
Review Article
Metabolism: A Novel Shared Link between Diabetes Mellitus and
Alzheimer’s Disease

Yanan Sun,1 Cao Ma,1,2 Hui Sun,1 Huan Wang,1 Wei Peng,1,3 Zibo Zhou,1,3

Hongwei Wang,1,3 Chenchen Pi,1,4 Yingai Shi,1 and Xu He 1

1Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University,
Changchun 130021, China
2Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
3Department of Clinical Medicine, Jilin University, Changchun 130021, China
4The First Hospital, Jilin University, Changchun, Jilin 130021, China

Correspondence should be addressed to Xu He; hexu@jlu.edu.cn

Received 24 October 2019; Revised 29 December 2019; Accepted 14 January 2020; Published 30 January 2020

Academic Editor: Hiroshi Okamoto

Copyright © 2020 Yanan Sun et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As a chronic metabolic disease, diabetes mellitus (DM) is broadly characterized by elevated levels of blood glucose. Novel
epidemiological studies demonstrate that some diabetic patients have an increased risk of developing dementia compared with
healthy individuals. Alzheimer’s disease (AD) is the most frequent cause of dementia and leads to major progressive deficits in
memory and cognitive function. Multiple studies have identified an increased risk for AD in some diabetic populations, but it is
still unclear which diabetic patients will develop dementia and which biological characteristics can predict cognitive decline.
Although few mechanistic metabolic studies have shown clear pathophysiological links between DM and AD, there are several
plausible ways this may occur. Since AD has many characteristics in common with impaired insulin signaling pathways, AD can
be regarded as a metabolic disease. We conclude from the published literature that the body’s diabetic status under certain
circumstances such as metabolic abnormalities can increase the incidence of AD by affecting glucose transport to the brain and
reducing glucose metabolism. Furthermore, due to its plentiful lipid content and high energy requirement, the brain’s
metabolism places great demands on mitochondria. Thus, the brain may be more susceptible to oxidative damage than the rest
of the body. Emerging evidence suggests that both oxidative stress and mitochondrial dysfunction are related to amyloid-β (Aβ)
pathology. Protein changes in the unfolded protein response or endoplasmic reticulum stress can regulate Aβ production and
are closely associated with tau protein pathology. Altogether, metabolic disorders including glucose/lipid metabolism, oxidative
stress, mitochondrial dysfunction, and protein changes caused by DM are associated with an impaired insulin signal pathway.
These metabolic factors could increase the prevalence of AD in diabetic patients via the promotion of Aβ pathology.

1. Introduction

As a chronic metabolic disease, diabetes mellitus (DM) is
one of the most important public health challenges in the
21st century. DM is broadly characterized by elevated levels
of blood glucose, mainly caused by insufficient insulin pro-
duction or unresponsiveness of the body to insulin. Accord-
ing to the latest data from the International Diabetes
Federation (IDF, https://www.diabetesatlas.org/), there are
425 million people with diabetes in the world, and one in
11 adults worldwide is diagnosed as having DM. By 2045,

the number of people with DM is expected to increase to
629 million. Recent epidemiological studies have shown
that some diabetic patients are more susceptible to demen-
tia than healthy individuals [1–4]. In addition, mounting
statistical and biological data support a correlation between
DM and dementia [5–9], which may share common cellular
and molecular mechanisms.

Based on a recent report from the World Health Organi-
zation (WHO), approximately 50 million people worldwide
have dementia. Although there are over 100 types of demen-
tia, the most well-known form is Alzheimer’s disease (AD),
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which accounts for 50%-75% of all cases. AD can damage
cells and nerves interrupting the transmitters that convey
information in the brain, particularly those responsible for
memory storage. Generally, gradual memory loss is the first
symptom of AD, but other signs include difficulty in finding
the right word, correctly identifying other people, and solving
problems [10–12]. In addition, the majority of AD cases fre-
quently suffer from multiple complications (e.g., DM, other
neurodegenerative disorders, cardiovascular diseases, and
renal diseases). These comorbidities can enhance the com-
plexity that underlies AD pathogenesis [13–15].

