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Abstract
Measurement of pupil size (pupillometry) has recently gained renewed interest from psychologists, but there is little agreement
on how pupil-size data is best analyzed. Here we focus on one aspect of pupillometric analyses: baseline correction, i.e.,
analyzing changes in pupil size relative to a baseline period. Baseline correction is useful in experiments that investigate the
effect of some experimental manipulation on pupil size. In such experiments, baseline correction improves statistical power by
taking into account random fluctuations in pupil size over time. However, we show that baseline correction can also distort data if
unrealistically small pupil sizes are recorded during the baseline period, which can easily occur due to eye blinks, data loss, or
other distortions. Divisive baseline correction (corrected pupil size = pupil size/baseline) is affected more strongly by such
distortions than subtractive baseline correction (corrected pupil size = pupil size − baseline). We discuss the role of baseline
correction as a part of preprocessing of pupillometric data, and make five recommendations: (1) before baseline correction,
perform data preprocessing to mark missing and invalid data, but assume that some distortions will remain in the data; (2) use
subtractive baseline correction; (3) visually compare your corrected and uncorrected data; (4) be wary of pupil-size effects that
emerge faster than the latency of the pupillary response allows (within ±220 ms after the manipulation that induces the effect);
and (5) remove trials on which baseline pupil size is unrealistically small (indicative of blinks and other distortions).
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Pupil size is a continuous signal: a series of values that indi-
cate how pupil size changes over time. In this sense, pupil-size
data are similar to physiological measures, such as electroen-
cephalography (EEG), which measures electrical brain activ-
ity over time, and it is even more similar to skin conductance,
which (like pupil size) fluctuates slowly and correlates with
arousal (Bradley, Miccoli, Escrig, & Lang, 2008). Pupil size is
different from most behavioral measures, such as response
times, that generally provide only a single value for each trial
of the experiment.

Psychologists are often interested in how pupil size is af-
fected by some experimental manipulation (reviewed in
Beatty & Lucero-Wagoner, 2000; Mathôt & Van der
Stigchel, 2015). To give a classic example, Kahneman and
Beatty (1966) asked participants to remember a varying num-
ber (three to seven) of digits. They found that participants’
pupils dilated (i.e., became larger) when the participants re-
membered seven digits, compared to when they remembered
only three; that is, memory load caused the pupil to dilate
(become bigger).

As was common for pupil-size studies of the time,
Kahneman and Beatty (1966) expressed their results in milli-
meters of pupil diameter; that is, they used absolute pupil-size
values. But expressing pupil size in absolute values has a
disadvantage: It is affected by slow, random fluctuations of
pupil size. These fluctuations are a source of noise that reduce
statistical power and make it more difficult to detect the effects
of interest (in the case of Kahneman& Beatty, 1966, the effect
of memory load). To deal with these fluctuations, researchers
often look at the difference in pupil size compared to a base-
line period, which is typically the start of the trial. By looking
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at pupil-size changes, rather than absolute pupil sizes, differ-
ences in pupil size that already existed before the trial are
taken into account, are no longer a source of noise, and no
longer reduce statistical power. This is baseline correction.

There are two main ways to apply baseline correction:
divisive, in which pupil size is converted to a proportional
difference from baseline pupil size (corrected pupil size =
pupil size/baseline), and subtractive, in which pupil size is
converted to an absolute difference from baseline pupil size
(corrected pupil size = pupil size − baseline). There are vari-
ations of these approaches, such as using percentage rather
than proportion change, or converting absolute differences
from baseline pupil size to z-scores; but these are all minor
variations of these two general approaches. Here we will
therefore focus on the difference between divisive and sub-
tractive baseline correction.

There are several reasons why researchers may choose either
divisive or subtractive baseline correction. (Although such rea-
sons are rarely provided.) Divisive baseline correction is attrac-
tive because it provides an intuitive measure: proportion
change. If a paper states that an eye movement caused a 10 %
pupillary constriction (Mathôt, Melmi, & Castet, 2015d), you
can easily judge the size of this effect: substantial but not enor-
mous. In contrast, if a paper states that a manipulation caused a
0.02-mm diameter change (Bombeke, Duthoo, Mueller, Hopf,
& Boehler, 2016), you need a moment to remember (or look
up) that human pupils are 2–8 mm in diameter, and that a 0.02-
mm effect is therefore tiny. This is, in our view, less intuitive.
And if the eye tracker reports pupil size in arbitrary units, typ-
ically based on a pixel count of the camera image, then absolute
pupil-size differences become even harder to interpret. (In ad-
dition, even for eye trackers that report pupil size in seemingly
absolute units [mm], measurements may not be entirely invari-
ant to factors such as the distance between the participant and
the camera, and may therefore be partly arbitrary as well.)
However, despite these disadvantages, subtractive baseline cor-
rection may be the natural choice for some researchers because
it is the standard approach in EEG research (e.g., Gross et al.,
2013; Woodman, 2010).

