
A Model for the Regulation of Follicular Dendritic Cells Predicts 
Invariant Reciprocal-Time Decay of Post-Vaccine Antibody 
Response

Anthony Almudevar, PhD
Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, 
USA 14642, phone: (585) 275-6992, fax: (585) 273-1031

Abstract

Follicular dendritic cells (FDC) play a crucial role in the regulation of humoral immunity. They 

are believed to be responsible for long-term persistence of antibody, due to their role in antibody 

response induction and their ability to retain antigen in immunogenic form for long periods. In this 

article, a regulatory control model is proposed which links persistence of humoral immunity with 

cellular processes associated with FDCs. The argument is comprised of three elements. The first is 

a literature review of population-level studies of post-vaccination antibody persistence. It is found 

that reciprocal-time (∝ 1/t) decay of antibody levels is widely reported, over a range of ages, 

observation times, and vaccine types. The second element is a mathematical control model for cell 

population decay for which reciprocal-time decay is a stable attractor. Additionally, control 

effectors are easily identified, leading to models of homeostatic control of the reciprocal-time 

decay rate. The final element is a literature review of FDC functionality. This reveals a striking 

concordance between cell properties required by the model and those widely observed of FDCs, 

some of which are unique to this cell type.

The proposed model is able to unify a wide range of disparate observations of FDC function under 

one regulatory principle, and to characterize precisely forms of FDC regulation and dysregulation. 

Many infectious and immunological diseases are increasingly being linked to FDC regulation, 

therefore a precise understanding of the underlying mechanisms would be of significant benefit for 

the development of new therapies.

Introduction

Follicular dendritic cells (FDC) are found in the B-cell follicles of secondary lymph nodes. 

They are nonmigratory, and form a reticula network which defines a microenvironment. 

Their function is to capture and retain antigen in immunogenic form, and to induce antibody 

responses by supporting germinal centers (GC), the sites of B-cell maturation. This dual role 

is believed to be related to the persistence of antibody response, although the exact 
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mechanism remains a significant open question,1 as many infectious and immunological 

diseases are increasingly being linked to FDC regulation.2,3,4 FDCs are capable of retaining 

unprocessed immune complexes for long periods of time, and “[f]or these characteristics, 

FDCs are exploited by pathogens, such as prion proteins and HIV, to persist undisturbed into 

the host”.3

We present a novel mathematical control model which links regulation of antigen retention 

by FDCs to the reciprocal-time decay of post-vaccination antibody concentrations which is 

consistently reported in the literature. The model defines generalized interactions among 

FDCs, B-cells, and antigen-transport pathways. Balance conditions defining the steady state 

flow of antigen through an FDC population are defined. It is shown that under these 

conditions, any form of controlled FDC decay which maintains constant levels of retained 

antigen must result in invariant reciprocal-time decay of that FDC population, and therefore 

of observable antibody levels. Several classes of biologically admissible control laws are 

shown mathematically to maintain this steady state using a form homeostatic control. 

Numerical simulations demonstrate considerable robustness to various forms of 

perturbation.

The proposed model is supported empirically by a compendium of experimental 

observations compiled from two distinct literature reviews, and is able to unify disparate 

observations at both the population and cellular levels. Many of these observations would 

otherwise have no intuitive connection. A first principles model for FDC regulation is based 

on the following three components:

1. Reciprocal-time antibody decay. Humoral antibody persistence is a crucial outcome for 

vaccine development, and longitudinal antibody level measurements are regularly reported 

in the literature. Antibody levels are frequently observed to decay proportionally to tk, k < 0, 

where t is the time since vaccination, referred to as power-law decay (PLD). In addition, k is 

consistently estimated to be close to -1 over a widely varying range of ages, observation time 

windows and vaccine types.

If there does exist an invariant reciprocal-time antibody decay mode (k = −1) this could be 

highly informative of regulatory processes. We offer two conjectures:

Conjecture 1: Under PLD, post-vaccination antibody half-life increases with the 

time elapsed since the vaccine. This suggests that control of antibody decay is non-

autonomous, requiring a higher degree of regulatory organization than would be 

possible based on time invariant decay and reaction rates.

Conjecture 2: The invariance of reciprocal-time decay suggests a control 

mechanism possessing this rate of decay as a stable attractor.

2. Homeostatic control of reciprocal-time decay. A simple cellular decay model satisfies 

Conjectures 1-2. Suppose Ct is the concentration of a cell population ℱ at time t ≥ 0. Each 

cell ingests some resource at rate μ > 0, and must do so to remain active. Some process 

regulates deactivation of cells. Deactivated cells release previously ingested resource. At 

time t each active cell contains ingested resource of quantity μt (assuming each is ‘empty’ at 

time t = 0), therefore the total resource in ℱ is Ft = μtCt. Then, if any regulatory process 
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maintains equal rates of resource flow into and out of ℱ, Ft will in turn maintain some 

constant level F∞, resulting in reciprocal-time decay Ct = F∞/μt. Thus, invariant reciprocal-

time decay is a consequence of steady state resource flow through the cell population, which 

would in turn form a target for homeostatic control. If antibody levels are maintained in 

proportion to Ct, then this would be observable at the population level. It is interesting to 

note that a very simple way of achieving this is to ensure that resource released by 

deactivated cells is recycled for future ingestion by the remaining active cells.

