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Abstract

Motivation: Recently, several computational modeling approaches, such as agent-based models, have been applied
to study the interaction dynamics between immune and tumor cells in human cancer. However, each tumor is
characterized by a specific and unique tumor microenvironment, emphasizing the need for specialized and personal-
ized studies of each cancer scenario.

Results: We present MAST, a hybrid Multi-Agent Spatio-Temporal model which can be informed using a data-
driven approach to simulate unique tumor subtypes and tumor–immune dynamics starting from high-throughput
sequencing data. It captures essential components of the tumor microenvironment by coupling a discrete agent-
based model with a continuous partial differential equations-based model.
The application to real data of human colorectal cancer tissue investigating the spatio-temporal evolution and
emergent properties of four simulated human colorectal cancer subtypes, along with their agreement with current
biological knowledge of tumors and clinical outcome endpoints in a patient cohort, endorse the validity of our
approach.

Availability and implementation: MAST, implemented in Python language, is freely available with an open-source
license through GitLab (https://gitlab.com/sysbiobig/mast), and a Docker image is provided to ease its deployment.
The submitted software version and test data are available in Zenodo at https://dx.doi.org/10.5281/zenodo.7267745.

Contact: barbara.dicamillo@unipd.it

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

The tumor microenvironment (TME) is composed of multiple inter-
acting cells, including cancer cells, infiltrated immune cells [e.g. T
cells, natural killer (NK) cells, dendritic cells (DCs) and macro-
phages (Ms)], mesenchymal stromal cells or fibroblasts (Plava et al.,
2019). The composition of the TME is specific and unique for each

cancer and evolves in time and space in response to resources,
stresses and (epi)genetic mutations. Indeed, the TME is made up of
different cell types and cell states that correspond to distinct activa-
tion or metabolic profiles. These entities communicate with each
other through physical interactions or by releasing specific molecular
signals (Baruzzo et al., 2022) that can induce cell motility, prolifer-
ation, death, etc. As a consequence, the composition and organization
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(e.g. tumor core versus Periphery) of the TME at the initial, middle or
late stages of tumor progression can significantly differ.

Cell–cell interactions in the TME alter cell biology, ultimately
influencing disease progression to the point that various heterol-
ogous interactions in the TME are now considered hallmarks of can-
cer biology (Hanahan and Coussens, 2012). In this context, it is of
paramount importance to characterize different TME properties and
how they affect tumor progression. Integrative and quantitative
modeling of the TME, although simplifying many aspects of reality,
represents a means toward a better understanding of the dynamics
of cancer development, the phenotypes characterizing different
TMEs and even generates future outcome prediction to design thera-
pies based on in silico observations (Peskov et al., 2019).

In the literature, there are two main simulation approaches
(Norton et al., 2019). The top-down modeling approaches, such as
temporal ordinary differential equations or spatio-temporal partial
differential equations (PDEs), are meant to model nutrient or signal-
ing molecules concentrations, without focusing on the behavior of
each single entity. However, the complex interactions among com-
munication molecules and the details about metabolisms are far to
be completely understood in biology and, therefore, only a few sys-
tem components can be characterized (Clarke and Fisher, 2020;
Thomas et al., 2016).

In contrast, the bottom-up approach focuses on single-cell enti-
ties and their individual interactions with the aim of identifying
which emergent properties may result from their collective behavior.
For example, agent-based models (ABMs) are discrete models where
heterogenous entities, i.e. agents, are defined, as well as their behav-
iors, attributes and interactions following predefined rules
(Bonabeau, 2002). Such models better reflect the stochastic, spatial-
dependent and heterogenous nature of biology but require more
computational power relative to top-down approaches.

The hybrid approach represents a powerful way to combine the
above strategies allowing to describe the different level and scale of
biological systems choosing the most suitable modeling approach, at
the cost of increasing computational and methodological complexity
while integrating such approaches. The combination of the two
modeling frameworks might help describing the physical reality at
both cellular and communication/metabolism molecules level in the
context of TME.

In the recent years, several quantitative models of increasing
complexity have been developed to represent different mechanisms
of tumor–immune microenvironment, such as tumor mechanobiol-
ogy, vasculature, lymphatics and immunotherapy (Norton et al.,
2019). For example, Frascoli et al. (2017) suggested a stochastic
ABM coupled with delay differential equations to mimic cell mobil-
ity and cellular adhesion to the extracellular matrix in tumor site.
Norton et al. (2018) combined three ABMs of tumor–immune sys-
tem, angiogenesis and tumor-associated stroma to investigate the
stroma cell influence on tumor progression. Other ABMs and hybrid
models focused on modeling immune escape mechanisms: (i) loss of
antigenicity by avoiding immune recognition through antigen pres-
entation thereby reducing tumor-specific immune response; (ii) loss
of immunogenicity by expressing inhibitory immune checkpoint
molecules, such as PD-L1; and (iii) inducing an immunosuppressive
microenvironment (Beatty and Gladney, 2015). In this context,
Kather et al. (2017) presented a stochastic ABM of immune–tumor–
stromal interactions in human colorectal cancer (CRC) to simulate
different immunological phenotypes, while Gong et al. (2017) pro-
posed a hybrid model of tumor–immune interaction to simulate
tumor growth and immune checkpoint inhibitor treatments, target-
ing the PD-1/PD-L1 axis.

