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Abstract

Background: Many studies try to identify cancer diagnostic biomarkers by comparing peripheral whole blood (PWB) of
cancer samples and healthy controls, explicitly or implicitly assuming that such biomarkers are potential candidate
biomarkers for distinguishing cancer from nonmalignant inflammation-associated diseases.

Methods: Multiple PWB gene expression profiles for lung cancer/inflammation-associated pulmonary diseases were used
for differential mRNAs identification and comparison and for proportion estimation of PWB cell subtypes.

Results: The differentially expressed genes (DE genes) between lung cancer/inflammation-associated pulmonary patients
and healthy controls were reproducibly identified in different datasets. For these DE genes observed in lung cancer/
inflammation-associated pulmonary diseases, more than 90.2% were differentially expressed between myeloid cells and
lymphoid cells, with at least 96.8% having consistent directions of regulation (up- or down-regulations) in myeloid cells
compared to lymphoid cells, explainable by the shifted populations of PWB cell subtypes under the disease conditions. The
comparison of DE genes for lung cancer and inflammation-associated pulmonary diseases showed that the overlapping
genes were 100% consistent in the sense of direction of regulation.

Conclusions: The differential blood mRNAs observed in lung cancer and in inflammation-associated pulmonary diseases
were similar, both mainly reflecting the difference between myeloid cells and lymphoid cells predominantly determined by
PWB cell population shifts. Thus, the strategy of comparing cancer with healthy controls may provide little information of
the ability of the identified candidate biomarkers in discriminating cancer from inflammation-associated pulmonary
diseases.
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Introduction

Lung cancer is one of the most prevalent cancer types [1]. Early

detection of lung cancer is crucial to avoid treatment delay and

improve survival. To find diagnostic biomarkers of lung cancer for

non-invasive clinical application, researchers have extensively

studied gene expression changes in peripheral whole blood (PWB)

or peripheral blood mononuclear cells (PBMCs) [2–6]. Although

some blood-based gene expression signatures have been reported

to have good performance in discriminating lung cancer from

healthy controls [2–4], they usually lack reproducibility between

laboratories. More importantly, few studies have evaluated

whether the identified blood-based gene expression signatures

have the ability to distinguish lung cancer from inflammation-

associated diseases of the lung, including but not limited to

sarcoidosis, pneumonia and tuberculosis, which have similar

clinical and histological features with lung cancer [6].

It is assumed that peripheral leukocytes are the dominating

source of the mRNA in PWB samples [7]; however, the differential

mRNA signals observed in PWB samples from cancer patients

compared to healthy controls may reflect changes in the subsets in

peripheral blood cells. Many studies have found that, in PWB of

patients with cancer, the proportion of blood cells originated from
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the myeloid progenitor (referred to as myeloid cells for simplicity)

increases, while the proportion of blood cells originated from the

lymphocyte progenitor (referred to as lymphoid cells for simplicity)

decreases [8–13]. The proportional changes (or subpopulation

shifts) of the cell types in PWB could affect the gene expression

profiles of cancer PWB samples compared to healthy controls

[14,15]. However, to what extent the changes in blood cell

populations contribute to the differential gene expression changes

observed in lung cancer PWB samples is still unclear. As a

compounding factor, similar subpopulation shifts in blood cells

have also been observed in many inflammation-associated

pulmonary diseases [16–18]. Therefore, the elucidation of the

source of the differential mRNAs in PWB samples of inflamma-

tion-associated pulmonary diseases is needed to assess whether the

gene expression signatures determined from lung cancer PWB

compared to healthy controls have the ability to distinguish cancer

from other inflammation-associated pulmonary diseases.

In this study, using three gene expression profiles of PWB

samples from lung cancer patients, we showed that the differen-

tially expressed genes (DE genes) detected from different datasets

were significantly reproducible. By applying a deconvolution

algorithm, we showed that the proportion of myeloid cells

increased and the proportion of lymphoid cells decreased in lung

cancer PWB samples. We further showed that the DE genes

between PWB samples of lung cancer and healthy controls were

highly consistent with the DE genes between myeloid cells and

lymphoid cells, supporting the possibility that the differential

mRNAs observed in lung cancer PWB samples were defined by

differential mRNAs between myeloid cells and lymphoid cells in

PWB samples of lung cancer patients. Especially, the most

pronounced DE genes between PWB samples of lung cancer

and healthy controls tended to be defined by DE genes between

myeloid cells and lymphoid cells. The same phenomena were

observed for various inflammation-associated pulmonary diseases.

Therefore, it could be difficult to use PWB gene expression

signatures developed from lung cancer versus healthy controls as

potential candidate biomarkers to distinguish cancer from

inflammation-associated pulmonary diseases. To develop specific

diagnostic biomarkers for cancer, future studies might focus on the

direct comparison between blood-based gene expression profiles of

PWB cell subtypes between cancer and inflammation-associated

disease.