3. Follicular dendritic cells as control effectors. FDCs are reported to ingest, retain and 

release antigen in an immunogenic form for long periods. This ability is unique to FDCs.1 

Their continued activation is reported to depend on continual interaction with B-cells, which 

are also involved in antigen transport.5 Deactivated FDCs have been observed to release 

ingested antigen, which remains immunogenic.6 In addition, FDCs induce antibody 

production by their support of GCs.2

It will be shown that there is a remarkable concordance between the required cell 

functionality for the model cell population ℱ and the known functionality of FDCs, with 

antigen playing the role of resource. It is interesting to note that, in addition to questions of 

antigen retention, the exact role played by FDCs in antibody induction remains an open 

question. Much of the literature describes the FDC as an antigen-presenting cell, therefore 

providing specific immune induction. However, alternative hypotheses describe FDC 

support of GCs as necessary but nonspecific, and multiple forms of GC support are 

described in the literature.7,8 The relevance of the proposed model does not depend on this 

question. Under it, the role played by FDCs in antibody persistence is essentially that of a 

clock, in addition to its other functions.

Results

Models for population level antibody decay

Immune protection following vaccination is observable as the induction and maintenance of 

sufficiently high antibody levels over time for nearly all vaccines in use for humans. One 

advantage of post-vaccination follow-up studies is that antibody concentration 

measurements are synchronized to a common immune response starting time. Antibody 

half-life is commonly observed to increase in time over any scale,9 contrasting with 

exponential decay resulting from spontaneous immune response cell deactivation and/or 

apoptosis. It seems possible, therefore, that post-vaccination antibody kinetics can be 

informative of specific forms of immune regulation, given that “[t]he nature of the vaccine 

exerts a direct influence on the type of immune effectors that are predominantly elicited and 

mediate protective efficacy”.10

Antibody concentration Ct subject to PLD can be modeled by

Ct

(t − θ)k = R, t > θ, (1)
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where R is constant and θ is a time origin. A common practice is to plot concentrations 

against time using double-logarithmic scales, linearity being evidence of PLD (but see ref. 

11). This property is not time-location invariant, so the correct identification of θ is 

important. However, for any θ Equation (1) approaches PLD in the limit.

Nonzero decay limits ν > 0 are also proposed in the literature,12,13 explained by competition 

among plasma cells for “safety niches” in bone marrow. This models antibody sources with 

negligible decay, which may be aggregated with PLD as

Ct − ν

(t − θ)k = R, t > θ . (2)

We refer to (2) as the offset power-law decay (OPLD) model, with constraint k = −1 defining 

the offset reciprocal-time decay (ORTD) model. In addition, model (2) with constraints k = 

−1, ν = 0 defines the reciprocal-time decay (RTD) model.

It has been noted by various authors that power-law decay, examples of which are reported 

in many fields, may have many causes, apart from a specific dynamic law, ranging from 

aggregation of heterogeneous processes to measurement distortion (see ref. 14 for an 

excellent discussion). In fact, the PLD model has been conjectured to arise as a stochastic 

mixture of heterogeneous exponential decay processes in the context of post-vaccine 

antibody kinetics,12 yielding a model of the form

log Ct = k f − a f log (c f + t), (3)

termed the conventional power-law decay (CPLD) model. Long term persistence is modeled 

as a distinct mixture component with an essentially zero decay rate12

log Ct = k f + log ((1 − π f )(c f + t)
−a f + π f ), (4)

termed the modified power-law decay (MPLD) model, which reduces to (3) for πf = 0.

Equivalence of power-law and aggregation dynamics—Note that the OPLD and 

MPLD models are equivalent, mapped through the reparametrization πf = ν/(ν + R), kf = 

log(ν + R), cf = −θ, af = −k. Similarly, PLD and CPLD are equivalent, using the same 

transformation with ν = πf = 0. Therefore, from a statistical point of view there is nothing to 

distinguish power-law and aggregation dynamics. We assume all models require definition 

of a decay time origin θ = −cf. Otherwise, we are left with four models distinguished by two 

factors. Therefore, in the context of model identification, OPLD (= MPLD) is the fully 

specified model, with nested submodels RTD, PLD (= CPLD) and ORTD. See Table 1 for a 

summary of the models.
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Review of post-vaccination antibody kinetics studies

In the next two subsections we review reports of antibody decay rates from population-level 

post-vaccination studies. The first review includes reports in which PLD was explicitly 

assumed, and which also provided estimates k of the decay rate. In general, the validity of 

the PLD assumption was assessed using double-logarthmic plotting. The asymptote was in 

each case taken to be ν = 0.

The second review includes studies in which geometric mean titers (GMT) of humoral 

antibody concentrations at fixed post-vaccination time points are tabulated. The assumptions 

here are more varied. In general, a wider range of models were considered, and included 

nonzero asymptotes ν ≥ 0. The studies used are listed in Table 2.

Review 1 - Empirical observation of reciprocal-time decay

The first review considers the PLD model only. Of note is that reported decay rates are 

consistently near k = −1. In one study hepatitis-B vaccine-induced antibody concentrations 

were measured over a period of 82 months after vaccination on 35 subects.15 Peak 

concentration was reached after one month, following which PLD was consistently observed 

with estimated decay rate k̂ = −0.9.

Antibody decay was observed for 3085 subjects following a hepatitis-B vaccine over a 10 

year period.16 Following peak antibody concentration at 68 days, PLD with estimated decay 

rate k̂ = −0.97 was reported.

A haemophilus influenzae type b (Hib) conjugate vaccine booster dose was administered to 

386 children (6 months to 4 years) following a schedule of primary doses.17 Pre-booster 

(post-booster) PLD rates of k̂ = −1.25 (k̂ = −0.92) were reported.

A combination meningococcal serogroup C and Hib conjugate vaccine was adminstered to 

280 healthy children aged 12-15 months18 (data for this analysis was pooled with the study 

reported in ref. 17). Vaccine regimens varied, but a booster was administered following a 

primary dose schedule. For serogroup C-specific IgG PLD rates of k̂ = −0.86, −0.95, pre- 

and post-boost, were reported. The Hib (PRP-specific) IgG PLD rate k̂ = −1.08, −1.00, pre- 

and post-boost, were reported. Meningococcal serogroup C serum bactericidal antibody 

(SBA) was also assayed, and found to decay somewhat more quickly, with PLD rates k̂ = 

−1.55, −1.60 pre- and post-boost. The more rapid decay of the SBA was noted by the 

authors, offering the possibility that this is related to a disproportional representation of IgM 

antibodies in that form of titre.