Until recently, studies have suggested that these compli-
cations may be associated with AD pathogenesis and mem-
ory loss [16–18]. Among the various complications, DM
has been shown to be the most influential in the development
of AD [13, 14]. Epidemiological studies of AD in diabetic
patients from the past decade are shown in Table 1. From
these data, we conclude that high AD prevalence in some dia-
betic populations may be related to insulin resistance and
metabolic abnormalities. However, not all individuals with
DM develop dementia, and not all dementia cases have
DM. DM and AD are two independent metabolic diseases,
and both of them are associated with disturbed energy
metabolism in the body. Therefore, we speculate that the
increased risk of AD in diabetic patients may be partially
attributed to metabolic abnormalities. As one of the most
basic features of an organism, energy metabolism is a reactive
steady-state system that satisfies the energy demands of tis-
sues and organs [19]. Improved understanding of the meta-
bolic associations between DM and AD might provide
novel insight into the onset and relationship between both
diseases and may at least partly explain the causality.

2. Impaired Insulin Signaling Pathway: The
Pathogenesis of AD

Insulin, a peptide hormone produced by the beta cells of the
pancreatic islets, is the main anabolic hormone of the body
and can regulate the metabolism of carbohydrates, lipids,
and proteins. The first step in triggering the insulin signaling
pathway is insulin recognizing and binding to a transmem-
brane tyrosine kinase receptor. This receptor (insulin recep-
tor (IR)) results in the tyrosine phosphorylation of insulin
receptor substrates (IRS) by the insulin receptor tyrosine
kinase (INSR), thereby blocking downstream signaling path-
ways such as the phosphatidylinositol 3-kinase/protein
kinase B (PI3K/AKT) pathway. The PI3K/AKT pathway fur-
ther regulates a number of downstream signaling pathways
important for protein synthesis and amyloid-β (Aβ) clear-
ance (i.e., through mammalian target of rapamycin (mTOR)
signaling) [20]. This pathway also affects the activity of glyco-
gen synthase kinase-3 (GSK-3β), a major tau phosphorylat-
ing kinase and crucial glycogen synthase, which can
modulate tau expression [21–23]. In addition, an impaired
insulin signaling pathway, Aβ deposition, and mitochondrial
dysfunction can interact reciprocally to form a vicious circle.
This may explain why diabetic patients are susceptible to AD
(Figure 1).

Similar to most organs in the body, the brain is an
insulin-sensitive organ, where insulin signaling regulates
energy metabolism, cell survival, and cellular homeostasis.
Due to its neuroprotective function [24, 25], insulin is bene-
ficial for neuronal growth and survival [26–28]. Over the past
few years, accumulating data indicate that insulin regulates
the concentration of several neurotransmitters that have
essential roles in memory formation, such as acetylcholine,
norepinephrine, and epinephrine [29]. Insulin also supports
neuronal plasticity and cholinergic functions, which are
required for learning, memory, and myelin maintenance.
Moreover, damaged insulin signaling in the brain can greatly
affect cognitive impairment and neurodegeneration, particu-
larly mild cognitive impairment and AD [30]. Collectively,
these observations suggest that insulin is a protective factor
for brain function, and insulin signaling is an important
pathway in the prevention of cognitive decline.

Aβ is the main component of senile plaques (SPs), which
are one of the histopathological markers of AD, and has a
vital influence on the progression of neurodegenerative dis-
eases [31]. A previous work has found that pre-proinsulin
mRNAs and insulin protein levels are significantly decreased
by Aβ-stimulation in astrocytes [32]. Recent postmortem
analyses also support the idea that insulin signaling is
impaired in AD brains [33, 34]. Furthermore, deficient insu-
lin signals have been observed in mammalian models of AD,
in which Aβ is overexpressed or induced by an intracerebral
injection [33, 35]. Aβ can also competitively inhibit insulin
binding to the IR, which results in the loss of membrane insu-
lin receptors. This is an important contributor to synaptic
and dendritic spine damage [36], although there are other
factors that contribute to synaptic dysfunction in AD such
as oxidative stress, tau phosphorylation, and lipid peroxida-
tion [37–39]. Taken together, these data suggest that Aβ
pathology could contribute to insulin signaling destruction
and that insulin signaling may be a potential target for the
prevention and treatment of AD.

3. Glucose Metabolism Disorder Is a Potential
Factor for AD in Diabetic Patients

Compared with energy demand, brain energy storage is lim-
ited, and reduced oxygen or glucose availability diminishes
brain function. In addition to stored energy, the brain is
highly dependent on the glucose supply from the blood, but
glucose metabolism in AD is dramatically decreased. This is
likely due in part to enzymes involved in glycolysis, the tri-
carboxylic acid cycle, and ATP biosynthesis [40]. Thus, glu-
cose content may be a reflection of neuronal function, and
the ratio of glucose utilization can be used to observe changes
of brain activity in various neurodegenerative diseases.

