sciatic nerve), and tail-flick latency. Shortly 
after, another group published similar findings, whereby IL-6 treat-
ment improved DPN in an adult rat STZ model. Subcutaneous 
injection of IL-6 (1, 3, and 10  µg/kg TIW) improved several 

measures of nerve dysfunction including sensory and motor 
nerve conduction velocity, thermal hyperalgesia, tactile allodynia 
measures, and sciatic nerve endoneurial blood perfusion in a 
dose-dependent manner (54). This study reported an additional 
mechanism—vasodilation of the vasa nervorum, through which 
IL-6 may be signaling to restore nerve function.

The discovery that acute low-dose subcutaneous admin-
istration (1, 3, and 10  µg/kg TIW) of exogenous IL-6-induced 
improvements in nerve conduction and endoneurial perfusion 
were mechanistically expanded upon in subsequent studies (55). 
To uncover the mechanism through which IL-6 was signaling to 
trigger vasodilation, authors investigated the nitric oxide (NO) 
system in autonomic and vascular regulation as potential mecha-
nistic targets of IL-6. Authors reported that IL-6 effects were not 
linked to NO signaling in either autonomic or vascular function, 
and hypothesized that improved neurovascular function may 
be mediated through the endothelium-derived hyperpolarizing 
(EDH) factor system (55). While there is no direct evidence to 
support this hypothesis, the authors offer support by citing a 
reference reporting that the cytokine leukemia inhibitory factor 
(LIF), closely related to IL-6, induced endothelium-mediated 
vasodilation (56). Knowing that 5′-AMP-activated protein 
kinase (AMPK) substantially mediates EDH response (57, 58) 
and that IL-6 stimulates AMPK activity (59–61), it might also be 
hypothesized that IL-6’s effects on microvessel dilation is medi-
ated through AMPK activation.

In summary, to date, three preclinical studies have been 
conducted to evaluate the potential use of IL-6 as a treatment 
for DPN in rodent diabetic models (T2D). All three studies 
reported that IL-6 treatment resulted in improved or normalized 
nerve function and/or morphology. While none of these stud-
ies reported the corresponding plasma levels of IL-6 following 
administration, there are literature reports to establish normal 
rat plasma IL-6 levels to be 50–100 pg/mL (62–64), and after a 
single intraperitoneal injection of 25  µg/kg plasma IL-6 levels 
peaked at ~5,500  pg/mL dropping off to near baseline within 
4 h (65). Taken together, the data demonstrate a transient 50- to 
100-fold increase in IL-6 following a single dose administration 
may represent therapeutic range. It is important to note that 
elevated IL-6 levels in the STZ model associated with increased 
inflammation/pathological outcomes have also been reported 
(66–69). However, these reports are not directly investigating 
how exogenous pulsatile application of IL-6 affects diabetes 
symptoms, rather providing correlative findings, and as such are 
not discussed herein.

Interestingly, similar results were obtained with low-dose IL-6 
treatment on chemotherapy-induced neuropathy models (70), 
highlighting that in addition to metabolic targets, IL-6 also exerts 
neuroprotective effects on nerve cells outside of the diabetic 
milieu. Other members of the IL-6 family of cytokines that share 
gp130 as a common signal transduction element, such as ciliary 
neurotrophic factor, LIF, and cardiotrophin-1 have also been stud-
ied as potential nerve protectant agents (71–76). While there is a 
growing body of support, the exact mechanisms of IL-6-induced 
improvements remain unknown. Given the ubiquitous nature of 
IL-6 expression, it seems likely that the underlying mechanisms 
driving protection and repair of peripheral nerves in DPN are 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


4

Cox et al. Low-Dose IL-6 As Treatment Option for DPN

Frontiers in Endocrinology | www.frontiersin.org May 2017 | Volume 8 | Article 89

multifactorial and act synergistically. To begin exploring some of 
these potential mechanisms, Schwann and nerve cell responses  
to IL-6 are presented.

iL-6 AnD SCHwAnn CeLLS: 
STiMULATinG ReMYeLinATiOn

Schwann cells, the myelin-producing cells of the peripheral 
nervous system, are integral to the healthy function of peripheral 
nerves. There is a growing body of literature investigating the role 
of IL-6 on Schwann cells and myelin expression. Expression stud-
ies in rat have shown IL-6 receptor alpha (IL-6Rα) expression in 
myelinating Schwann cells at the nodes of Ranvier, and in distinct 
membrane domains of the internodal cytoplasm (77). This expres-
sion pattern suggests that IL-6 may play a role in the maintenance 
between the myelinating Schwann cell and underlying nerve axon. 
Additionally, IL-6Rα expression is upregulated in response to 
sciatic nerve injury, in particular during the remyelination phase 

of injury, suggesting a role in the regenerative phase (77). One 
function of early secretion of IL-6 by denervated Schwann cells 
is to favor monocyte recruitment, probably via LIF regulation, 
to clear axon and myelin debris, a key prerequisite to successful 
regeneration (78). Indeed, given studies in STZ-induced diabetic 
models have shown that delayed Wallerian degeneration is related 
to impaired axonal regeneration (79, 80), it may be inferred that in 
the diabetic state a lack of sufficient IL-6 signaling in Schwann cells 
may serve to delay Wallerian degeneration, thus further impairing 
nerve regeneration. In cultured rat Schwann cells, IL-6 upregu-
lates genes for abundant low molecular weight glycoproteins in 
myelin such as myelin basic protein (MBP), peripheral myelin 
protein P0 (81, 82) or peripheral myelin protein 22 (pmp22) via 
a JAK2-dependent pathway (83). Administration of IL-6/IL-6R 
fusion protein following nerve transection increased myelinated 
nerve fiber regrowth by fourfold (82).