In ref. 19 two population-based cross-sectional surveys of diphtheria antitoxin IgG 

concentration were analysed (collected in years 1995/1996 and 2006/2007). Analysis was 

limited to individuals receiving a final dose of diptheria vaccine between 8 to 9 years of age, 

and who were of ages 10 to 34 years (1995/1996) or 10 to 39 years (2006/2007). PLD rates 

of k̂ = −1.20, −1.19 were reported for the respective surveys. It should be noted that the use 

of natural age instead of time since vaccine renders the comparison inexact, but given the 

long observation window this would not lead to large differences.

Almudevar Page 5

Immunol Cell Biol. Author manuscript; available in PMC 2018 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Review 2 - Comparison of alternative decay models

The second review considers nonzero asymptotes ν ≥ 0. All four models of Table 1 are 

considered. We use least-squares (LS) estimates for model parameters based on log-

transformed GMTs reported in the original publications. In each case, marginal 95% 

confidence intervals (CI) were also reported. To estimate parameters for the OPLD model 

the LS solutions for constrained k were calculated, then k varied. Subject level data was not 

used, which limits the use of formal statistical procedures or model selection methods.

Thus, it is important to note that the OPLD model is in this context the full model, the 

remaining models being formal reductions. This means that the error sum of squares SSE 

used as the fitting criterion is necessarily smallest for OPLD in every case. Therefore, absent 

further distributional assumptions, SSE cannot be used directly for model selection.

However, a reasonable judgement on goodness-of-fit can still be made. This would require, 

at a minimum, that a model's fitted values are within each CI. However, we found that in 

many cases the fitted values deviated very little from the reported GMTs themselves, far 

exceeding in stringency the criterion of CI coverage. Therefore, a positive goodness-of-fit 

judgement can be confidently made. In addition, in some cases alternative models yielded 

nearly identical fitted values, in which case any parsimony criterion would favor the simpler 

model.

To summarize, the objective is to identify the simplest model, if any, which successfully fits 

all data sets.

We note that in two cases12 model parameters estimated in the original publication were 

used, as will be discussed.

HPV-16 vaccine data12—In ref. 12 the PLD/CPLD and OPLD/MPLD models were 

applied to antibody levels following HPV-16 vaccination over a 48 month study period (day 

1 and months 7, 12, 18, 24, 30, 36, 42, and 48). Subjects were identified as either HPV-16 

naive or HPV-16 seropositive. The models were fit from the full data using mixed effects 

models. Refering to the CPLD/MPLD parametrizations, the authors state that parameter cf 

“ … is an arbitrary small constant (often set to zero)”. The fitted values for each model were 

reported only for the HPV-16 naive group (Supplementary Table 1), and in addition, the 

values of cf were not reported.12 They are estimated here as LS solutions, with the remaining 

parameters fixed at the reported values (Supplementary Table 1). Thus, where possible, we 

use in our analysis parameter estimates reported in the original publication.

Figure 1 shows fits for the PLD, OPLD, ORTD and RTD models. GMTs with 95% 

confidence limits are superimposed. For both groups, both the ORTD and OPLD models 

yield fits closely matching the GMTs (consistently within 95% CIs). The PLD model fails 

for the naive group, and the RTD model fails for both. Since both the ORTD and OPLD 

models yield fits compatible with the reported GMTs, this example suggests that additional 

parameter k in the OPLD is not needed.
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Hepatitis A vaccine data20; Acellular pertussis (ACP) vaccine data21—In a 

vaccine trial of 110 healthy adults (hepatitis A virus seronegative) were vaccinated with an 

inactivated hepatitis A vaccine according to the schedule 0-1-2-12 months.20 Subjects were 

randomized into 3 groups of varying vaccine dose (180, 360, 720 ELISA units per dose). 

GMTs and 95% CIs are reported for 13, 18, 24, 36, 84 months after vaccine (Table 1 20).

In an acellular pertussis (ACP) vaccine efficacy trial, IgG and IgA antibodies to pertussis 

toxin (PT), filamentous hemagglutinin (FHA), pertactin (PRN), and fimbriae 2/3 (FIM) were 

collected from 101 single-dose ACP vaccine recipients and 99 control subjects at 1, 6, 12 

and 18 months after vaccination.21 GMTs and 95% CIs are reported (Tables 1-2 21).

For both studies, the LS estimates of the PLD, OPLD, ORTD and RTD models were 

calculated. Figure 1 shows each fit (parameters are given in Supplementary Tables 2-3). In 

each case, the PLD, OPLD and ORTD fits were very close for all models, and well within 

reported 95% CIs. (The FIM GMTs did not differ significantly between vaccine and control 

groups.21) The SSE for the RTD fits were generally much larger, and the fits deviated 

noticeably from the alternative models, especially near the points of greatest curvature. 

Nonetheless, the RTD fits still remained within the reported 95% CIs (Figure 1).

Identifiability of decay models—Figure 2 plots the OPLD parameters for varying k for 

the HPV-16 naive subjects of ref. 12. The SSE attained for the reported OPLD/MPLD model 

was 0.0062312 (Figure 2, top left). We found that k = −2.183 yielded the minimum SSE = 

0.00184, compared to the reported value k = −3.56 (Supplementary Table 1).12 Figure 2 

identifies parameter regions of fits for which SSE ≤ 0.00623 (Supplementary Table 4), 

which are therefore at least as plausible as the OPLD/MPLD model reported in ref. 12. Yet 

this set contains considerable variation of parameter values. The decay rate itself varies 

within k ∈ [−3.72, −1.38], and rate k = −1 has already been shown to yield a model 

compatible with the reported GMTs. A similar effect can be seen for the HPV-16 

seropositive group (Supplementary Figure 1).