As an important participant in brain compensation for
excessive glucose utilization, brain glycogen metabolism
functions to guarantee brain energy and neurotransmitter
metabolism. In human and rodent studies, DM affected gly-
cogen content in various brain regions [41]. Compared with
that of healthy people, the glycogen content in the occipital
lobe of patients with type I DM (T1D) is significantly reduced
[42], as is GSK-3β, which is a crucial enzyme in glycogen
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synthesis [23]. Moreover, DM can promote glucose transpor-
tation by increasing the permeability of the blood-brain bar-
rier (BBB). In some brain regions, insulin is sensitive to
glucose transport proteins (GLUT), such as GLUT4 and
GLUT8 [43, 44], and phosphorylation events initiated by
insulin signaling are able to regulate GLUT4 transporters
[45]. In diabetic animal models, glycolytic ability and
acetyl-CoA activity were reduced [41, 46], which contributed
to mitochondrial dysfunction by decreasing ATP production
and promoting reactive oxygen species (ROS)/reactive nitro-
gen species (RNS) formation (Figure 1). Apolipoprotein E
(APOE) is a multifunctional protein with central roles in
lipid metabolism, neurobiology, and neurodegenerative dis-
eases. Neuropathological data and clinical trials [47] have
shown that the correlation between DM and AD is particu-
larly strong in individuals carrying the APOE4 allele. Indi-
viduals with the APOE4 allele also have lower glucose
metabolism in the posterior cingulate, precuneus, and/or lat-
eral parietal regions [48]. Accordingly, diabetic patients with
anomalous glucose content and metabolic pathways in the
brain have an increased risk of AD.

A variety of preclinical models have shown that energy
metabolism is closely related to the pathological development
of AD. DM can cause glucose transport disorders and meta-
bolic abnormalities in the body, which can in turn lead to
cognitive dysfunction. Therefore, therapeutic strategies to

reduce the incidence of AD in diabetic patients should focus
on controlling glycemic levels or restoring glucose metabo-
lism. This may also be beneficial in preventive measures
designed to delay and slow AD onset and progression.

4. Mitochondrial Dysfunction and Oxidative
Stress Are Relevant to the Occurrence and
Development of AD in Diabetic Patients

Mitochondria have important physiological functions in the
body, including oxidative respiration, energy metabolism,
free radical production, and apoptosis [49, 50]. Many stud-
ies have shown that mitochondria play an essential role in
delaying aging and preventing neurodegenerative diseases
[51]. However, due to the abundant energy demand of
the brain, it is much more vulnerable to mitochondrial dys-
function [52]. Many studies have further shown that mito-
chondrial dysfunction is indispensable in the pathogenesis
of various diseases such as DM and neurodegenerative dis-
orders [51, 53]. Moreover, oxidative phosphorylation cre-
ates ROS as a by-product, which may damage different
types of molecules and further increase oxidative stress.
Oxidative stress is closely associated with age-related dis-
eases [52], and therefore, mitochondria can be both danger-
ous and beneficial.

Table 1: Summary of epidemiological research on DM and AD in recent ten years.

Year Country
Effective

sample size
Case definition

Underlying mechanisms Reference
DM AD/dementia

2009 Sweden 1248

Being recorded in the inpatient register
system, or use of hypoglycemic drugs, or
a random blood glucose level ≥ 11:0

mmol/l at baseline (or HbA1c
level ≥ 6:4% at second and third follow-

up examinations)

Diagnostic and Statistical
Manual of Mental

Disorders, revised third
edition criteria

Glucose dysregulation [140]

2010 Japan 135
Glucose tolerance test and diabetes-

related factors

The Consortium to
Establish a Registry for
Alzheimer's Disease

guidelines and the Braak
stage

Insulin resistance [141]

2011 America 29
American Diabetes Association glycemic

criteria for pre-diabetes
Petersen criteria for mild
cognitive impairment

Insulin resistance [142]

2011 China 25393

At least 2 records of DM within one year
during 2000–2007 or who had used

either sulfonylureas or metformin as oral
antidiabetic medication for more than

three months

At least 2 records of a
diagnosis of dementia

within any 1 year during
2000–2007

Oral antidiabetic drugs
could decrease the

incidence of dementia in
T2DM patients

[143]