In pupillometry, there is no established standard for apply-
ing baseline correction. Based on our experience, most re-
searchers now apply some form of baseline correction (but
see, e.g., Gamlin et al., 2007), and variations of subtractive
baseline correction (Binda, Pereverzeva, & Murray, 2013;
Hupé, Lamirel, & Lorenceau, 2009; Jainta, Vernet, Yang, &
Kapoula, 2011; Knapen et al., 2016; Koelewijn, Zekveld,
Festen, & Kramer, 2012; e.g. Laeng & Sulutvedt, 2014;
Murphy, Moort, & Nieuwenhuis, 2016; Porter, Troscianko,
& Gilchrist, 2007; Privitera, Renninger, Carney, Klein, &
Aguilar, 2010) seem somewhat more common than variations
of divisive baseline correction (Bonmati-Carrion et al., 2016;
Herbst, Sander, Milea, Lund-Andersen, & Kawasaki, 2011;
Mathôt, van der Linden, Grainger, & Vitu, 2013; H.

Wilhelm, Lüdtke, & Wilhelm, 1998). (One paper is listed
per research group. This list is anecdotal, and not a compre-
hensive review.)

As far as we know, no-one has systematically studied base-
line correction of pupil-size data. However, baseline correc-
tion has been studied in the context of EEG/MEG data, as
shown by a recent debate about whether or not baseline cor-
rection of EEG/MEG data should be abandoned in favor of
high-pass filtering (Maess, Schröger, & Widmann, 2016;
Tanner, Morgan-Short, & Luck, 2015; Tanner, Norton,
Morgan-Short, & Luck, 2016). However, pupil-size data are
different from EEG/ MEG data. For example, although in the
absence of direct external stimulation the size of the pupil
fluctuates in cycles of 1–2 s (Mathôt, Siebold, Donk, &
Vitu, 2015a; Reimer et al., 2014), it does not show the slow
systematic drift shown by EEG/MEG voltages (Tanner et al.,
2016).

Our aim is therefore to study baseline correction specifical-
ly for pupil-size data. We will use real and simulated data to
see how robust subtractive and divisive baseline corrections
are to noise, and how they affect statistical power.

In addition to performing baseline correction, researchers
generally preprocess pupil-size data in several ways, such as
smoothing or interpolation of missing data. Therefore, al-
though baseline correction is our main focus, we will start
with a brief, general overview of preprocessing of pupil-size
data. However, for our analyses we will not apply any other
preprocessing steps, because we feel that baseline correction
should be safe (i.e., not increase the probability of false alarms
and misses) and sensible on its own. We will end by making
several recommendations for preprocessing and baseline cor-
rection of pupil-size data.

A preprocessing primer

Baseline correction is part of what researchers often refer
to as preprocessing: cleaning the raw data (i.e., as record-
ed by the eye tracker) from as many undesirable features
as possible. Of course, what constitutes an undesirable
feature depends on the context. For example, eye blinks
are often considered undesirable in pupillometry, because
you cannot measure pupil size while the eyes are closed,
and also because blinks are followed by a prolonged con-
striction of the pupil (Knapen et al., 2016). But in a dif-
ferent context, for example when using blink rate as a
measure of fatigue (Stern, Boyer, & Schroeder, 1994),
eye blinks can also be the measure of interest. In other
words, preprocessing is performed differently in different
situations.

For pupillometry research, we recommend the following
preprocessing steps. Baseline correction—the focus of this
paper—is generally performed last.
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Dealing with missing data

Missing data most often occurs when a video-based eye
tracker fails to extract the pupil from the camera image.
Most eye trackers will then report a pupil size of 0, or indicate
in some other way that data are missing. The first step in
dealing with missing data is therefore to find out how the
eye tracker reports missing data (e.g., as 0s), and then to ignore
these values, for example by treating them as nan (not a num-
ber) values during the analysis; nan values are offered by most
modern programming languages, and are a standard way to
silently ignore missing data.

Whether missing data deserve special treatment is a matter
of opinion. Some researchers prefer to interpolate missing data
(e.g., Knapen et al., 2016), similar to eye-blink reconstruction,
as discussed below. Other researchers prefer to exclude trials
with too much missing data (e.g., Koelewijn et al., 2012). In
our view, missing data need no special treatment because what
is not there does not affect the results anyway—as long as care
is taken that missing data are not interpreted as real 0 pupil-
size measurements, and as long as the proportion of missing
data is independent of pupil size (i.e., data for large pupils is
equally likely to be missing as for small pupils) and experi-
mental conditions (i.e., data in one condition is equally likely
to be missing as for another condition).

Dealing with eye blinks and other unrealistic pupil
size values

A bigger problem occurs when pupil-size values are reported
incorrectly but not marked as missing data. The size of the
pupil changes at most by a factor of around 4, when expressed
as pupil diameter, or around 16, when expressed as pupil
surface (McDougal & Gamlin, 2008). If pupil size, as mea-
sured, changes more than this, this means that something
distorted the recording. By far the most common source of
distortion is eye blinks; eye blinks are characterized by a rapid
decrease in pupil size, followed by a period of missing data,
followed by a rapid increase in pupil size. The period of miss-
ing data can be treated (or not) as discussed above; but the
preceding and following distortions should be corrected, be-
cause they can strongly affect pupil size, even when averaged
across many trials.