Additionally, ν represents the limiting antibody concentration, with values ν ∈ [105.67, 

130.39] associated with models for which SSE ≤ 0.00623. Furthermore ν = 86.2 for the 

ORTD model. One goal of identifying antibody kinetics is to enable comparison to 

minimum protective antibody levels (MPL). This value has not yet been determined for 

commercialized HPV vaccines.22,23 Conjectured values of 20 and 100 mMU/mL were used 

in ref. 12 to predict long-term protection. This upper bound is well within the range of 

plausible values of ν among the various models considered. In addition, there is a tendency 

in the OPLD/MPLD model for the estimate of ν to be close to the minimum reported GMT 

(Supplementary Tables 1-3). Therefore, the comparison of MPLs to vaccine kinetics cannot 

be resolved within this parametric framework.

Accurate estimates of curvature require a suitably higher density of time points where 

curvature is greatest. However, what is most needed is a scientifically validated model for 

which parameters can be confidently interpreted. Thus, while it is important to note that 

reciprocal-time decay (with or without limit ν) was able to explain every example of 
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antibody kinetics examined here, the next crucial step is to propose a plausible first-

principles model which predicts reciprocal-time decay. We consider this problem next.

Function of FDCs

A number of review articles describe FDC origin, structure and functionality.24,25,2,1,4 The 

following properties are consistently reported.

(A1) FDC architecture forms a microenvironment within secondary lymph nodes.

(A2) FDCs are capable of ingesting and storing antigen for long periods of time. 

Ingested antigen is not degraded, and remains immunogenic.

(A3) FDCs require persistent signaling to remain active.

(A4) When an FDC is inactivated, it can no longer ingest or retain antigen.

(A5) FDCs stimulate antibody production via support of GCs.

Regarding (A1), FDCs are nonmigratory, and collectively create a “sponge-like” network of 

reticula in which antigen is retained, defining a microenvironment in which they interact 

with B-cells in several ways.24

Property (A2) describes the long-term retention of antigen in lymph tissue cells in a 

functional state, which has been confirmed by earlier experimental observations.26,27,28 

Antigen, in the form of immune complexes (IC) of antigen-antibody pairs, can be acquired 

by interaction with naive antigen transporting B-cells. The ICs are stored by FDCs as 

membrane-coated bodies known as iccosomes. FDCs are capable of returning ingested 

antigen to the cell surface. In fact, single antigen particles can be observed to cycle multiple 

times between cell surface and cell interior.29 The ability of FDCs to retain intact antigen for 

extended periods is unique.1

Regarding properties (A3)-(A4), maintenance of FDC functionality requires continual 

lymphotoxin α/β (LT) signaling (with tumour necrosis factor (TNF) playing a similar role).5 

Inhibition of LT signaling not only prevents FDC trapping of ICs, but eliminates previously 

trapped ICs. The authors of ref. 5 write that “[a] surprising observation is that the 

maintenance of pre-existing FDCs in a differentiated state requires continual interaction with 

B lymphocytes expressing LTα/β”. FDCs produce the B-cell attractant CXCL13. This 

mechanism is part of a positive feedback loop.30

Regarding (A5), GCs are recognized as the site of the induction of B-cell memory, and the 

close association of GCs and FDCs is widely reported. The ratio of FDC antigen retaining 

reticula and GCs was reported to be 1:1 in mouse lymph tissue.24 That active GCs require 

FDC support in the normal immune response is widely accepted. However, it has been 

proposed7 that antigen-presentation by FDCs is not required for GC function, and the 

question of whether GC support is specific or non-specific is still being considered.1,4,8 

Nonetheless, our model does not depend on the exact form of GC/FDC interaction. We only 

argue that under certain steady state conditions FDC populations decay by reciprocal-time, 

and so would any FDC-dependent antibody production.
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Decay of FDC concentration is concurrent with antigen retention—In ref. 24 a 

time series of concentrations of injected radio-labeled antigen within mouse lymph tissue 

was reported. According to the authors “… it is … significant that nearly half of the follicles 

that had an antigen-retaining reticulum on [day] 3 lost it by [day] 5. It appears that the FDC 

in some follicles release all the localized antigen by [day] 3, apparently by iccosome release, 

while the antigen persists in other follicles for long-term retention.”

Control model for FDC decay

We next develop the mathematical model for homeostatic control of reciprocal-time decay 

introduced above (some details of the mathematical argument are given in the 

Supplementary Material). We first verify the equivalence of antibody and FDC kinetics. We 

consider a kinetic model in which antibody A(t) decays at rate μa > 0, and in which antibody 

production is stimulated by cells B(t) at rate λb > 0 for a total antibody rate13

dA
dt = − μaA(t) + λbB(t) . (5)

If the decay of B(t) is slower than spontaneous antibody decay, then it is this decay rate 

which will be observed. Under property (A5) decay of FDC-induced antibody would then be 

proportional to FDC population decay. This is stated in Theorem 1. The essential condition 

on B(t) is given in terms of its decay rate. This need not be constant. All that is required is 

that the decay rate of B(t) remain less than, and bounded away from, μa. In this case A(t) and 

B(t) have the same asymptotic decay rate.

Theorem 1. In Equation (5), suppose B(t) possesses derivative B′(t), and there exist 

constants aL ≤ aU for which

−μa < aL = lim inf
t ∞

B′(t)
B(t) ≤ lim sup

t ∞
B′(t)
B(t) = aU . (6)

Then

λb
μa + aU

≤ lim inf
t ∞

A(t)
B(t) ≤ lim sup

t ∞
A(t)
B(t) ≤

λb
μa + aL

. (7)

Proof. See Supplement S.1 for proof.