2013 Japan 175
The Expert Committee on the Diagnosis
and Classification of Diabetes Mellitus

The Diagnostic and
Statistical Manual of

Mental Disorders, revised
3rd edition

DM-related metabolic
abnormalities

[4]

2017 Israel 363
The American Diabetes Association

classification

The Diagnostic and
Statistical Manual of

Mental Disorders, fourth
edition criteria

Insulin resistance [144]

2019
Mexican
American

69 Self-reported, HbA1c > 6% Neuropsychological tests
Cell-free mitochondrial

DNA
[145]
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Dysfunctional mitochondria are less efficient in produc-
ing ATP, but more efficient in generating ROS, which could
represent a primary cause of the oxidative imbalance
observed in AD [54, 55]. It has been demonstrated that the
imbalance of mitochondrial division and fusion may give rise
to excessive ROS production, dissipation of membrane
potential, deficiency in cellular respiratory function, and
decreased ATP production [56]. A large amount of ROS will
result in a series of common AD pathological alterations,
such as oxidative damage of proteins, carbohydrates, and
lipids. Nishikawa et al. have shown that increased mitochon-
drial oxidative stress and ROS production can occur under
hyperglycemic conditions [57]. Dysregulated mitochondria
can contribute to calcium dyshomeostasis and cause apopto-
sis and memory impairment [56, 58, 59]. In addition, the
accumulation of mtDNA mutations is one reason for elec-
tron transport chain abnormalities, which may affect ATP
production, destroy brain function, and facilitate the AD
occurrence [56, 58, 59]. These mtDNA mutations have been
detected in type II diabetes (T2D) patients, while mitochon-
drial genes are often missing in pancreatic β cells in T2D ani-
mal models [60]. Proteins such as peroxisome proliferator-
activated receptor gamma coactivator 1α (PGC-1α), nuclear
respiratory factor 1 (NRF1), nuclear respiratory factor 2
(NRF2), and mitochondrial transcription factor A (TFAM)
are involved in mitochondrial biosynthesis and are also
strongly related to neurodegenerative disorders [61]. With
AD initiation, the expression levels of these genes were
downregulated and mitochondrial biosynthesis decreased
conspicuously [61]. This suggests that disruption and regula-

tion of mitochondrial biosynthesis may be a target for AD
treatment. Moreover, PGC-1α and PINK1 can decrease
the peroxidation of mitochondrial fatty acids and have been
found to be significantly reduced in the hippocampus of
AD patients and diabetic mice [62]. These data indicate
that PGC-1α and PINK1 are essential factors in the modu-
lation of mitochondrial function in the brain, which might
be an underlying mechanism in diabetic patients’ vulnera-
bility to AD.

As a destructive factor, oxidative stress occurs when cel-
lular metabolic activity is greater than antioxidant capacity
or when the amount of free radicals (including ROS and
RNS) production/accumulation is too large to be removed.
The levels of ROS and RNS were obviously elevated in
patients of DM and AD [53, 63, 64], indicating that oxidative
stress may be a connection between both diseases. Oxidized
proteins/lipids are increased in the brain of AD patients,
and there is also evidence that oxidative damage can occur
in the early stages of patients with moderate cognitive
impairment [58, 65, 66]. Impairment of the respiratory chain,
which is associated with oxidative stress and malfunctioning
mitochondria, is a typical characteristic of streptozotocin-
(STZ-) treated rat brains [67]. In line with this, respiratio-
n/oxygen consumption is decreased in the brain mitochon-
dria of male STZ diabetic rats [68]. In diabetic rats induced
by STZ, thiobarbituric acid reactive species (TBARS) levels
were significantly elevated in the hippocampus, while the
level of superoxide dismutase (SOD) was markedly downreg-
ulated. This was also accompanied by a reduction in mtDNA
content and oxidative respiratory chain proteins [54]. Ceretta
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Figure 1: Overview of the insulin signaling pathway and relevant mechanisms implicated in AD. (a) Tyrosine phosphorylation of insulin
receptor substrates (IRS) allows the association of IRSs with the regulatory subunit of phosphoinositide 3-kinase (PI3K). The PI3K/AKT
signaling pathway deactivates glycogen synthase kinase 3 (GSK-3), leading to the activation of glycogen synthase (GYS) and thus glycogen
synthesis. In addition, the PI3K/AKT signaling pathway can affect protein synthesis/metabolism and clearance of Aβ by activating the
mTOR pathway. (b) The insulin/insulin signaling pathway can promote glucose transportation by regulating GLUT, and high levels of
glucose can lead to Aβ deposition. (c) Disordered glucose metabolism leads to ROS/RNS formation and decreased ATP production, which
is the main manifestation of oxidative stress. Mitochondrial dysfunction can lead to impaired cellular energy production and reduction in
insulin secretion and sensitivity. (d) Impaired insulin signaling pathway, Aβ deposition, and mitochondrial dysfunction promote each
other to form a vicious circle.
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et al. also found that diabetic rats had an increased level of
superoxide, protein oxidation, and TBARS production in
some brain regions, while SOD activity was decreased in
the striatum and amygdala [54]. Similarly, the activity of
superoxide dismutase, catalase, or glutathione peroxidase is
often decreased in diabetic brains [69–72]. The resulting
excessive oxidative stress may trigger the discharge of cyto-
chrome C and activate the prodeath apoptotic cascade, which
in turn promotes mitochondrial dysregulation [73]. Collec-
tively, these data indicate that oxidative stress arises in the
brain and that oxidation products are significantly increased
in diabetes models.