In this work, we developed MAST, a hybrid Multi-Agent Spatio-
Temporal model of human solid tumor tissue that includes an ABM,
simulating tumor and immune cell interactions, and a PDE-based
model to simulate nutrients diffusion from blood vessels through the
tumor tissue (see Fig. 1). The use of the two modeling frameworks
allows to couple discrete and continuous modeling and capture es-
sential elements of the TME, i.e. cells interaction and nutrients avail-
ability. With respect to previous works, MAST introduces three
main contributions: (i) it models nutrient diffusion from vessels and

cell dynamics in response to nutrient availability; (ii) it models im-
mune escape mechanisms through the accumulation of mutations
during the disease course, leading to spatial and temporal heterogen-
eity of tumor subpopulations; and (iii) it introduces a data-driven
approach to inform model parameters, thus simulating specific char-
acteristics of a real TME, from high-throughput data.

In particular, we informed MAST with literature data, as well as
genomics and transcriptomics data from bulk and single-cell
sequencing technologies, yielding knowledge on tumor mutation
rate (Huang and Lee, 2022), percentage of cell types in the TME
(Sturm et al., 2019) and loss of immunogenicity, to model the TME
of human CRC. The model faithfully recapitulates emergent behav-
ior and predicts tumor progression in four subtypes of CRC tissue,
i.e. Consensus Molecular Subtypes (CMS) (Guinney et al., 2015).
The model was then used to investigate the effect of different tumor
conditions on colorectal tumor growth.

2 Methods

MAST allows modeling interactions among tumor cells, necrotic
cells, cancer-associated fibroblasts (CAFs), NKs, cytotoxic T lym-
phocytes (CTLs), regulatory T cells (Tregs) and DCs. It simulates
tumor-cell mutations and acquisition of new properties and anti-
gens, toward which the CTLs specialize, including: changes in pro-
liferation/survival fitness (Stratton et al., 2009; Vicens and Posada,
2018); loss/acquisition of antigenicity; loss of immunogenicity; and
ability to shape immunosuppressive microenvironment (cancer cells
might evade the immune system (IS) by releasing signaling molecules
that locally repel IS cells) (Beatty and Gladney, 2015; Tang et al.,
2020). Moreover, MAST models nutrient availability in the tissue
which drives proliferation and migration in the TME.

2.1 Model design and implementation
In the ABM, each agent: (i) autonomously controls its actions; (ii) lives
in a physical space, i.e. a 2D grid representing the tissue, where it
interacts in a timely and probabilistic manner with other agents and the
surrounding environment; and (iii) is characterized by a specific metab-
olism, i.e. nutrients consumption, and thus competes for nutrients.

The neighborhood that allows an agent to sense surrounding
changes is defined according to Moore’s definition on a 2D lattice as
composed of the agent itself and the eight closest, surrounding cells.
Two classes of agents, namely cancer-related and immune-related,
representing the main categories of cells in TME are modeled. For
simplicity, we use agent and cell as synonyms.

2.1.1 Cancer-related agents

Cancer is a disease characterized by dysfunctional apoptosis, abnormal
cell division and accumulation of mutations that give rise to TME het-
erogeneity, both in terms of spatial properties and temporal evolution
(Dagogo-Jack and Shaw, 2018). During disease, tumor cells accumulate
mutations that might result in different subpopulations of malignant cells
with distinct mutational profiles and different abilities to survive.

TME also contains tumor stromal cells, which include fibro-
blasts and mesenchymal stromal cells. In this environment, CAFs
can differentiate and promote tumor growth, angiogenesis and
shape an immunosuppressive environment (Plava et al., 2019). In
MAST, we simulated CAFs and cancer cells with different mutation-
al burden, also modeling cell division, cell death and cell movement.

Cell division: We assume cancer cell duplication probability
depends on nutrient concentration and on cancer cell mutation fit-
ness parameter. The probability of a cell to duplicate is computed as:

pdupl i; jð Þ ¼ 1� exp � Nði; jÞ
hdupl

1þ#neighbCAFsði;jÞ � hduplstroma

0
@

1
A2

2
64

3
75; (1)

where Nði; jÞ represents the concentration of substances useful for
cell duplication (e.g. glucose) in grid position ði; jÞ and hdupl is a
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parameter related to the mutational status of the cell, so that there
might be cells duplicating at higher rate than others at the same nu-
trient concentrations, depending on the cell fitness. To mimic pro-
motion of cancer cell duplication by CAFs, parameter hdupl in
Equation (1) is divided by 1 plus the number of CAFs cells in the
Moore neighborhood multiplied by parameter hdupl_stroma. When
dividing, daughter cancer cells inherit all the mutations of the origin-
al cell.

Cell death: Cancer cell agents can die by IS attack, as described
below, or by lack of nutrients. Even in this latter case, the probabil-
ity of death depends on both nutrient concentration and mutational
status of the cell as follow:

pnecr i; jð Þ ¼ exp � Mði; jÞ
hnecr

� �2
" #

; (2)

where Mði; jÞ represents the concentration of substances useful for
cell maintenance (e.g. oxygen) and hnecr is a parameter related to the
mutational status of the cell, so that there might be cells that survive
easily than other in an environment poor of these substances, de-
pending on the cell fitness. To mimic immunogenic cell death, mole-
cules enhancing immune cell recruitment in the area are released
after cancer cell death (Fucikova et al., 2020). If cancer cells die by
lack of nutrients, they become necrotic remaining in the environ-
ment for a certain time and being able to recruit DC agents (Sauter
et al., 2000). We did not explicitly model apoptosis.

Mutation: If a mutation occurs, it can be of different types, each
with a certain rate depending on the tumor type. Here, we are inter-
ested in modeling (epi)genetic mutations that can give rise to: (1) loss
or acquisition of antigenicity, i.e. new tumor antigens (proteins cap-
able of inducing a tumor-specific immune response); (2) loss of im-
munogenicity by expressing inhibitory immune checkpoint molecules,
such as PD-L1 molecule; (3) release signaling molecules that locally
repel immune cells; and (4) increased or decreased duplication/sur-
vival fitness which is mimicked by different values of parameters hdupl

and hnecr in Equations (1) and (2). In our simulation, if a cancer cell
undergoes a mutation of Type (1), a new antigen is randomly sampled
from a set of possible mutations, and its mutational status is updated;
thus, the cell lineage accumulates mutations during the simulation. To
mimic different TME properties, Types (1)–(4) mutations can occur at
different probabilities (see Supplementary Table S1).