Model definition—Suppose there exists a population of activated FDCs, the initial size 

being a positive real number N ∈ ℝ The model system  is partitioned into a reservoir ℛ 
and an FDC population ℱ. Flow through  is given by:
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External antigen source ℛ ℱ Antigen clearance .

The system  can be taken to be the microenvironment created by the FDC population 

(property (A1)). Antigen transport pathways exist in ℛ, while antigen retained in FDCs 

exists in ℱ.

Let Ct, Ft be the population size of still active FDCs and the total amount of antigen in ℱ at 

time t ∈ [0, ∞), respectively. We take Ct ∈ [0, N], Ft ∈ [0, ∞) to be real valued, with initial 

values C0 = N, F0 = 0. We also need to define the amount of antigen Et ∈ [0, ∞) contained 

in ℛ. This is the antigen available for FDC ingestion.

Define the following rules:

(B1) As long as a unit FDC remains active it ingests antigen at a rate of μ per unit 

time.

(B2) A unit FDC may be deactivated at any time, at which point its total ingested 

antigen is released.

(B3) No FDC can be created or reactivated.

System steady state—We next characterize the steady state mathematically, and describe 

the implications for FDC kinetics. Under rules (B1)-(B3) the balance equation

Ft = μtCt, t ≥ 0 (8)

must hold. Differentiating (8) gives

dFt
dt = μ Ct + t

dCt
dt . (9)

The terms of Equation (9) are easily interpretable. Antigen is ingested at a rate of μ per unit 

cell, giving the term μCt. At time t a unit FDC has ingested μt units of resource, therefore a 

decay rate of dCt/dt < 0 forces release of antigen from ℱ at the rate −μtdCt/dt.

Thus, the system steady state dFt/dt = 0 is characterized by both constant antigen retention Ft 

= F∞ and reciprocal-time decay of the FDC population Ct = F∞/μt.

Negative feedback mechanism for homeostatic control—We now show how 

reciprocal-time decay may be characterized as an attractor. This describes any stable mode 

of behavior towards which a systems tends from a large set of initial states. In fact, the 

model possesses a natural control effector in the form of a parameter which may be 

regulated to correct deviations from the steady state. Define the double-logarithmic 

derivative
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kt =
d log Ct
d log t =

Ct
−1dCt

t−1dt
.

The solution to kt ≡ k yields the relation

Ct
Cs

= t
s

k
, s, t > 0 . (10)

We may then express (9) as

dFt
dt = μ ⋅ Ct[1 + kt], (11)

from which the control effector emerges. Maintaining kt ≡ −1 forces dFt/dt = 0, and kt > −1 

or kt < −1 forces increase or decrease in Ft, respectively. Thus, feedback control of kt, which 

determines the decay rate of Ct, provides a negative feedback mechanism for homeostatic 

maintenance of the system steady state. Interestingly, the steady state forces continual decay 

of Ct.

Forms of control law—The problem is then to propose a biologically admissible control 

law for kt with the system steady state as an attractor. It would be reasonable to assume that 

control is effected at the individual cell level, taking the form

dCt
dt = − λ(Ft, Ct, t)Ct (12)

for some unit cell decay control functon λ̄ ≥ 0. We can substitute the balance equation (8) 

into (12) to obtain a first-order ordinary differential equation (ODE):

dCt
dt = − λ(μtCt, Ct, t)Ct . (13)

In this form, λ̄ could be interpreted as a stochastic FDC failure rate following some 

sequence of signaling or interaction events. Note that the instantaneous population half-life 

is t1/2 = log(2)/λ̄, so if λ̄ is bounded above we must have Ct > 0, t > 0.

Exponential decay cannot yield homeostatic control—Spontaneous population 

decay with constant half-life defines exponential decay. This cannot direct the system to its 
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steady state. To see this, suppose ℛ always contains sufficient antigen for FDC ingestion, 

and the unit cell decay rate is constant at λ̄(Ft, Ct, t) ≡ ρ > 0, resulting in exponential 

population decay. The solution to (12) is Ct = C0 exp(−ρt), in which case Ft = μtC0exp(−ρt). 
This function possesses a global maximum at t = 1/ρ. Therefore, Ft increases to peak level 

Fmax = (μ/ρ)C0 exp(−1) then converges to zero.

Steady state antigen flow through FDC population ℱ—We next consider what form 

of control is required for homeostasis. Under system steady state we have

dCt
dt = −

Ct
t , t > 0,

so that

λ(Ft, Ct, t) = t−1 . (14)

However, what is needed is a control function λ̄ in the form of a time-homogenous closed-

loop control law which yields robust maintenance of the steady state through simple 

negative feedback mechanisms, and which is compatible with known FDC functionality.

Control for which unit cell decay is proportional to FDC concentration—One 

possibility is that FDC deactivation is upregulated in proportion to population concentration. 

Under the balance conditions of (8), (14) is equivalent to

λ(Ft, Ct, t) =
μCt
Ft

, (15)

which approaches in the limit

λ(Ft, Ct, t) =
μCt
F∞

. (16)

We show, conversely, that a control law of the form (16) possesses the system steady state as 

an attractor. Suppose we are given for some a > 0 control function

λ(Ft, Ct, t) = aCt . (17)

This yields ODE
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dCt
dt = − aCt

2 .

The solution

Ct = 1
at + 1/C0

, t ≥ 0, (18)

is easily verified by direct substitution. It is important to note that (18) differs from (10) in 

several important respects. The relationship (10) is defined on logarthmic time while (18) is 

defined for additive time, with reciprocal-time decay approached as a limit. Thus, for (10) if 

s > 0 is an initial time, we have Ct = Cs(s/t), and Ct is uniformly proportional to initial value 

Cs. In contrast, in (18) Ct is not uniformly proportional to C0, and the dependence on C0 

vanishes in the limit. Given the balance conditions of (8) this means the steady state 

retained-antigen level F∞ is

F∞ = lim
t ∞ Ft = lim

t ∞ μtCt = μa−1,

which depends on control parameter a, ingestion rate μ, but not initial cell concentration C0.