One way to deal with eye blinks, and our preferred method,
is to use cubic-spline interpolation. This method is described
in more detail elsewhere (Mathôt, 2013), but in a nutshell
works as follows: Four points (A, B, C, and D) are placed
around the on- and offset of the blink. Point B is placed slight-
ly before the onset of the blink; point C is placed slightly after
the onset of the blink. Point A is then placed before point B;
point D is placed after point C. Points are equally spaced, such
that the distances between A and B, B and C, etc. are constant.

Finally, a smooth line is drawn through all four points, replac-
ing the missing and distorted data between B and C.

Dealing with position artifacts

Imagine that a participant looks directly at the lens of a video-
based eye tracker. The pupil is then recorded as a near-perfect
circle. Now imagine that the participant makes an eye move-
ment to the right, thus causing the eye ball to rotate, changing
the angle from which the eye tracker records the pupil, and
causing the horizontal diameter of the pupil (as recorded) to
decrease. In other words, pupil size as recorded by the eye
tracker decreases, even though pupil size really did not
change. Most commonly used eye trackers, such as the
EyeLink (SR Research, Missisauga, Ontario, Canada), cannot
distinguish such artifactual pupil-size changes due to eye
movements from real pupil-size changes. Eye trackers that
work with a physical model of the eye, such as Pupil Labs
(Pupil Labs, Berlin, Germany), in theory could distinguish
artifactual from real pupil-size changes, as described below.

Importantly, artifactual pupil-size changes can be larger
than the real pupil-size changes that are induced by many
psychological manipulations. For example, Fig. 5 from
Mathôt, Melmi, and Castet (2015d) shows pupil size during
eye movements in four directions (leftward, rightward, up-
ward, and downward). In this particular set-up, a downward
eye movement movement caused an artifactual increase in
pupil size of 10 %. This is comparable to the largest (real)
change in pupil size that Kahneman and Beatty (1966) ob-
served in a working-memory task.

There are three main ways to take position artifacts in
pupil-size data into account: comparing conditions that are
matched in terms of eye position (e.g., Gagl, Hawelka, &
Hutzler, 2011); using data-driven correction, which uses linear
regression to remove position artifacts from pupil-size data
(e.g., Brisson et al., 2013); and model-driven correction,
which uses knowledge about the relative positions of the cam-
era, eyes, and eye tracker (e.g., Gagl et al., 2011; Hayes &
Petrov, 2016).

When comparing conditions that are matched on eye posi-
tion, the eyes may still move, as long as they do so in the same
way in all conditions. For example, Gagl et al. (2011) com-
pared pupil size between a condition in which participants
read real sentences, and a condition in which participants read
z-strings (i.e., strings where all characters of the real text were
replaced by z’s). Because eye movements did not differ be-
tween these two conditions, any difference in pupil size is real
and due to the difference between conditions (in this case due
to the cognitive processes involved in reading).Whenever you
are not interested in absolute pupil-size measurements, and
whenever it is practically feasible to match eye position be-
tween conditions, this is unequivocally the best way to take
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position artifacts into account—because it does not rely on
any assumptions.

Data-driven correction involves a calibration procedure
during which participants look at points on different parts of
the screen (e.g., Brisson et al., 2013). A multiple linear regres-
sion is then performed to predict pupil size from horizontal
(X) and vertical (Y) pupil size. Using this regression, position
artifacts could then be removed from pupil size during the rest
of the experiment. This procedure assumes that, in reality,
pupil size does not depend on eye position, and any measured
relationship is therefore artifactual.

Unfortunately, this procedure does not work for the simple
reason that pupil size may actually (and usually does) change
as a function of eye position. For example, if participants need
to look up uncomfortably to foveate the top of the screen, the
mental and physical effort involved may cause their pupils to
dilate. When performing a correction as described above, this
real pupil-size change would be corrected as though it were
artifactual. Even worse, artifactual pupil-size changes happen
immediately when the eyes move, whereas real pupil-size
changes occur slowly. Therefore, they have to be treated dif-
ferently; if not, pupil size may seem completely free of posi-
tion artifacts just before each eye movement, but catastrophi-
cally affected by position artifacts immediately after each eye
movement.We have seen this in our data, and decided to leave
position artifacts uncorrected for exactly this reason (Mathôt
et al., 2015d).

Model-based correction requires knowledge of the geome-
try of the eyes and the recording set-up: the position of the
eyes relative to the display and the eye tracker (e.g., Gagl
et al., 2011; Hayes & Petrov, 2016), and, for even more accu-
rate correction, the thickness of the iris (e.g., Gagl et al., 2011)
and the focusing power of the cornea and lens, which affect
the appearance of the pupil, especially when viewed off-axis
(e.g., Mathur, Gehrmann, & Atchison, 2013). Once you have
constructed a physical model based on this information, posi-
tion artifacts can be isolated and removed from pupil-size
measurements. Studies using an artificial pupil of fixed size
(so that true pupil size is known) have shown that model-
based correction is highly effective (Gagl et al., 2011; Hayes
& Petrov, 2016). Crucially, and unlike data-driven correction,
model-based correction does not inappropriately Bcorrect^ for
real pupil size changes that may accompany changes in gaze
position.