Movement: In MAST, cancer cells can move to a position in the
Moore neighborhood with the following probability.

pmove i; jð Þ ¼ 1� exp � Mði; jÞ
hmove

1þ#neighbCAFsði;jÞ

 !2
2
4

3
5: (3)

We assume that cancer cells have low migration probability
which depends on both hmove parameter and on nutrient concentra-
tion Mði; jÞ. We implement this feature to allow simulating different

settings depending on the tumor type. Moreover, to mimic promo-
tion of cancer cell diffusion by CAFs, parameter hmove in Equation
(3) is divided by 1 plus the number of CAFs cells in the Moore
neighborhood.

CAFs differentiation: CAFs are thought to differentiate from
normal tissue, and appear in the simulation after a long-lasting in-
flammation. CAF agent is modeled so to promote tumor growth by
augmenting proliferation of the cancer cells, and tumor diffusion by
augmenting tumor-cell movement, as described in Equations (1) and
(3) (Joshi et al., 2021). To allow different biological scenarios to be
modeled, CAFs may allow a different degree of permeability, behav-
ing as obstacles or promoters of movement for tumor cells. In add-
ition, CAF agents are modeled as immunosuppressive cells by
inhibiting immune cell recruitment as explained in the next para-
graph. They can die by lack of nutrients with the same probability
of a cancer cell [see Equation (2)].

2.1.2 Immune system agents

IS constitutes a strong defense against cancer development, catching
and eliminating cells that undergo malignant transformation. The
way the IS acts to provide immune surveillance is wide and complex;
we refer to proper literature to describe it (Hawse and Morel, 2014;
Mart�ınez-Lostao et al., 2015). However, only for the purpose of
introducing cell agents in MAST, we summarize here its main
mechanisms.

Immune response rises from a coordinated action of multiple cell
types and molecules. NKs, DCs and Ms are initially recruited in the
TME and release cytokines and chemokines that initiate the inflam-
mation. DCs and Ms are also called antigen presenting cells because
they phagocyte cellular material including cancer cells, process and
present their antigens, within the lymph nodes, to T cells that even-
tually get primed against tumor antigens.

T cells maturate in different types. CTLs can mount a strong im-
mune response by killing their tumor-cell targets through antigen
recognition, while Treg cells have an immunosuppressive function,
that maintains tolerance to self-antigens and prevent autoimmunity
when inflammation is long-lasting.

Within MAST, NKs, DCs, CTLs and Tregs are explicitly mod-
eled and can be recruited, move, attack, die or disappear from the
grid space.

Recruitment: In MAST, immune cells are recruited in the tissue
with probability increasing with the adjuvanticity signal:

precruit i; jð Þ ¼ exp � 1

adjuvanticityneigh i; jð Þ

 !" #
; (4)

where adjuvanticityneigh represents the sum of adjuvanticity signals
in the Moore neighborhood of cell ði; jÞ. In particular, adjuvanticity
is defined as a proxy of the global IS enhancing signal, resulting

A B C

Fig. 1. Schematic representation of MAST, a hybrid multi-ABM of tumor–immune system. (A) MAST can be informed through a data-driven approach using several sources of

information to model unique characteristics of the TME in a tumor. (B) It couples a discrete ABM, which simulates tumor–immune system dynamics in the TME, and a con-

tinuous PDEs-based model to simulate nutrient diffusion from vessels. (C) MAST provides tabular and graphical outputs in order to analyze spatio-temporal evolution of in sil-

ico tumor growth simulation
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from the release of molecules promoting immune recruitment (e.g.
chemokine) and molecules release by cancer cells and promoting im-
mune suppression. In particular, adjuvanticity signal is increased

when a cancer cell dies by lack of nutrients or by IS attack, while
it is decreased when cancer cells acquire mutations of Type (3)

or immunosuppressive cells (i.e. Tregs and CAFs) are in the
neighborhood.

The probability of recruiting specifically NKs, DCs and CTLs is
obtained by multiplying precruit in Equation (4) by a specific param-
eter, which reflects their proportions with respect to the total number

of IS cells. Differently from other IS cells and consistently with the ob-
servation that Tregs are attracted in the domain when the inflamma-

tion is long-lasting (Greten and Grivennikov, 2019), Treg agents are
first recruited when a CTL becomes inactive after a certain number of
attacks, with probability TREG reclut par, and act as support agents

promoting the recruitment of other Tregs and CAFs with probability
described in Equations (5) and (6). Differently from Equation (4),
Tregs and CAFs recruitment depends on both the number of

Tregs and CAFs in the Moore neighborhood (i.e. inhibitoryneigh par-
ameter) and their corresponding recruitment parameters (i.e.

inhib_TREG_recruit_par and inhib_CAF_recruit_par).

pTREGrecruit
i; jð Þ ¼ exp � inhib TREG recruit par

inhibitoryneigh ði; jÞ

 !" #
: (5)

pCAFrecruit
i; jð Þ ¼ exp � inhib CAF recruit par

inhibitoryneigh ði; jÞ

 !" #
: (6)

Movement: When cancer cells are not in the neighborhood, im-

mune cells can move to new positions with probability proportional
to the adjuvanticity signal. To mimic the fact that T cells and NKs

are small and tend to move quickly (Vesperini et al., 2021), we allow
them to move in a neighborhood with a bigger radius at each
iteration.