It will be useful to generalize the control function (17) in the following way.

Theorem 2. Suppose we are given some function a : (0, C0) ↦ (0, ∞), possessing 

derivative a′, such that the control function for ODE (12) is given by

λ(Ft, Ct, t) = a(Ct)Ct, (19)

where limc↓0 a(c) = ā ∈ (0, ∞) and |a′(c)| < ∞ for all c ∈ (0, KC) for some positive constant 

KC ≤ C0. Then

lim
t ∞ tCt = a−1 . (20)

Proof. See Supplement S.2 for proof.

Balance equations for steady state antigen flow through system —We next 

expand the model to allow a role for antigen transport and availability in FDC regulation. 

Suppose we have initial reservoir level E0 = R > 0. Let At be the total amount of additional 
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antigen entering ℛ by time t. Then let Bt be the total antigen released by deactivated FDCs 

by time t. We must have

dBt
dt = − μt

dCt
dt . (21)

Assuming Bt is lost to the system, the balance equation may be expanded to

Ft = μtCt,
R + Δt = Et + Ft, t ≥ 0 where Δt = At − Bt . (22)

The control functon λ̄ may depend on any of the quantities in (22), assuming they satisfy the 

balance conditions, and so the system remains governed by the ODE:

dCt
dt = − λ(At, Bt, Ct, Et, Ft, t)Ct . (23)

If the net flow of antigen through  is zero, that is, the additional balance condition Δt = 0 

holds, then convergence to the steady state can be expressed as:

lim
t ∞ Et = E∞ < R . (24)

In other words, under the system steady state ℛ is indefinitely depleted in part or in full. In 

this case F∞ = R − E∞, forcing invariant reciprocal-time decay Ct = (R − E∞)/μt.

Control based on allocation of available antigen—As an alternative to control based 

on FDC population concentration, suppose FDC deactivation is upregulated by antigen 

scarcity. An average antigen concentration of Et/Ct is available to each FDC. Suppose the 

FDC remains active as long as it ingests antigen (mediated via known signaling processes), 

and has a maximum ingestion rate capacity of μ. To develop a simple stochastic failure rate 

model, suppose antigen is made available to an FDC as a Poisson process with arrival rate 

γ* and FDC is deactivated if it does not ingest antigen within a time period κ. The failure 

rate is therefore the rate at which interarrival times exceeding κ occur. Then, if the arrival 

process is the aggregation of individual antigen arrival processes of rate γ we would expect 

γ* = γEt/Ct, leading to failure rate
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λ(Ct, Et) =
γEt /Ct exp ( − γκEt /Ct) ; Et > 0
∞ ; Et = 0 . (25)

See Supplement S.3 for details. To remain active, the aggregate antigen arrival rate γ* for an 

individual FDC must be larger than μ. Under these conditions, the neighborhood of an FDC 

is essentially saturated with available antigen, and therefore able to maintain the maximum 

ingestion rate μ. As antigen is depleted the quantity Et/Ct decreases, forcing γ* to approach 

μ, making an ingestion failure event increasingly likely Thus, this failure model predicts 

property (B1). Convergence to reciprocal-time decay when net antigen flow is zero is 

verified in the following theorem:

Theorem 3. Suppose the control function λ̄ of ODE (23) is given by Equation (25). Suppose 

Δt ≡ 0 in balance equations (22). Then there exists a constant t*, dependent only on 

parameters (μ, γ, κ) for which the following statements hold:

i. For any initial state (t, Ct) = (t0, Ct0) for which t0 > t* there exists a positive 

constant r* such that for all large enough R* we have:

0 < Ct < R∗

μt + r∗,

and therefore Et/Ct > r*, t ≥ t0, where R* = E0 is taken to be the initial reservoir 

quantity.

ii. Given the initial conditions of (i), if E0 = R* then limt→∞ μtCt = R*.

Proof. See Supplement S.4 for proof.

Thus, under the conditions of Theorem 3, Ct possesses reciprocal-time decay in the limit, 

and steady state antigen retention limt→∞ Ft = R, with complete reservoir depletion limt→∞ 
Et = 0. The steady state retention level F∞ therefore depends on R but not on control or 

model parameters (μ, γ, κ).

Numerical simulations

We present a number of computer simulations of model (9). Balance equations (22) are 

assumed to hold with Δt = 0. We take time interval t ∈ [0, 1000], with C0 = 103. We vary the 

initial resource by setting R/C0 = 25000, 5000, 1000. The antigen ingestion rate is set to μ = 

103. We use the antigen allocation control model with failure rate λ̂ given by Equation (25) 

(see also Supplement S.3). To determine a value for γ, consider the case R/C0 = 1000. This 

gives an antigen arrival rate per FDC at t = 0 of γE0/C0 = γR/C0 = γ1000. Equating this to μ 
gives γ = 1. Given ingestion rate μ it would be reasonable to set κ to be some factor of μ−1, 

so we set κ = μ−1 = 1/1000. The model was discretized by time intervals Δt = 10−4.

Figure 3 shows model pathways for varying initial resource R/C0 = 25000, 5000, 1000 

(columns 1-3). In row 1 plots of Ct and Et are shown with a vertical log scale. Row 2 shows 
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Ct and Et on a log-log scale. Grid lines parallel to t−1 are superimposed. For display E0, C0 

are both normalized to equal 100% in rows 1-2. Additionally, in Supplementary Figure 2 

row 1 gives the double logarithmic decay rate kt as a function of time, and row 2 gives the 

relative concentration of retained antigen Ft/R.