In vitro models that support the approach of targeting human 
Schwann cell dysfunction in DPN have also been conducted.  

FiGURe 1 | Therapeutic targets of interleukin-6 (iL-6) in diabetic peripheral neuropathy (DPn). Exogenous administration of low-dose IL-6 to treat 
DPN  may be beneficial due to (1) increased insulin sensitivity in muscle (49), (2) decreased systemic inflammation (43, 44), (3) increased remyelination of  
axons (81–83), (4) increased nerve regeneration (96–98), (5) increased lipolysis (47, 48), and (6) decreased insulin secretion (34, 47).
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In a human Schwann cell culture model, BDNF treatment results 
in IL-6 secretion that is associated with JAK/STAT pathway 
activation and nerve regeneration (84). Additionally, it was 
reported that in hyperglycemic conditions, the expression of 
Na+ channel beta3 subunit in Schwann cells decreased, and 
treatment with IL-6 restored normal levels of beta3 subunit  
(85). In summary, Schwann cells, which display pathological 
microstructural changes in T2D may represent an integral target 
of IL-6 signaling (86, 87). In the DPN setting, application of 
exogenous IL-6 may promote remyelination of injured peripheral  
nerves by Schwann cells with subsequent improvements in nerve 
function.

iL-6 AnD neRve CeLLS: STiMULATinG 
ReGeneRATiOn

Interleukin-6 is the founder cytokine of the neuropoietin family,  
is produced by both neurons and glia, and signals as a neuro-
cytokine during both injury and regeneration states (88). IL-6 
expression is generally restricted to traumatic conditions and 
provides temporary trophic support to induce repair response. 
A large body of evidence supports the role of gp130 cytokines 
(including IL-6) in preconditioning and triggering neuro-
reparative responses (89). IL-6Rα and IL-6 signaling have also 
been linked to mediating chloride concentration rise in sensory 
neurons, a prerequisite to trigger nerve regeneration following 
injury, through phosphorylation of the cation-chloride cotrans-
porter NKCC1 (90).

The ability of IL-6 to induce axonal regeneration has been 
demonstrated in many central nervous system paradigms even 
those highly refractory to neurite outgrowth (91, 92). IL-6, 
IL-6Rα, and gp130 mRNA are rapidly upregulated in peripheral 
nerves following injury (93–95). Studies using both in vitro and 
in vivo systems show that IL-6 can induce expression of growth-
associated protein 43 (GAP-43), a protein involved in neurite 
pathfinding and neuronal network formation (96–98). IL-6 has 
been shown to act as a neurotrophin-enhancing cell viability 
and proliferation in a neuroblastoma cell line (99). In PC12 cells, 
IL-6/IL-6R fusion protein induced pituitary adenylate cyclase-
activating polypeptide (PACAP), a strong inducer of neurite 
outgrowth (100). Surprisingly, PACAP produces cyclic AMP that, 
in turn, induces IL-6 transcription (101). One could imagine that 
such feedback mechanisms would lead to constitutively activated 
neurite outgrowth pathway; however, none of the studies using 
IL-6 transgenic mice report hyper-innervation. This positive 
retro-feedback is likely dampened by the negative feedback on 
IL-6 signaling mediated by SOCS3 (102).

Experiments using transgenic or knock-out (KO) mice 
con firmed the role of IL-6 in regulating nerve regeneration. 
Transgenic mouse models over-expressing human IL-6 and IL-6R 
show enhanced transection nerve regeneration (103). In a study 
where a preconditioning injury was performed on the sciatic 
nerve to stimulate IL-6-induced GAP-43 upregulation prior to 
injury, nerve regeneration following a subsequent crush injury 
was enhanced and the response blunted in IL-6 KO mice (97). 
IL-6 deficient mice display impaired sensory function (reduced 
amplitude of sensory action potentials and reduced temperature 

sensitivity) and impaired regeneration following sciatic crush 
injury as compared to wild-type controls (104), suggesting the 
important role of IL-6 in regeneration.

In summary, IL-6 signaling in an injury setting has been 
reported to induce nerve regeneration in numerous models, 
highlighting its neuro-regenerative properties. While diabetic 
neuropathies would not be considered as a traumatic pathology 
per se, a link of dysregulation of IL-6 production in nerve cells as 
a potential mediator of diabetic neuropathy has been suggested 
before (105). Altogether these data suggest a therapeutic opportu-
nity for enhancing nerve regeneration with IL-6 treatment.

COnCLUSiOn

Diabetic peripheral neuropathy remains one of the most common, 
serious, and potentially life-threatening complication of diabetes. 
Currently, there are no treatment options available to halt disease 
progression or restore nerve function in either DPN or autonomic 
neuropathy—a significant need remains. The multifunctional 
cytokine IL-6 has emerged as a potential therapeutic agent. While 
IL-6 is perhaps most classically known as a pro-inflammatory 
cytokine signaling in the immune system, research findings now 
support IL-6’s role as a myokine and neurocytokine capable of 
eliciting anti-inflammatory and regenerative responses. The acute 
exogenous administration of low-dose IL-6, dosed to mirror 
exercise-induced IL-6 kinetics, has shown significant protection 
and restoration of peripheral nerves in preclinical DPN models.  
A low-dose, pulsatile method of administering recombinant 
human IL-6 (Atexakin® Alfa) is currently being developed, to 
continue investigating IL-6’s neuroprotective and regenerative 
capacity in the DPN setting. While the exact molecular mecha-
nisms governing the effects are yet to be completely elucidated, 
it can be easily argued that IL-6 most likely elicits multiple ben-
eficial effects across numerous cell and tissue types (Figure 1). 
This multi-targeted approach may prove to be highly efficacious 
in the complex setting of DPN.
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