Attack: When cancer cells are in the neighborhood, DCs process
cancer cell antigens and promote the recruitment of antigen-specific

T cells in the domain. CTLs attack only when specific antigens are
recognized and not many Treg cells are in their neighborhood.

Specifically, CTLs have a different killing probability depending on
cancer cell mutational status (e.g. PD-L1þ/�). In particular, when
PD-L1-like mutation is acquired by a tumor cell, the killing prob-

ability drops to mimic inhibitory regulation through immune check-
point molecules (Huang et al., 2019). Consistently with the
biological knowledge, CTLs can kill multiple target cells

(Wiedemann et al., 2006). After a certain number of attacks, they
become inactive and, as explained above, can recruit Treg in their

position at this stage, modeling a long-lasting inflammation.
Differently from CTLs, NKs are not antigen-specific, and, in MAST,
they always attack cancer cells in the neighborhood with a probabil-

ity of killing which is lower (Cerignoli et al., 2018). If they succeed,
then they die and the adjuvanticity signal is locally increased,

attracting other immune cells.
Antigen specificity of CTLs: If a cancer cell is killed by an NK

cell or encounter a DC, then the cancer cell-specific antigens are
processed. If the antigen was previously met, antigen-specific T cells
are immediately recruited in the environment. Otherwise, antigen-

specific T-cell activation is promoted and they will be recruited in
the environment with a certain delay, so to mimic their activation in

the lymph nodes.

2.1.3 PDE model

PDEs are used to model nutrient diffusion from their source (vessels)
and to model nutrient consumption within the TME environment.

The nutrient concentration C in a certain time instant t in a certain
position of the 2D grid ðx; yÞ is computed by solving the following

equation at steady state:

@C x; y; tð Þ
@t

¼ Dc r2C x; y; tð Þ � ki I x; y; tð Þ C x; y; tð Þ
� kt T x; y; tð Þ C x; y; tð Þ; (7)

where Dc is the nutrient diffusion coefficient,
I x; y; tð Þ and Tðx; y; tÞ are the spatial distributions at time t of IS and
cancer-related agents, respectively, and ki and kt are the correspond-
ing consumption rates. We consider two main types of nutrients:
those that are essential for cell division (denoted as N), and those
that are essential for cell survival (denoted as M). For nutrients, we
use the average glucose diffusion coefficient in tissues (�1 mm2/s)
(Carvalho et al., 2017), and thus resolve PDE at a steady state. Since
other substances important for cell survival are faster, solution at a
steady state is appropriate also for this latter. Normalized nutrient
concentrations at blood vessels are assumed equal to 1 arbitrary unit
(au).

2.1.4 Mast simulation cycle

Initially, a 2D grid of dimension W �H is defined together with the
type of cells occupying each grid position, based on the user-
specified parameters. Considering the average grid cell size of
�14.9mm (Kather et al., 2017), a lattice of 200�200 cells can be
used to mimic around 0.09 cm2 of tissue corresponding to 40 000
cells. Blood vessels are positioned upstream and downstream of the
domain (first and last row of the grid).

At the beginning of the simulation, a fixed number of monoclo-
nal tumor cells are placed in the center of the grid so that a specific
and unique antigen setting initially characterizes cancer cells, where-
as a fixed percentage of NKs and DCs with respect to the total num-
ber of cells are placed in random positions. Upon initialization, at
each time-step, MAST first updates the concentrations of nutrients
(using the PDE model) and then lets agents act (using the ABM
model), sampling for each agent in the grid the action to be done
(see Fig. 1), performing a random grid scanning. One time-step t in
the simulation corresponds to 6 h, that is the average time for im-
mune cell death (Breart et al., 2008) and we considered cells to div-
ide in �24 h (i.e. 4 time-steps) (Kather et al., 2017).

Additional information about model implementation, input and
output is provided in Supplementary Section S1, Figures S1–S4 and
Tables S1 and S2.

2.2 Data-driven strategy to inform and assess MAST
To assess the predictions of the model, we emulate the analysis
workflow performed in Kather et al. (2017). First, we showed that
our model can reproduce key features of real-case biological scen-
arios of human CRC. Model outcomes in the CRC scenarios were
validated using clinical data of the TCGA patient cohort and avail-
able biological knowledge on CRC CMS. Specifically, four different
TMEs were simulated based on CMS classification: CMS1 (micro-
satellite instability immune), CMS2 (canonical), CMS3 (metabolic)
and CMS4 (mesenchymal) (Guinney et al., 2015). A brief character-
ization of CMS is provided in Supplementary Section S2 and Figure
S5. Second, we investigated the effect of varying different tumor
conditions on tumor progression, analyzing the characteristics of
resulting TMEs and their agreement with current literature. While
some parameters do not change in different TMEs, others can be
specified to model unique characteristics of the TME.

CMS simulation scenarios were defined exploiting the data-
driven approach that characterizes MAST (see Fig. 1A), i.e. setting
some simulation parameters based on high-throughput sequencing
data (see Table 1 and Supplementary Table S3). In detail, tumor mu-
tational burden (TMB) can be derived from bulk whole-genome
sequencing experiments (bulk DNA-seq), while cell fraction and ex-
pression levels of inhibitory immune checkpoint genes can be esti-
mated from bulk and single-cell RNA sequencing (scRNA-seq) data.
Here, we informed our model using CRC publicly available data
from TCGA database and Samsung Medical Center (SMC) dataset
of Lee et al. (2020), as explained in Supplementary Section S3 and
Figure S6.
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Bulk whole-genome sequencing: TMB measures the total num-
ber of nonsynonymous mutations per coding area of a sample gen-
ome (Mut/Mb) and was estimated for each TCGA patient analyzing
bulk whole-genome data (Thorsson et al., 2018). Given the muta-
tional potential to generate neoantigens (Braun et al., 2016), TMB
index was used to set the mutational probability related to loss/ac-
quisition of antigenicity (parameter tum_newantigen_rate set high
or low in Table 1) following the trend of TMB distribution in the
data across CMS (Supplementary Fig. S7), also confirmed by litera-
ture (Kather et al., 2018).