The behavior for each set of initial conditions is similar. Each example begins with a short 

period of decay kt close to 0, then begins approaching kt = −1 by times ranging from t ≈ 100 

– 250, as can be seen in the log-log plot and the plot of kt (row 2 of Figure 3, row 1 of 

Supplementary Figure 2). Ft quickly reaches its predicted steady state level R 
(Supplementary Figure 2, row 2).

Robustness to random perturbations—Supplementary Figure 3 is based on the same 

model used for Figure 3(R/C0 = 25000) but with various forms of stochastic noise 

introduced (columns 1-3). For the “random resource spikes” model the reservoir ℛ was 

supplemented by bulk arrivals of 500 antigen units according to a Poisson process of rate 

0.04. For the remaining models multiplicative noise was incorporated by multiplying dCt/dt 
by a log-normal random variable at each computation point (the exponentiated normal 

random variates had mean μ = 0 and standard deviations σ = 0.1, 1).

In each case the models exhibit the same limiting behavior seen in Figure 3, despite 

persistent random perturbations. For the random resource spikes model the assumption of 

constant system resource R is violated, but without apparent effect on the approach to the 

predicted system steady state (Supplementary Figure 3, column 1).

For the multiplicative noise model with σ = 0.1 (Supplementary Figure 3, column 2), the 

behavior differs little from the corresponding noiseless model (Figure 3, column 1). What is 

of some interest is the stable fluctuation of kt about the steady state value k = −1, suggesting 

an efficient negative feedback control able to maintain reciprocal-time decay. Setting σ = 1 

results in considerably more noise (Supplementary Figure 3, column 3). The decay rate kt no 

longer fluctuates about k = −1 in a stable manner, but instead subjects the system to frequent 

and extremely large decay rates. In this case, fluctuation of Et is more evident (rows 1,2). 

Despite this, the system steady state is maintained.

Deviation from balanced antigen flow through system —We next allow Δt in 

balance equation (22) to vary. Otherwise the model of Figure 3 (R/C0 = 25000) is used. We 

consider three deviation models:

1. Autoregressive Deviation: Δt = (R − Ft)Zt, where Zt is an autoregressive 

Gaussian process with stationary standard deviation σz = 1/8 and correlation ρ ≈ 
0.905 per unit time.

2. Sine Wave Deviation: Δt = (R − Ft) sin (2πt/100)/2.

3. Finite Resource Leak: dΔt/dt = ct−2, where c is chosen so that Δ1000 = −R/10.

For models 1 and 2, deviation is scaled by R — Ft, representing the reservoir contents for 

deviation Δt = 0. For model 3, antigen leaks at a rate proportional to t−2, the cumulative 

amount being R/10. Graphical summaries are given in Supplementary Figure 4.
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As can be seen for deviation models 1 and 2, fluctuation of the total antigen content of 

system  forces fluctuation of the decay rate kt about −1. However, in each case the limiting 

behavior of Ct, Et and Ft is little changed, especially the reciprocal-time decay of Ct 

(compare to Figure 3, column 1). The same conclusion can be reached of deviation model 3, 

except that the antigen leak appears to have a small depressing effect on Ft. In each case, 

homeostatic maintenance of the system steady state is clearly evident.

Discussion

We next offer Remarks (1)-(6) regarding the proposed control model.

Remark 1. Similar to the antigen allocation model (25), the decay rate (16) is interpretable 

in terms of failure events. Suppose for each small time interval Δt there are m independent 

failure events, each occuring with a proportionally small probability qΔt. If failure occurs 

with the occurrence of at least one failure event, failure rate λ̄ is given by

λΔt = 1 − (1 − qΔt)m ≈ mqΔt . (26)

If the number of failure events m is proportional to Ct this would yield failure rate λ̄ ∝ Ct. 

Theorem 2 would then be applied to verify that limt→∞ tCt = a−1.

In contrast, for the antigen allocation model (25) we may write, for some probability p,

λΔt ≈ mpmΔt = pm + o(m)Δt (27)

where m ∝ Et/Ct, the average available antigen per FDC, and o(m) is negligible compared to 

large m.

A failure rate of the form (26) describes a series failure rate (system failure requires only 1 

of m failure events to occur) while (27) describes a parallel failure rate (system failure 

requires all of m failure events to occur). What both failure models have in common is that 

the decay rate tends to be inversely related to Ct, which provides a link between cellular 

level processes and the control parameter kt given in Equation (11).

Remark 2. Following Remark (1), under control function (16) the steady state level of 

retained antigen in ℛ is F∞ = μa−1, while under control function (25) it is F∞ = R. The 

former depends on component interaction rates, while the latter is simply the net antigen R 
retained by the system . Thus, while each control yields reciprocal-time decay, they could, 

in principle, be distinguished by suitable experimental perturbations.

Remark 3. We next consider the question of how the initial state is attained, particularly 

since property (B3) holds that active FDCs cannot be added to ℱ. This assumes that the 

entire process consists of two phases, the first in which the FDC population is created up to 

N cells, followed by a period in which deactivation predominates. However, the model 
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assumes F0 = 0 when E0 = R, that is, the FDCs contain no antigen when the decay process 

begins.

Suppose, to fix ideas, the N initial FDCs have been ingesting antigen for a period of time 

equal to τ before the decay phase begins (at t = 0). Then the differential balance equation (9) 

must be modifed to become

dFt
dt = μ Ct + (t + τ)

dCt
dt . (28)

However, it is easily verified that the steady state solution to dFt/dt = 0 is Ct ∝ (t + τ)−1, so 

that the original system is recovered by a simple time offset.