To summarize, the size of the pupil changes as a
function of eye position, and this is in part an artifact
due to the angle from which the eye tracker records the
pupil. Ideally, pupil size is compared between condi-
tions that are matched on eye position, in which case
pupil-size differences between conditions are not con-
founded by position artifacts. When such matching is
not feasible, the best way to remove position artifacts
from pupil-size data is using a model-based correction

that takes into account the geometry of the eye and the
recording set-up (e.g., Gagl et al., 2011; Hayes &
Petrov, 2016).

Hope for the best, prepare for the worst

Data preprocessing is useful, improves statistical power (the
probability of detecting true effects), reduces the probability of
spurious results, and makes it substantially easier to analyze
and interpret results. However, eye-movement data are messy,
and every form of preprocessing is guaranteed to fail occa-
sionally. For example, blink reconstruction often fails when
the eyes close only partly (is that even a blink?) or when due to
noise the blink is not detected.

Therefore, results should not crucially depend on whether
the data still contain artifacts. Similarly, one preprocessing
step should not crucially depend on whether the previous pre-
processing step was perfect. For this reason, in this paper we
focus on baseline correction in isolation, as if no preprocess-
ing steps are performed beforehand. However, in real-life sit-
uations, baseline correction generally is—and should be—ac-
companied by others forms of preprocessing.

Simulated data

We first investigate the effect of divisive and subtractive base-
line correction in simulated data. The advantage of simulated
data over real data is that it allows us to control noise and
distortion, and therefore to see how robust baseline correction
is to imperfections of the kind that also occur in real data. In
addition, simulated data allow us to simulate two experimental
conditions that differ in pupil size by a known amount, and
therefore to see how baseline correction affects the power to
detect this difference.

Data generation

We started with a single real 3-s recording of a pupil-
lary response to light, recorded at 1,000 Hz with an
EyeLink 1000 (SR Research). This recording did not
contain blinks or recording artifacts, but did contain
the slight noise that is typical of pupil-size recordings.
Pupil size was measured in arbitrary units as recorded
by the eye tracker, ranging from roughly 1,600 to
4,200.

Based on this single recording, 200 trials were generated.
To each trial, a constant value, randomly chosen for each trial,
between -1,000 and 2,000 was added to each sample. In Fig.
1b, this is visible as a random shift of each trace up or down
the Y-axis. In addition, one simulated eye blink was added to
each trial. Eye blinks were modeled as a period of 10 ms
during which pupil size linearly decreased to 0, followed by
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50–150 ms (randomly varied) during which pupil size ran-
domly fluctuated between 0 and 100, followed by a period
of 10 ms during which pupil size linearly increased back to
its normal value. This resembles real eye blinks as they are
recorded by video-based eye trackers (e.g., Mathôt, 2013).

To simulate two conditions that differed in pupil size, we
added a series of values that linearly increased from 0 (at the
start of the trial) to 200 (at the end of the trial) to half the trials
(i.e., the same slight increase from 0 to 200 was applied to half
the trials). These trials are the Red condition; the other trials
are the Blue condition. As shown in Fig. 1a, pupil size is
slightly larger in the Red condition than in the Blue condition,
and this effect increases over time.

Crucially, in the Blue condition there were two trials
in which a blink started at the first sample, and there-
fore affected the baseline period. In none of the other
trials did the baseline period contain a blink. By making
the two conditions equally Bnoisy^ (i.e., with exactly
one blink per trial) but having two trials in the Blue
condition in which these blinks occurred during the
baseline, we can show how only a few trials with arti-
facts during the baseline can dramatically affect the

overall results. Crucially, this can easily happen by
chance, and even thorough data preprocessing does not
guarantee that it will not.

Divisive baseline correction

First, median pupil size during the first ten samples (corre-
sponding to 10 ms) was taken as baseline pupil size. Next,
all pupil sizes were divided by this baseline pupil size. This
was done separately for each trial.

(The length of the baseline period varies strongly
from study to study. Some authors prefer long baseline
periods of up to 1,000 ms (e.g., Laeng & Sulutvedt,
2014), which have the disadvantage of being susceptible
to pupil-size fluctuations during the baseline period.
Other authors, including we (e.g., Mathôt et al.,
2015d), prefer short baseline periods, which have the
disadvantage of being susceptible to recording noise.
But the problems that we highlight in this paper apply
to long and short baseline periods alike.)