Bulk RNA sequencing: Cell fractions were estimated from
TCGA bulk RNA-seq data using a bioinformatics approach based
on EPIC (Racle et al., 2017) and quanTIseq (Finotello et al., 2019),
further refined leveraging a consensus of several deconvolution
methods accessible through the immunedeconv R package
(Sturm et al., 2019), as explained in Supplementary Section S3 and
Figure S6. CAF and Treg cell proportion estimates were used to
tune recruitment probabilities of the two cell types, i.e. Equations
(5) and (6) (parameters inhib_CAF_recruit_par and inhib_TREG_
recruit_par in Table 1). Moreover, immune cell proportion, com-
puted as the sum of all immune-related cell type fractions, was used
to set parameter tum_adjchange_rate, as higher values of immune
cell proportions mean a lower probability of cancer cells of creating
an immunosuppressive environment and thus locally repel the IS
cells. The setting of these parameters to different levels across the
CMS, reported in Table 1, aims to mimic the trend of cell fraction
proportions showed by CRC TCGA data (see Supplementary
Figs S8 and S9).

Single-cell RNA sequencing: The average expression level of in-
hibitory immune checkpoint genes, i.e. CD274 (PD-L1)-like genes
(complete list of genes is available in Supplementary Section S3),
known to be upregulated in cancer cell able to evade the immune re-
sponse, was used to tune parameter tum_pdlp_mut, i.e. mutational
probability related to loss of immunogenicity. The relative distribu-
tion of mean gene expression level in scRNA-seq data from SMC
dataset (GSE132465) (Lee et al., 2020) is used, as illustrated in
Supplementary Figure S10, to set the parameter as high in CMS1,
CMS3 and CMS4 and low in CMS2 (see Table 1).

Literature: It is known that CMS3 tumor has an impaired meta-
bolic regulation (Kather et al., 2018). Thus, the parameter related to
tumor consumption of nutrient N, i.e. tum_ncons parameter, is set
at a higher rate in CMS3 with respect to the other subtype rates.

Additional information about high-throughput data, bioinfor-
matics analyses and CMS-specific parameters setting are available in
Supplementary Sections S3 and S4.

3 Results

3.1 CMS simulation: emergent properties and outcome
We simulated four TME scenarios representing the four molecular
subtypes, i.e. CMSs (see Table 1). For each CMS, 100 in silico
tumor-growth simulations were performed for a fixed number of
iterations (around 150 days) and their execution times are shown in
Supplementary Section S1 and Table S2. Our model was able to re-
produce emergent properties of each subtype of the TME as shown
in Figure 2.

First, we observed that all tumors are characterized by the expo-
nential growth of cancer cells (see Fig. 2A, C, E and G and

Supplementary Fig. S11), even though CMS3 growth was signifi-
cantly slower, suggesting that the metabolic subtype is a slow-
proliferating tumor. As shown in Supplementary Figure S12, the
number of specialized CTLs in the simulated tissue in CMS1 over
time was higher with respect to the other CMS, indicating a stronger
immune response activation. Moreover, CTLs appeared to be infil-
trated inside the tumor mass in our simulations (see Fig. 2B). These
results are in line with the distinct feature of CMS1, i.e. strong im-
mune infiltration (see Supplementary Section S2 and Fig. S5). We
also observe a different number of CAFs across the different sub-
types (see Supplementary Fig. S13) emerging spontaneously over
time. In particular, the growth rate was significantly faster in CMS4
compared to the others. Spatially, CMS4 was characterized by high
stromal component (see Fig. 2H), a well-known emergent property
of this tumor subtype.

Simulation outcomes were classified into complete tumor remis-
sion, when in silico simulation was tumor-cell free. Histogram bar
height in Figure 2A, C, E and G represents the number of simula-
tions not completely tumor-free at different time points. In particu-
lar, CMS1 and CMS4 subgroups resulted in a high-proliferating
tumor in the majority of simulations although CMS1 is character-
ized by higher IS cells infiltration and lower CAFs. In contrast, the
canonical and metabolic subtypes, i.e. CMS2 and CMS3, were char-
acterized by a higher tumor eradication rate. These predictions were
validated using clinical outcome endpoints of progression-free inter-
val of a 303 colorectal patient cohort from TCGA database (see
Supplementary Fig. S14) and are in line with current clinical know-
ledge on CMS (see Supplementary Fig. S5). Additional results on
simulations and clinical data analysis are available in Supplementary
Section S5.

3.2 Effect of specific parameters on TME
To better highlight the emergent properties of the different tumor–
immune dynamics and further validate the proposed model, the
collective behavior of tumors under different tumor conditions
was investigated for each CMS. Additional information about these
simulations is provided in Supplementary Section S6.

3.2.1 Effect of antigenicity

The loss of antigenicity is one of the immune escape mechanism can-
cer cells use to avoid elimination and increase tumorigenesis. It is
expected that the higher the tumor antigenicity, the more likely the
immune recognition through antigen presentation occurs, thus
inducing a higher immune response (Beatty and Gladney, 2015; de
Charette et al., 2016). To investigate the effect of loss/acquisition of
antigenicity on tumor–immune dynamics, the antigenicity rate
tum_newantigen_rate was varied between 1- and 16-fold from the
default value. As expected, the increasing number of antigens eli-
cited the number of CTLs suggesting, in turn, an elicited antigen-
specific immune response (see Supplementary Figs S15–S22).