Remark 4. The model has so far not considered antigen lost by presentation, or some other 

mechanism. We have assumed that Bt consists entirely of antigen lost by FDC deactivation 

(21). Suppose we assume that antigen is used for presentation, and is lost to the system, at a 

constant rate η > 0 per cell. Then the differential balance equation (9) must be modifed to 

become

dFt
dt = μ Ct + t

dCt
dt − ηCt . (29)

The steady steady state solution to dFt/dt = 0 is now Ct ∝ t−1+η/μ. However, if we assume 

that η ≪ μ then the deviation from reciprocal-time decay would be minimal. This would 

occur, for example, if any amount of antigen presented is small compared to the amount 

retained.

Remark 5. We next consider the question of how antigen can be retained in the FDC 

population indefinitely. Our model describes a decay process based on the simple balance 

equation μtCt = Ft. This assumes continuous ingestion of antigen by FDCs, and a balanced 

flow of antigen through the system . However, by (21) it can be seen that under reciprocal-

time decay of Ct we have Bt ∝ log(t), therefore antigen must flow through  indefinitely. 

This may limit the duration of the reciprocal-time FDC decay regulation.

Another intriguing possibility is that any antigen released by deactived FDCs is simply 

returned to ℛ to be ingested again. This would force At = Bt, and the steady state could be 

maintained indefinitely. This idea seems compatible with a number of observations made in 

the literature. The possibility of antigen exchange between FDCs was raised in ref. 31. In 

ref. 6 an experimental method of releasing antigen iccosomes from FDCs was reported. In 

the absence of active FDCs, very little specific antibody response was observed following 

release. When active but specific antigen negative FDCs were introduced, specific antibody 

response increased dramatically. When FDCs and B-cells were separated by an iccosome 

permeable membrane, antibody response was suppressed. In addition, multiple transport 
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pathways for antigen delivery to FDCs are known.32 It is conceivable, therefore, that a 

specialized antigen-transport pathway could exist for the recycling of antigen in this manner.

Remark 6. Following Remark 5, it must be noted that even if a fixed amount of antigen can 

be retained indefinitely, by rule (B1) this implies an unbounded capacity of a single FDC for 

antigen retention. Certainly, the dendritic architecture of the FDC appears to be designed 

precisely for large scale antigen storage.24 But clearly, some limit must eventually be 

reached, whether by depletion of antigen available for ingestion, or by saturation of the FDC 

itself. Therefore, FDC reciprocal-time decay regulation might be more usefully considered 

to be only a single phase in the production of antibodies, the duration of which is either itself 

regulated, or dependent on exogenous conditions. In fact, the review of post-vaccination 

antibody kinetics studies above suggests this possibility.

Summary

In conclusion, a mathematical model for the controlled deactivation of FDC was proposed. 

The system steady state is characterized by constant levels of retained antigen, and the 

reciprocal-time decay of the FDC population. Given the FDCs role in the stimulation of 

antibody production via GCs, this may explain the consistent observation of reciprocal-time 

decay in post-vaccination antibody concentrations. The specific properties required by FDCs 

by the model are in striking concordance with those consistently observed, in particular the 

long-term retention of antigen; the simultaneous decay of FDC populations; the associated 

antigen-delivery pathways; and the persistent signalling required for their continuous 

activation. Furthermore, it was shown that this steady state can be robustly maintained by 

simple biologically admissible forms of homeostatic control.

As stated in ref. 2: “[a] better understanding of FDCs should permit better regulation of 

antibody responses to suit the therapeutic manipulation of regulated and dysregulated 

immune responses.”

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Fitted curves for antibody decay models using data from ref. 12,ref. 20 and ref. 21. For the 

HV16 naive group of ref. 12 (row 1, column 1) plot show the fits for the PLD/CPLD and 

OPLD/MPLD models using the parameters reported in ref. 12, using the LS estimate of cf. 

Otherwise, fits were calculated using the LS method.
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Figure 2. 
LS parameters for OPLD/MPLD obtained by varying power exponent parameter k. Fits are 

based on reported GMTs from ref. 12 (HPV-16 naive subjects). In top left plot the SSE (= 

0.00623) attained using OPLD/MPLD parameters reported in ref. 12 is indicated by the 

horizontal gray line. Regions of the parameter space associated with SSE ≤ 0.00623 are 

cross-hatched.
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Figure 3. 
Plots show model pathways for varying total resource R/C0 = 25000, 5000, 1000 (columns 

1-3). In row 1 plots of Ct and Et are shown with a vertical log-scale. Row 2 shows Ct and Et 

on a log-log scale. Grid lines parallel to t−1 are superimposed. For display purposes E0, C0 

are both normalized to equal 100% in rows 1-2.
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Table 1

Classification of four models: power-law decay (PLD); reciprocal-time decay (RTD); offset power-law decay 
(OPLD); offset reciprocal-time decay (ORTD). Equivalence to models defined in ref. 12 is indicated, in 

particular conventional power-law decay (CPLD); modified power-law decay (MPLD). All models conform to 

Equation (2) and are distinguished by various parametric constraints.

Reciprocal-time decay:

Yes (k = 0) No (k ≥ 0)

Nonzero asymptote: Yes (v ≥ 0) ORTD OPLD [= MPLD12]

No (v = 0) RTD PLD [= CPLD12]
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Table 2

List of studies used in review of post-vaccination antibody kinetics.

Vaccine Type Study

Review 1 - Model PLD

Hepatitis-B Gesemann & Scheiermann (1995)15

Hepatitis-B Honorati et al (1999)16

Haemophilus influenzae type b Southern et al (2007)17

Meningococcal serogroup C and haemophilus Influenzae type b Southern et al (2007);17 Borrow et al (2010)18

Diptheria Swart et al (2016)19

Review 2 - Models PLD, OPLD, RTD, ORTD

HPV-16 Fraser et al (2007)12

Hepatitis-A Wiedermann et al (1997)20

Acellular pertussis Le et al (2004)21
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