The results of divisive baseline correction are shown in Fig.
1c,d. In the two Blue trials in which there was a blink during

Individual traces Average traces

No baseline

correction

Divisive

baseline

correction

Subtractive

baseline

correction

a b

c d

e f

Fig. 1 The effects of divisive and subtractive baseline correction in a
simulated dataset. (a, b) No baseline correction. Y-axis reflects pupil size
in arbitrary units. (c, d) Divisive baseline correction. Y-axis reflects pro-
portional pupil-size change relative to baseline period. (e, f) Subtractive

baseline correction. Y-axis reflects difference in pupil-size from baseline
period in arbitrary units. Individual pupil traces: (a, c, e). Average pupil
traces: (b, d, f)
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the baseline period, baseline pupil size was very small; con-
sequently, baseline-corrected pupil size was very large. These
two trials are clearly visible in Fig. 1c as unrealistic baseline-
corrected pupil sizes ranging from 40 to 130 (as a proportion
of baseline), whereas in this dataset realistic baseline-
corrected pupil sizes tend to range from 0.3 to 1 (see zoom
panel in Fig. 1c). Pupil sizes on these two trials are so strongly
distorted that they even affect the overall results: As shown in
Fig. 1d, the overall results suggest that the pupil is largest in
the Blue condition, whereas we had simulated an effect in the
opposite direction.

Subtractive baseline correction

Subtractive baseline correction was identical to divisive
baseline correction, except that baseline pupil size was
subtracted from all pupil sizes.

The results of subtractive baseline correction are
shown in Fig. 1e,f. Again, the two Blue trials with a
blink during the baseline period are clearly visible in
Fig. 1e. However, their effect on the overall dataset is
not as catastrophic as for divisive baseline correction.

Statistical power

The results above show that the effects of blinks
during the baseline period can be catastrophic, and
much more so for divisive than subtractive baseline
correction. However, it may be that divisive baseline
correction nevertheless leads to the highest statistical
power when there are no blinks during the baseline
period (even though this is unlikely to happen in real
data). To test this, we generated data as described
above, while varying the following:

& Effect size (Red larger than Blue), from 50 (±2 %) to 500
(±20 %) in steps of 50

& Baseline correction: no correction, divisive, or subtractive
& Blinks during baseline in Blue condition: yes (two blinks)

or no

We generated 10,000 datasets for each combination,
giving a total of (10,000 × 10 × 3 × 2 =) 600,000
da ta se t s . For each da ta se t , we conduc ted an
independent-samples t-test to test for a difference in
mean pupil size between the Red and Blue conditions
during the last 50 samples. We considered three possible
outcomes:

& Detection of a true effect: p < .05 and pupil size smallest in
the Blue condition

& Detection of a spurious effect: p < .05 and pupil smallest in
the Red condition

& No detection of an effect: p ≥ .05

The proportion of datasets in which a true effect was de-
tected is shown in Fig. 2a,c; the proportion on which a spuri-
ous effect was detected is shown in Fig. 2b,d. By chance (i.e.,
if there was no effect and no systematic distortion of the data)
and given our two-sided p < .05 criterion, we would expect to
find a .025 proportion of detections of true and spurious ef-
fects; this is indicated by the horizontal dotted lines.

First, consider the data with blinks in the baseline
(Fig. 2a,b). With divisive baseline correction (pink), nei-
ther true nor spurious effects are detected (except for a
handful of true effects for the highest effect sizes, but
these are so few that they are hardly visible in the
figure), because the blinks introduce so much variability
in the signal that it is nearly impossible for any effect
to be detected.

With subtractive baseline correction (green), true ef-
fects are often observed, and spurious effects are not.
However, for weak effects, subtractive baseline correc-
tion is less sensitive than no baseline correction at all
(gray). This is because, for weak effects, the blinks
introduce so much variability that true effects cannot
be detected; however, the variability is less than for
divisive baseline correction, and for medium-to-large ef-
fects subtractive baseline correction is actually more
sensitive than no baseline correction at all—despite
blinks during the baseline.

Now consider the data without blinks in the baseline (Fig.
2b). An effect in the true direction is now detected in all cases,
but there is a clear difference in sensitivity: subtractive base-
line correction is most sensitive, followed by divisive baseline
correction, in turn followed by no baseline correction at all.
The three approaches do not differ markedly in the number of
detected spurious effects.

Real data

The simulated data highlights problems that can occur when
applying baseline correction, especially divisive baseline cor-
rection, if there are blinks in the baseline period. However,
you may wonder whether these problems actually occur in
real data. To test this, we looked at the effects of baseline
correction in one representative set of real data.

Data

The data were collected for a different study, and consisted of
2,520 trials (across 15 participants) in two conditions, here
labeled Blue and Red. All participants signed informed con-
sent before participating and received monetary compensa-
tion. The experiment was approved by the ethics committee
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of Utrecht University. For full details, see Exp. 1 in Mathôt,
Van Heusden, and Van der Stigchel (2015c).

First, consider the uncorrected data (Fig. 3a,b). The
trial starts with a pronounced pupillary constriction,
followed by a gradual redilation. Overall (Fig. 3b),
the pupil is slightly larger in the Blue than the Red
condition, but this difference is small. (Whether or not
the difference between the two conditions is reliable is
not relevant in this context.) The individual traces (Fig.
3a) show a lot of variability between trials, as well as
frequent blinks, which correspond to the vertical spines
protruding downward.