3.2.2 Effect of immunogenicity

Tumors can escape immune elimination by decreasing immunogen-
icity, i.e. upregulating inhibitory immune checkpoint genes such as
PD-L1 molecules. Li et al. (2019) showed that PD-L1 expression in
tumor cells was significantly associated with poor prognostic out-
comes in CRC patients. To determine the effect of immunogenicity

Table 1. Data-driven setting of some MAST parameters across CMS

Parameter CMS1 CMS2 CMS3 CMS4 Source Index

tum_newantigen_rate High Low Low Low DNA-seq TMB

tum_pdlp_rate High Low High High scRNA-seq Gene expression

tum_adjchange_rate Low High Mid Low RNA-seq Cell fraction

inhib_TREG_recruit_par High High High Low RNA-seq Cell fraction

inhib_CAF_recruit_par High High High Low RNA-seq Cell fraction

tum_ncons Low Low High Low literature /
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on tumor progression, we increased the probability of PD-L1-like
genes acquisition, i.e. tum_pdlp_rate, from 1- to 16-fold from the
default value (see Supplementary Figs S23–S30). In accordance with
Li et al., the increasing probability of expressing PD-L1-like genes
resulted in higher rate of tumor-cell survival.

3.2.3 Effect of nutrient consumption

Tumor survival and proliferation require the availability of nutrients
in the environment. However, nutrient availability may be limited
by the combined effect of nutrient demand, i.e. consumption rate of
other cells, and accessibility of nutrients through vasculature
(Sullivan and Vander Heiden, 2019). To observe the effect of
nutrient consumption on tumor progression, we increase the tumor
nutrient requirement for duplication, i.e. tum_ncons parameter,
from 1- to 150-fold from the default value of non-tumor cell. As
highlighted by the decreasing number of tumor cells and in accord-
ance with Sullivan and Vander Heiden study (see Supplementary
Figs S31–S38), a high nutrient demand limited tumor proliferation
in a context of unchanged nutrient accessibility, i.e. unchanged
modeled vasculature.

3.2.4 Effect of CAFs recruitment

CAFs are known to enhance tumor proliferation and migration in
many cancers, including CRC (Aizawa et al., 2018). To analyze the

CAFs effect on tumor progression, we decreased the probability of
cell type recruitment by increasing inhib_CAF_reclut_par parameter

from 1- to 30-fold from the default value. As expected, the cardinal-
ity of CAFs varied with the parameter, and tumor proliferation was
promoted in response to increased CAF recruitment (see

Supplementary Figs S39–S46).

4 Discussion

In this work, we have presented MAST, a hybrid multi-ABM to in-

vestigate how IS and tumor cells interact within TME, assessing
which emergent properties arise. MAST couples a discrete and sto-
chastic ABM, which simulates interactions and dynamics of immune

and cancer cells in the TME, and a continuous, deterministic PDE-
based model to simulate nutrient diffusion from vessels.

Furthermore, MAST provides a wide range of graphical outputs
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Fig. 2. In silico simulation of the four CMS. Left panels (A, C, E and G) provide information on the temporal evolution of 100 simulations. In particular, in the upper sub-

graph, the number of not completely tumor-free (NTF) simulations in a determined instant (day), i.e. simulations having at least one cancer agent in the domain, is showed for

each CMS. In the below subgraph, the time course of agent counts across NTF simulations in log10-scale is showed: continuous line represents the average count, and the

shaded area represents its variability (6standard deviation). Right panels (B, D, F and H) display the spatio-temporal evolution of one simulation for each CMS. From left to

right, tumor progression on Days 60, 90, 120 and 150 are represented. Legend represents color-agent association related to above representations. All graphical representa-

tions are generated using MAST
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allowing an in-depth analysis of the spatio-temporal evolution of
each simulated TMEs.

It specifically models immune recognition and escape mecha-
nisms through the acquisition of mutations, and spatio-temporal dy-
namics of cells in response to nutrient availability. Model
parameters can be informed in a data-driven way using different
sources, such as literature or high-throughput sequencing data, in
order to simulate specific and unique immune–cancer microenviron-
ment of a tumor type.

We informed MAST by coupling bulk and single-cell sequencing
data of human CRC samples in order to simulate tumor progression
in four heterogeneous and specific TME scenarios, i.e. CMS. To val-
idate our model, we use different strategies. First, we assessed the
ability of MAST to reproduce known emergent biological properties
of the four CMS scenarios, such as a stronger immune response and
stromal infiltration in CMS1 and CMS4, respectively. Then, we
investigated the effect of different mutational, metabolic and stro-
mal plasticity conditions in cancer development and tumor–immune
dynamics, achieving a good agreement with current biological
knowledge of tumor. Lastly, we used clinical endpoints’ real data
from TCGA database to compare simulated and real tumor out-
comes of corresponding CMS scenarios.

Given the data-driven approach to inform the simulator, we also
tested the effect of considering different data sources on simulating
real case scenarios (see Supplementary Section S7, Figs S47–S52 and
Tables S4 and S5). In particular, we used TCGA or SMC dataset
separately to simulate the four CRC CMSs. Although a slight change
in some parameter settings was observed, different data sources pro-
vided the same distinct biological collective behavior of a tumor,
while including specific and personalized features of the TME of the
patient cohort.