Taken together, the above results indicate that the mito-
chondria in diabetic patients and models represent an imbal-
ance between oxidation and antioxidant capacity. This
further exacerbates oxidative stress, disrupts mitochondrial
dynamics (fission and fusion) and biological functions, and
causes mtDNA mutations. All of these events can result in
an insufficient energy supply and reduced antioxidant enzyme
activities in the brain area, which eventually increases the
risk of cognitive dysfunction and memory defects. In gen-
eral, DM can aggravate mitochondrial dysfunction and
oxidative stress in memory- and cognition-related brain
regions, which might be the common underlying mecha-
nism to these diseases.

5. Abnormal Lipid Metabolism: A Key
Feature of Neurodegeneration That Is
Exacerbated by DM

Lipids are abundant in the brain, particularly glyceropho-
spholipids, sphingolipids, and cholesterol. It has been dem-
onstrated that lipid oxidation products are at high levels in
tissues derived from aged mice [74, 75]. In one study of post-
mortem AD brains, “adipose inclusions” or “lipid granules”
could be found [76]. Physiological and epidemiological
investigations have also confirmed that cholesterol metabo-
lism, inflammation, and innate immunity are closely associ-
ated with AD [77]. In neurons and other cell types,
oligomeric Aβ peptides can alter cellular cholesterol metabo-
lism [78]. This is significant as obesity and dyslipidemia are
the main risk factors for T2D, accompanied by increased
central adiposity, elevated triglycerides and low-density lipo-
protein cholesterol (LDL-C), and reduced high-density lipo-
protein cholesterol (HDL-C) [79]. Thus, abnormal lipid
metabolism is an overlapping feature of both DM and AD.

Lipids, especially cholesterol, have been discussed at
length in the context of neurodegenerative diseases. Distur-
bance of cholesterol metabolism in the brain is correlated
with aging and neurodegenerative diseases such as AD [80].
Cholesterol in the brain is essential for synapse and dendrite
formation, as well as axonal guidance [81–83]. However,
the BBB can effectively prevent the exchange of substances
such as peripheral cholesterol between brain tissue and
plasma lipoproteins [84]. Individuals with diabetes often
have hyperlipidemia, which can destroy the integrity of the
BBB and increase its permeability. As peripheral cholesterol
enters into the brain, cholesterol metabolism disorders occur

[83]. In addition, hypercholesterolemia can promote Aβ
pathology in the brains of many AD patients and further
cause oxidative stress, giving rise to mitochondrial dysfunc-
tion and structural damage via lipid peroxidation [85–89].
Increased inflammation has been found in the brains of dia-
betic mice fed a high-fat diet and may be associated with
upregulation of Aβ and phosphorylated tau (p-tau) [85]. In
a study performed by Vandal et al., high-fat diets led to glu-
cose intolerance, increased soluble Aβ, and memory impair-
ment in 3xTg-AD mice. Strikingly, the authors also found
that a single insulin injection reversed the deleterious effects
of high-fat diets on memory and soluble Aβ levels, partly
through changes in Aβ production and clearance. In addi-
tion, the APOE4 allele has been shown to increase the risk
of AD in diabetic patients by selectively binding to the Aβ
peptide and modulating its aggregation and clearance [90–
93]. As such, the results from preclinical assessments and
experimental research of AD and DM models support a cru-
cial role for lipid metabolism in the pathogenesis of both
diseases.