Divisive baseline correction

Figure 3c,d shows the data after applying divisive base-
line correction (applied in the same way as for the sim-
ulated data). Overall, the data now suggest that the

pupil is markedly larger in the Blue than the Red con-
dition. But to the expert eye, the pattern is odd, because
the difference between Blue and Red is mostly due to a
sharp (apparent) pupillary dilation in the Blue condition
immediately following the baseline period; afterwards,
the difference remains more-or-less constant. This is
odd if you know that, because of the latency of the
pupillary response, real effects on pupil size develop
at the earliest about 220 ms after the manipulation that
caused them (e.g., Mathôt, van der Linden, Grainger, &
Vitu, 2015b); in other words, there should not be any
difference between Blue and Red before 220 ms.

If we look at the individual trials, it is clear where
the problem comes from: Because of blinks during the
baseline period, baseline-corrected pupil size is unre-
alistically large in a handful of trials (dotted lines).
Most of these trials are in the Blue condition, and
this causes overall pupil size to be overestimated in

Detection of true effects

with blinks during baseline

Detection of spurious effects

with blinks during baseline

Detection of true effects

without blinks during baseline

Detection of spurious effects

without blinks during baseline

No baseline correction

Divisive baseline correction

Subtractive baseline correction

a b

c d

Fig. 2 Proportion of detected real (a, c) and spurious (b, d) effects when
applying subtractive baseline correction (green), divisive baseline
correction (pink), or no baseline correction at all (gray). Data with

different effect sizes (X-axis: 0–500) and with (a, b) or without (c, d)
blinks during the baseline was generated
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the Blue condition. (It is not clear why there are more
blinks in the Blue than the Red condition. This may
well be due to chance. But even if the two conditions
systematically differ in blink rate—which would be
interesting—this difference should not confound the
pupil-size data!)

Subtractive baseline correction

Figure 3e,f shows the data after applying subtractive
baseline correction (applied in the same way as for
the simulated data). Overall, the difference in pupil
size between Blue and Red is exaggerated compared
to the raw data (compare Fig. 3f to b). If we look at
the individual trials, this is again due to the same
handful of trials (dotted lines), mostly in the Blue con-
dition, in which pupil size is overestimated because of
blinks in the baseline period. In other words, subtrac-
tive baseline correction suffers from the same problem
as divisive baseline correction, but to a much lesser
extent.

Identifying problematic trials

Figure 4 shows a histogram of baseline pupil sizes, that is, of
median pupil sizes during the first 10 ms of the trial. In this
dataset, baseline pupil sizes are more-or-less normally distrib-
uted with only a slightly elongated right tail. (But baseline
pupil sizes may be distributed differently in other datasets.)

On a few trials, baseline pupil size is unusually
small; but these trials are so rare that they are hardly
visible in the original histogram (Fig. 4a). Therefore, we
have also plotted a histogram with log-transformed
counts on the Y-axis, which accentuates bins with few
observations (Fig. 4b). Looking at this distribution, a
reasonable cut-off seems to be 400 (arbitrary units):
Baseline pupil sizes below this value are—in this
dataset—unrealistic and can catastrophically affect the
results as we have described above.

In Fig. 3d we have marked those trials in which baseline
pupil size was less than 400 as dotted lines. As expected, those
trials in which baseline-corrected pupil size is unrealistically
large are exactly those trials on which baseline pupil size is
unrealistically small.

Individual traces Average traces

No baseline

correction

Divisive

baseline

correction

Subtractive

baseline

correction

a b

c d

e f

Fig. 3 The effects of divisive and subtractive baseline correction in a real
dataset. (a, b) No baseline correction. Y-axis reflects pupil size in arbitrary
units. (c, d) Divisive baseline correction. Y-axis reflects proportional
pupil-size change relative to baseline period. (e, f) Subtractive baseline

correction. Y-axis reflects difference in pupil-size from baseline period in
arbitrary units. Individual pupil traces: (a, c, e). Average pupil traces: (b,
d, f)
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If we remove trials in which baseline pupil size was
less than 400, the distortion of the overall results is
much reduced. In particular, if we look at the results
of the divisive baseline correction, the sharp pupillary
dilation immediately following the baseline period in the
Blue condition is entirely gone (compare Fig. 5a with
d).

Most trials with small baselines would also have
been removed if we had removed trials in which a blink
was detected during the baseline. But you can think of
cases in which baseline pupil size is really small while
no blink is detected; for example, the eyelid can close
only partly, or noisy recordings may prevent measured
pupil size from going to 0 during a blink, preventing
detection. Therefore, we feel that it is safer to filter
based on pupil size instead of (or in addition to) filter-
ing based on detected blinks.