In general, our model, like other existing ABMs, may suffer from
some limitations. MAST models the TME in a ‘slice’ of tissue, con-
sidering the possibility that IS cells appear and disappear from out-
side (i.e. upstream and downstream) but computing nutrient
diffusion in a 2D rather than 3D space. This simplification, how-
ever, allows for limiting the computational burden. One of the main
factors limiting a wider application of quantitative systems modeling
is its demand for rich experimental data or literature for a precise
parameter estimation. Therefore, MAST is a simplification of the
real mechanisms occurring in the TME. In future studies, it would
be of interest to integrate other sources of information complemen-
tary to bulk and single-cell experiments to inform our model, for ex-
ample imaging data or spatial transcriptomics for the spatial
distribution of cells, also adding vasculature modeling. In terms of
model assessment, MAST and the great majority of proposed ABMs
in literature (Alfonso et al., 2016; Frascoli et al., 2017; Kather et al.,
2017; Pourhasanzade et al., 2017; Wang et al., 2009) are validated
in a qualitatively way through the analysis of biological plausibility
of simulated outcomes with known tumors characteristics, and com-
parison between simulated and real clinical endpoints. Further valid-
ation through image-derived data is difficult, given the limited
availability of a complete and comprehensive image repository of
data from individual patients or cohort of patients, and the lack of
temporal data. Nevertheless, our simulations mimic the characteris-
tic patterns of real images such as those shown by Kather et al.
(2017).

We believe that MAST can be a useful tool to better understand
tumor–immune cell dynamics that drive tumor progression in specif-
ic and unique TMEs. We think that a data-driven way to generate
simulation settings could be a powerful tool in the way toward spe-
cialized and personalized studies of the TME. Ideally, the availabil-
ity of patient-specific data and the ability to inform model from
them can allow the modeling of patient-specific tumor–immune sys-
tem dynamics.

Although some simple immunotherapy modeling has been inves-
tigated (Supplementary Table S1 and Section S8), implementation of
other therapies could be incorporated in the future to investigate
their combined effect on tumor progression and to test how different
time-schedule affects their efficacy. Moreover, tumor mutational

evolution that leads to a selective advantage related to survival and
duplication fitness will be further investigated.

Acknowledgements

The authors acknowledge the computational resources granted by the CAPRI

HPC System (University of Padova Strategic Research Infrastructure Grant

2017: ‘CAPRI: Calcolo ad Alte Prestazioni per la Ricerca e l’Innovazione’).

The results shown here are in whole or part based upon data generated by the

TCGA Research Network: https://www.cancer.gov/tcga.

Funding

This work was supported by PROACTIVE 2017 ‘From Single-Cell to Multi-

Cells Information Systems Analysis’ [C92F17003530005] from Department

of Information Engineering, University of Padova; Italian Minister for

Education (MIUR) under the initiative ‘Departments of Excellence’ (Law

232/2016); the Austrian Science Fund (FWF) [T 974-B30 to F.F.]; the

Oesterreichische Nationalbank (OeNB) [18496 to F.F.]; and Department of

Information Engineering, University of Padova, under the initiative ‘Research

Grant (type B)-B senior initiative’ to G.B.

Conflict of Interest: none declared.

Data availability

The model described in this article is implemented in Python language and it

is freely available with an open-source license through GitLab (https://gitlab.

com/sysbiobig/mast). MAST is also released through the Docker Registry

(https://registry.gitlab.com/sysbiobig/mast/) to facilitate its distribution. The

submitted software version and test data are available in Zenodo at https://

dx.doi.org/10.5281/zenodo.7267745.

References

Aizawa,T. et al. (2018) Molecular characterization of cancer associated fibro-

blasts in colorectal cancer. Ann. Oncol., 29, ix42.

Alfonso,J.C. et al. (2016) In-silico insights on the prognostic potential of im-

mune cell infiltration patterns in the breast lobular epithelium. Sci. Rep., 6,

33322.

Baruzzo,G. et al. (2022) Identify, quantify and characterize cellular communi-

cation from single-cell RNA sequencing data with scSeqComm.

Bioinformatics, 38, 1920–1929.

Beatty,G.L. and Gladney,W.L. (2015) Immune escape mechanisms as a guide

for cancer immunotherapy. Clin. Cancer Res., 21, 687–692.

Bonabeau,E. (2002) Agent-based modeling: methods and techniques for simu-

lating human systems. Proc. Natl. Acad. Sci. USA, 99, 7280–7287.

Braun,D.A. et al. (2016) Genomic approaches to understanding response and

resistance to immunotherapy. Clin. Cancer Res., 22, 5642–5650.

Breart,B. et al. (2008) Two-photon imaging of intratumoral CD8þ T cell cyto-

toxic activity during adoptive T cell therapy in mice. J. Clin. Invest., 118,

1390–1397.

Carvalho,S. et al. (2017) Glucose diffusion in colorectal mucosa—a compara-

tive study between normal and cancer tissues. J. Biomed. Opt., 22, 91506.

Cerignoli,F. et al. (2018) In vitro immunotherapy potency assays using

real-time cell analysis. PLoS One, 13, e0193498.

Clarke,M.A. and Fisher,J. (2020) Executable cancer models: successes and

challenges. Nat. Rev. Cancer, 20, 343–354.

Dagogo-Jack,I. and Shaw,A.T. (2018) Tumour heterogeneity and resistance to

cancer therapies. Nat. Rev. Clin. Oncol., 15, 81–94.

de Charette,M. et al. (2016) Turning tumour cells into antigen presenting cells:

the next step to improve cancer immunotherapy? Eur. J. Cancer, 68,

134–147.

Finotello,F. et al. (2019) Molecular and pharmacological modulators of the

tumor immune contexture revealed by deconvolution of RNA-seq data.

Genome Med., 11, 1–20.

Frascoli,F. et al. (2017) A model of the effects of cancer cell motility and cellu-

lar adhesion properties on tumour-immune dynamics. Math. Med. Biol., 34,

215–240.