In addition to cholesterol, fatty acids have been inten-
sively studied in DM and other metabolic diseases, including
neurodegenerative diseases. The plasma level of free fatty
acids in STZ-induced diabetic rats was significantly higher
than that in the control group [89], which is consistent with
findings of other diabetic models [94, 95]. However,
increased free fatty acids can impair the function of the cen-
tral nervous system [88]. In addition, AD patients with differ-
ent levels of memory loss also showed different degrees of
metabolic disorders of fatty acids [96]. Consequently, we
can conclude that lipid metabolism is a shared link between
DM and AD, as well as provides a plausible molecular basis
for the pathogenesis, diagnosis, and treatment of diabetic
patients who are prone to dementia.

6. Protein Changes in AD and DM

Protein oxidative damage can at least partially explain a wide
range of age-related diseases, including metabolic disorders
such as DM and obesity, cardiovascular complications such
as atherosclerosis, and neurodegenerative disorders such as
AD [97]. As a global disease, DM not only is characterized
by elevated blood glucose and blood lipid levels but also dis-
plays a protein metabolic disorder, which is primarily caused
by the absolute or relative deficiency in insulin secretion [98].
Insulin can promote protein synthesis and inhibit protein
decomposition [99], and increased insulin and insulin-like
growth factor 1 (IGF1) levels in the serum can improve the
protein metabolism (Figure 1). Compared with that in a nor-
mal group, protein catabolism in diabetic models was signif-
icantly ameliorated, while protein synthesis and the mRNA
expression of the IR, IGF1, and IGF1 receptor (IGF1R) were
markedly decreased [100]. In addition, the branched-chain
amino acids (BCAAs), leucine, isoleucine, and their related
metabolites were positively associated with insulin resistance.

Protein accumulation in an aggregated form is a common
feature of neurodegenerative disorders. These proteins also
tend to aggregate in compartments that differ from the com-
partments where they are localized under physiological
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conditions. Over the last decade, many studies have demon-
strated that the unfolded protein response (UPR) markers
such as binding immunoglobulin protein (BIP), phosphory-
lated- (p-) protein kinase double-stranded RNA-dependent
(PKR)-like the endoplasmic reticulum (ER) kinase (PERK),
p-inositol-requiring enzyme (IRE), and eukaryotic initiation
factor 2α (p-eIF2α) were elevated in the most severely
affected tissues of AD patients [101–103]. The most widely
studied arm of the UPR response is the PERK-eIF2α axis.
This axis can facilitate Aβ production and take part in the
regulation of synaptic plasticity [104]. UPR and ER stress
markers such as nuclear factor-κB (NF-κB) target genes,
C/EBP homologous protein (CHOP), and immunoglobulin
heavy chain (BIP) in inflamed islets of both diabetic mice
and patients with autoimmune diabetes were increased
[105, 106]. In addition, elevated UPR or ER stress markers
are also correlated with tau pathology [107]. In addition to
amyloid plaques, neurofibrillary tangles composed of the
microtubule-associated protein tau are another hallmark of
AD. It has been shown that Aβ is upstream of tau in the
AD pathological cascade [108–111]. In AD, tau is massively
phosphorylated, particularly at serine and threonine resi-
dues. Generally, hyperphosphorylated tau in the axon
detaches from the microtubules and passes through the axon
initial segment, which normally acts as a diffusion barrier for
physiologically phosphorylated tau, before accumulating in
neuronal cell body dendrites. This process is partly mediated
by Aβ [112–114]; however, recently, it was shown that Aβ
could directly trigger endogenous tau overexpression via pro-
tein translation and activation of the Fyn/ERK/S6 signaling
pathways in the somatodendritic domain [115]. Recent evi-
dence also suggests that AD-related proteins such as Aβ, islet
amyloid polypeptide (IAPP), or tau could promote diabetic
phenotypes and further exacerbate neurodegeneration [20].

IAPP or amylin is a key feature of T2D pancreatic pathol-
ogy [20, 116]. This hormone is secreted with insulin, and its
regulation begins with food intake [116]. It has demonstrated
that IAPP plays a role in the neurodegenerative process of
AD [117, 118], and similar findings in the brains of diabetic
patients with AD were observed by Fawver et al. [119]. Colo-
calization of IAPP and Aβ in the brain has been observed,
and IAPP can alter microvasculature and tissue structures
in patients with AD [118, 119]. Thus, IAPP provides further
data supporting a connection between AD and T2D.
Although there are notable protein changes in both AD and
DM, whether these changes directly contribute to the preva-
lence of AD in diabetic patients requires further exploration.