Baseline correction and statistics

Statistically speaking, what does baseline correction do?
To avoid confusion, let’s first state what baseline correction

is not. Baseline correction is not a way to control for overall
differences in pupil size between participants. Of course, some
participants have larger pupils than others (see Tsukahara,
Harrison, and Engle, 2016 for a fascinating study on the
relationship between pupil size and intelligence); and the dis-
tance between camera and eye, which varies slightly from
participant to participant, also affects pupil size, at least as
measured by most eye trackers. But such between-subject
differences are better taken into account statistically, through
a repeated measures ANOVA or a linear mixed-effects model
with by-participant random intercepts (e.g., Baayen,
Davidson, & Bates, 2008)—just like between-subject differ-
ences in reaction times are usually taken into account.

Histogram of baseline pupil sizes Log-transformed histogram of baseline

pupil sizes

a b

Fig. 4 A histogram of baseline pupil sizes. (a) Original histogram. (b) Log-transformed histogram. The vertical dotted line indicates a threshold below
which baseline pupil sizes appear unrealistically small

Divisive baseline correction Subtractive baseline correctiona b

Fig. 5 Overall results for divisive (a) and subtractive (b) baseline correction after removing trials in which baseline pupil size was less than 400
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Instead, baseline correction is a way to reduce the impact of
random pupil-size fluctuations from one trial to the next. In an
analysis without baseline correction, pupil sizes are compared
between trials; for example, all trials in one condition are
compared to all trials in another condition. You can think of
this as a between-trial analysis. In such a between-trial analy-
sis, random fluctuations in pupil size from one trial to the next
are a source of noise, and decrease statistical power for detect-
ing true differences between conditions.

In contrast, in an analysis with baseline correction, pupil
sizes are first compared between the baseline epoch and an-
other moment in the same trial. The dependent variable then
becomes pupil-size change relative to baseline; pupil-size
change is first determined for each trial, and then further com-
pared between trials. You can think of this as a within-trial
analysis, that is, an analysis in which Trial is taken into ac-
count as a random effect (i.e., a factor with a non-systematic
effect). In a within-trial analysis, slow and random fluctua-
tions in pupil size from one trial to the next are no longer a
source of noise, and no longer decrease statistical power. This
is why baseline correction improves statistical power.

The observation that baseline correction is similar to treating
Trial as a random effect deserves further consideration. Because
subtractive baseline correction is not merely similar to treating
Trial as a random effect—it is in every way identical. To illus-
trate this, let’s consider two ways to analyze pupil-size data, as
shown in Fig. 6. These two ways seem very different at first
sight, but are equivalent on closer inspection.

Here, we have hypothetical data of four trials with two
conditions (Blue and Red). Let’s assume that we want to an-
alyze the effect of condition at time 1. (The exact same prin-
ciples would apply if we wanted to analyze the effect of con-
dition at time 2.)

Figure 6a shows an analysis that takes baseline pupil size
into account by treating Trial as a random effect, without do-
ing explicit baseline correction. To do so, the analysis includes
two time points for each trial: one time point (0) that corre-
sponds to the baseline, and one time point (1) that corresponds
to the sample that we want to analyze. We are then interested
in the interaction between time and condition: This reflects the
effect of condition, while taking changes in baseline pupil size
into account. Because each trial now contributes two

a Without baseline correction

b With subtractive baseline correction
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The effect of condition

(Blue / Red) on Time 1 …

Is coded in this table … And requires a linear mixed-effects analysis

with a random by-trial intercept. In the notation

of the R-package lme4, this corresponds to

the following model:

The effect of condition corresponds to the

time × condition interaction, and here gives:

t = 2.668, p = 0.116

The effect of condition

(Blue / Red) on Time 1 …

Is coded in this table … And requires an independent samples t-test

between the Blue and Red conditions. Here,

this gives:

t = 2.668, p = 0.116

The two analyses are identical

Fig. 6 Two different ways to take baseline pupil size into account. (a) Baseline pupil size can be taken into account statistically, by conducting a linear
mixed-effects model. (b) After performing subtractive baseline correction, the same analysis is reduced to independent-samples t-test
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observations to the analysis, the observations in the analysis
are no longer independent. To take this into account, we need
to conduct a linear mixed-effects model where Trial is a ran-
dom effect, and we allow the intercept to randomly vary by
Trial (i.e., random by-Trial intercepts). The outcome of this
analysis is t = 2.668, p = 0.116 for the time × condition
interaction.

Figure 6b shows the same analysis, but done after subtrac-
tive baseline correction, so that pupil size is set to 0 at time 0
for all trials. The analysis is now reduced to a simple indepen-
dent samples t-test between the Blue and Red trials. The out-
come is t = 2.668, p = 0.116—identical to the linear-mixed
effects analysis described above.

In other words, by treating Trial as a random effect in an
analysis, you can accomplish the exact same thing as by doing
subtractive baseline correction. However, in most cases base-
line correction is simpler to do. Specifically, it avoids the need
for complex statistical models with multiple random effects
(generally at least two: Trial and Participant). This is especial-
ly relevant for researchers who prefer to analyze their data
with a repeated measures ANOVA, which allows for only a
single random effect, and that role is generally already re-
served for Participant.