Fucikova,J. et al. (2020) Detection of immunogenic cell death and its relevance

for cancer therapy. Cell Death Dis., 11, 1–13.

MAST 7

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac092#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac092#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac092#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac092#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac092#supplementary-data
https://www.cancer.gov/tcga
https://gitlab.com/sysbiobig/mast
https://gitlab.com/sysbiobig/mast
https://registry.gitlab.com/sysbiobig/mast/
https://dx.doi.org/10.5281/zenodo.7267745
https://dx.doi.org/10.5281/zenodo.7267745


Gong,C. et al. (2017) A computational multiscale agent-based model for simu-

lating spatio-temporal tumour immune response to PD1 and PDL1 inhib-

ition. J. R. Soc. Interface, 14, 20170320.

Greten,F.R. and Grivennikov,S.I. (2019) Inflammation and cancer: triggers,

mechanisms, and consequences. Immunity, 51, 27–41.

Guinney,J. et al. (2015) The consensus molecular subtypes of colorectal can-

cer. Nat. Med., 21, 1350–1356.

Hanahan,D. and Coussens,L.M. (2012) Accessories to the crime: functions of

cells recruited to the tumor microenvironment. Cancer Cell, 21, 309–322.

Hawse,W.F. and Morel,P.A. (2014) An immunology primer for computation-

al modelers. J. Pharmacokinet. Pharmacodyn., 41, 389–399.

Huang,C. et al. (2019) Immune checkpoint molecules. Possible future thera-

peutic implications in autoimmune diseases. J. Autoimmun., 104, 102333.

Huang,A.Y. and Lee,E.A. (2022) Identification of somatic mutations from

bulk and single-cell sequencing data. Front. Aging, 2, 800380.

Joshi,R.S. et al. (2021) The role of cancer-associated fibroblasts in tumor pro-

gression. Cancers (Basel), 13, 1399–1327.

Kather,J.N. et al. (2017) In silico modeling of immunotherapy and

stroma-targeting therapies in human colorectal cancer. Cancer Res., 77,

6442–6452.

Kather,J.N. et al. (2018) Genomics and emerging biomarkers for immunother-

apy of colorectal cancer. Semin. Cancer Biol., 52, 189–197.

Lee,H.O. et al. (2020) Lineage-dependent gene expression programs influence

the immune landscape of colorectal cancer. Nat. Genet., 52, 594–603.

Li,Y. et al. (2019) The prognostic and clinicopathological roles of PD-L1 ex-

pression in colorectal cancer: a systematic review and meta-analysis. Front.

Pharmacol., 10, 139.

Mart�ınez-Lostao,L. et al. (2015) How do cytotoxic lymphocytes kill cancer

cells? Clin. Cancer Res., 21, 5047–5056.

Norton,K.A. et al. (2018) Modeling triple-negative breast cancer heterogen-

eity: effects of stromal macrophages, fibroblasts and tumor vasculature.

J. Theor. Biol., 452, 56–68.

Norton,K.A. et al. (2019) Multiscale agent-based and hybrid modeling of the

tumor immune microenvironment. Processes (Basel), 7, 37.

Peskov,K. et al. (2019) Quantitative mechanistic modeling in support of

pharmacological therapeutics development in immuno-oncology. Front.

Immunol., 10, 924.

Plava,J. et al. (2019) Recent advances in understanding tumor

stroma-mediated chemoresistance in breast cancer. Mol. Cancer, 18, 1–10.

Pourhasanzade,F. et al. (2017) An agent-based model of avascular tumor

growth: Immune response tendency to prevent cancer development.

Simulation, 93, 641–657. doi:10.1177/0037549717699072.

Racle,J. et al. (2017) Simultaneous enumeration of cancer and immune cell

types from bulk tumor gene expression data. Elife, 6, e26476.

Sauter,B. et al. (2000) Consequences of cell death: exposure to necrotic tumor

cells, but not primary tissue cells or apoptotic cells, induces the maturation

of immunostimulatory dendritic cells. J. Exp. Med., 191, 423–434.

Stratton,M.R. et al. (2009) The cancer genome. Nature, 458, 719–724.

Sturm,G. et al. (2019) Comprehensive evaluation of transcriptome-based cell-

type quantification methods for immuno-oncology. Bioinformatics, 35,

i436–i445.

Sullivan,M.R. and Vander Heiden,M.G. (2019) Determinants of nutrient limi-

tation in cancer. Crit. Rev. Biochem. Mol. Biol., 54, 193–207.

Tang,S. et al. (2020) Mechanisms of immune escape in the cancer immune

cycle. Int. Immunopharmacol., 86, 106700.

Thomas,R.M. et al. (2016) Concepts in cancer modeling: a brief history.

Cancer Res., 76, 5921–5925.

Thorsson,V. et al.; Cancer Genome Atlas Research Network. (2018) The im-

mune landscape of cancer. Immunity, 48, 812–830.e14.

Vesperini,D. et al. (2021) Characterization of immune cell migration using

microfabrication. Biophys. Rev., 13, 185–202.

Vicens,A. and Posada,D. (2018) Selective pressures on human cancer genes

along the evolution of mammals. Genes (Basel), 9, 582.

Wang,Z. et al. (2009) Cross-scale, cross-pathway evaluation using an

agent-based non-small cell lung cancer model. Bioinformatics, 25,

2389–2396.

Wiedemann,A. et al. (2006) Cytotoxic T lymphocytes kill multiple targets sim-

ultaneously via spatiotemporal uncoupling of lytic and stimulatory synap-

ses. Proc. Natl. Acad. Sci. USA, 103, 10985–10990.

8 G.Cesaro and M.Milia et al.

https://doi.org/10.1177/0037549717699072