7. Metabolism and Aβ Deposition

The common pathological characteristics in DM and AD are
the generation of amyloid peptides (APP) and aggregation of
abnormal proteins such as elevated serine phosphorylation of
IRS-1 levels and activated JNK [33]. Extracellular amyloid
plaques consist of insoluble aggregates of Aβ, which is one
initiator of AD. Growing evidence supports the concept that
a series of changes caused by DM can increase the risk for Aβ
pathology in many AD cases [120–122]. Due to its positive
effects on APP-related gene expression and γ/β secretase,

oxidative stress can promote the pathology of Aβ [89, 123–
125]. In cultured cells, when the concentration of cholesterol
ester is increased, there is a proportional elevation in APP
[126]. It has been shown that Aβ deposition can be seen in
mitochondria and, correspondingly, that Aβ deposition can
lead to dysfunctional mitochondria such as mitochondrial
swelling, mPTPs, and excessive ROS production [127–134].
Therefore, Aβ has a destructive influence on mitochondrial
structure and function. Furthermore, increased levels of Aβ
may be dependent on mitochondrial ROS production, and
antioxidant compounds can impede mitochondrial dysfunc-
tion and reduce Aβ generation [73]. Several mechanisms
have been proposed to support the idea that insulin signaling
dysfunction may lead to Aβ pathogenesis, which can further
impact insulin signaling (Figure 1). This suggests that a self-
perpetuating cycle may become established, further exacer-
bating neurodegeneration [135]. Insulin-degrading enzyme
(IDE), a major enzyme responsible for insulin degradation,
can also degrade other targets such as glucagon, atrial natri-
uretic peptide, and the Aβ peptide and regulate proteasomal
degradation and other cellular functions [136, 137]. It has
been demonstrated that IAPP can interact with Aβ and con-
tribute to Aβ aggregation [138] and conformation [20, 119,
139]. Taken together, a positive feed-forward mechanism
may exist between metabolic abnormalities and Aβ pathol-
ogy, which may be explained by the overlapping crosstalk
between DM and AD.

8. Conclusions and Perspectives

Multiple epidemiological studies have shown an increased
risk of AD in many diabetic patients. As there are many
shared characteristics between impaired insulin signaling
and AD, it is possible that AD is a metabolic disease. Abnor-
mal glucose and lipid metabolism, mitochondrial dysfunc-
tion, oxidative stress, and protein changes resulting from
DM are associated with impaired insulin signaling pathways.
These metabolic factors can increase the prevalence of AD,
mostly by promoting Aβ pathology (Figure 2). Thus, DM is
a risk factor for AD that is likely driven by metabolic alter-
ations that exacerbate brain bioenergetic dysregulation. But
whether these metabolic factors caused by DM are direct
causes or confounders of AD deserves further discussion.
Bioinformatics analysis such as Mendelian randomization
or genome-wide analysis may help explain the causal rela-
tionship between DM and AD. In addition, despite these
commonalities, not all DM patients develop AD and not all
AD patients are diabetic. In this review, we have explored
the overlapping metabolic pathways of DM and AD, which
will provide references and suggestions for the underlying
mechanisms of diabetic patients with AD. In other words,
diabetic patients are more prone to dementia when they have
significant metabolic changes such as increased ROS produc-
tion, abnormal lipid metabolism, and glucose metabolism
disorders. In the future, it will be indispensable to clarify
whether cognitive decline in diabetic patients can be rescued
by adequate metabolic regulation. In addition, it is worth
pursuing a comprehensive and integrated analysis of the
molecular mechanisms controlling metabolic processes in

6 Journal of Diabetes Research



developing and mature neurons, in order to develop novel
therapeutic approaches tailored to the nervous systems of
aged people. Futhermore, the crosstalk between these distinct
but interdependent biological processes is constantly tuned
by shared effectors and regulators. In conclusion, this review
discusses the overlapping pathologies between DM and AD
from the perspective of metabolism and may accelerate the
discovery of new treatments and improve the understanding
of DM and AD pathogenesis and progression. Finally, this
review may provide theoretical support and new targets for
the prevention and treatment of AD in diabetic patients.
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