Discussion (and five recommendations)

Here we show that baseline correction can distort pupil-size
data. This happens most often when pupil size is unusually
small during the baseline period, which in turn happens most
often because of eye blinks, data loss, or other distortions.
When baseline pupil size is unusually small, baseline-
corrected pupil size becomes unusually large. This is a prob-
lem for all forms of baseline correction, but is much more
pronounced for divisive than subtractive baseline correction.
Therefore, subtractive baseline correction (corrected pupil size
= pupil size − baseline) is more robust than divisive baseline
correction (corrected pupil size = pupil size/baseline).

Despite risk of distortion, it makes sense to perform base-
line correction, because it increases statistical power in exper-
iments that investigate the effect of some experimental manip-
ulation on pupil size. In our simulations, subtractive baseline
correction increased statistical power more than divisive cor-
rection; however, we simulated a fixed difference between
conditions that did not depend on baseline pupil size. For such
baseline-independent effects, subtractive baseline correction
leads to the highest statistical power. But real pupillary re-
sponses are always somewhat dependent on baseline pupil
size, if only because a baseline pupil of 2 mm cannot constrict
much further, nor can a baseline pupil of 8 mm dilate much
further. The more important point is therefore that baseline
correction in general increases statistical power compared to
no baseline correction.

Knowing the risks and the benefits, how can you perform
safe and sensible baseline correction and preprocessing of
pupil-size data? Based on our observations, we make five
recommendations:

1. Prior to baseline correction, perform data preprocessing
data in a way that is appropriate for your research ques-
tion, as described in the section A Preprocessing Primer.
However, do not assume that preprocessing leads to per-
fectly clean data.

2. Use subtractive baseline correction (or some variation
thereof); that is, we recommend that on the level of indi-
vidual trials, baseline pupil size be subtracted from real
pupil size. Other transformations can be applied as you
see fit, but they should be applied to the aggregate data,
and not to individual trials. For example, if you prefer to
express pupil size as proportion change, you can divide
pupil size by the grandmean pupil size during the baseline
period averaged across all trials.

3. Visually compare your baseline-corrected data with your
uncorrected data. Baseline correction should reduce vari-
ability, but not qualitatively change the overall results.

4. Baseline artifacts manifest themselves as a rapid dilation
of the pupil immediately following the baseline period.
Given that real effects on pupil size emerge slowly, never
within 220 ms of the manipulation, baseline artifacts can
be distinguished from real effects by their timing.

5. Plot a histogram of baseline pupil sizes, and use this to
visually determine a minimum baseline pupil size, and
remove all trials on which baseline pupil size is smaller.
We do not recommend using a fixed criterion such as
Bremove all baseline pupil sizes that are more than 2.5
standard deviations below the mean.^ While this may
work in some cases (it would have worked in the real data
used here), the distribution of baseline pupil sizes varies,
and therefore a fixed criterion may not always catch all
problematic trials. We also do not recommended relying
on blink detection. Although blinks are the primary reason
for unrealistically small baseline pupil sizes, they are not
the only reason; furthermore, blinks may not be detected
when the eyelid closes only partly or when the recording
is noisy. As we’ve seen, catching all problematic trials is
important, because even a handful of trials with baseline
artifacts can catastrophically affect the overall results. A
visually determined criterion for minimum baseline pupil
size is safest.

We and many others have used baseline correction in the
past, and some people, including us, have also used divisive
baseline correction. In light of this paper, can we still trust
these previous results? For the most part: yes. Importantly,
baseline artifacts can trigger quantitatively large spurious ef-
fects, but these spurious effects are unlikely to be significant,

104 Behav Res (2018) 50:94–106



because baseline artifacts also introduce a lot of variance.
Therefore, baseline artifacts are more likely to result in false
negatives (type II errors) than false positives (type I errors).
We have also checked our own previous results (e.g., Blom,
Mathôt, Olivers, & Van der Stigchel, 2016; Mathôt,
Dalmaijer, Grainger, & Van der Stigchel, 2014) and found
no signs of baseline artifacts, nor have we found obvious signs
of distortion (of this kind) in other published work.
Presumably, most researchers check their data visually to
make sure that clear outliers are removed; therefore, cata-
strophic distortion (as shown in Fig. 1c,d and Fig. 3c,d) is
likely to be noticed and, in one way or another, corrected.
Nevertheless, although problems may be detected and dealt
with in an ad hoc fashion, using a safe and sensible approach
to begin with is preferable.

In conclusion, we have shown that baseline correction of
pupil-size data increases statistical power, but can strongly
distort data if there are artifacts (notably eye blinks) during
the baseline period. We have made five recommendations for
safe and sensible baseline correction, the most important of
which are: Use subtractive rather than divisive baseline cor-
rection, and check visually whether your baseline-corrected
pupil-size data make sense.

Materials and availability Data and analysis scripts can be found at
https://github.com/smathot/baseline-pupil-size-study.
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