Materials and Methods

Analysis of microarray data
We analyzed three microarray datasets for PWB samples from

each type of pulmonary diseases (Table 1), including lung cancer,

sarcoidosis, pneumonia and tuberculosis. All of the gene expres-

sion datasets analyzed in this study were downloaded from the

Gene Expression Omnibus (GEO) database [19]. For simplicity,

sarcoidosis, pneumonia and tuberculosis are also referred to as

‘‘inflammation-associated pulmonary diseases’’. Samples in LC60,

SCD68, PNU58 and TB63 were extracted from the GEO series

GSE42826 while samples in LC46, SCD55, PNU46 and TB54

were extracted from the GEO series GSE42830. Expression data

from different studies for lung cancer and each inflammation-

associated pulmonary disease, namely the LC153, SCD58,

PNU26 and TB83, were also collected for evaluation of

reproducibility. The normalized data were downloaded from

GEO, and the original platform annotation file obtained from

GEO for each dataset was used to annotate the CloneIDs to

GeneIDs.

The two leukocyte datasets, LEU33 and LEU37, were used to

measure the transcript abundances of different leukocyte cells from

healthy human PWB. For each dataset, the gene expression

profiles of human healthy leukocyte subtypes were divided into

two groups: one group profiled myeloid cells, including monocytes,

neutrophils and eosinophils, while the other group profiled

lymphoid cells, including T cells, NK cells and B cells. The

average purity of each isolated cell subset was at least 92% as

assessed by flow cytometry [20]. In Table 1, ‘‘Case’’ refers to the

myeloid group, while ‘‘Control’’ refers to the lymphoid group.

Detection of DE genes
The two-sample t-test method was used to identify DE genes by

controlling the false discovery rate (FDR) [21] at 5%. Within the

datasets, a DE gene was considered up-regulated if its relative

difference of expression levels between the Case and Control

group was larger than zero, and a DE gene was considered down-

regulated if its relative difference of expression levels between the

Case and Control group was smaller than zero [22]. Three types

of DE genes were defined: DE genes between lung cancer and

healthy controls, DE genes between inflammation-associated

pulmonary diseases and controls and DE genes between myeloid

cells and lymphoid cells.

Evaluation of the consistency between two lists of DE
genes

For two datasets, if a DE gene detected from one dataset was

also identified as a DE gene with the same direction of regulation

(up- or down-regulation) in another dataset, this gene was

considered consistent across the datasets. We defined a consistency

score as the percentage of consistent DE genes in all of the

overlapping DE genes between two datasets. When comparing DE

genes from different datasets generated on different platforms, we

only considered the genes measured in both platforms. Then,

using the binomial distribution model, we tested whether the

consistency score of DE genes across datasets could be expected to

occur by random chance. The probability of observing at least m
DE genes each with same direction of regulation across two

datasets from N randomly selected genes was calculated as follows:

P~
XN

i~m

N

i

� �
Peð Þi 1{Peð ÞN{i ð1Þ

in which Pe is the random probability (here 0.5) of one DE gene

having the same direction of regulation across two datasets. A

consistency score was considered significant for p-value ,0.05.

Estimation of the proportions of myeloid cells and
lymphoid cells in PWB

To determine whether the myeloid and lymphoid cell propor-

tions differ in the PWB of pulmonary disease patients, we

quantified the proportions of myeloid cells and lymphoid cells

documented in the Immune Response in Silico (IRIS) database

[23] by a process of deconvolution [24]. If B represents the known

matrix of microarray expression profiles measured for a disease,

comprising both disease and healthy samples; X represents the

proportions of myeloid cells and lymphoid cells; and A represents

the known matrix of expression levels of marker genes in the

myeloid cells and lymphoid cells characterized by the IRIS

database, then
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AX&B ð2Þ

The object of deconvolution is to find the solution of the

convolution equation, which will give the cell-type proportions for

myeloid cells and lymphoid cells.

After the proportions of myeloid cells and lymphoid cells in each

sample of a dataset were calculated by the Bioconductor package

CellMix [25], we used the two-sample t-test method to evaluate

whether the proportions were significantly different between

disease and healthy controls. A p-value ,0.05 was considered

significant. Two other cell-specific expression signatures, defined

by Abbas et al. [24] and by HaemAtlas [26], were also used to

assess whether the proportion changes of myeloid cells and

lymphoid cells were reproducible.

DE genes for disease PWB defined by difference between
myeloid and lymphoid cells

Blood cells can be grouped into myeloid cells and lymphoid

cells. Therefore, for a gene in a PWB sample, the expression could

be modelled as a linear combination of the expression of that gene

in myeloid cells and lymphoid cells respectively. Let the average

expression levels of a gene in myeloid cells and lymphoid cells be

bm and bl respectively, then its expression level in healthy PWB

sample can be modelled as

bnormal~bm|pmzbl|pl ð3Þ

where pm and pl represent the proportion of myeloid cells and

lymphoid cells, respectively. When the proportion of myeloid cells

increases with Dk under disease condition, the proportion of

lymphoid cells will decrease by Dk. Thus, the expression level of

the gene in the disease PWB sample can be represented as

bdisease~bm|(pmzDk)zbl|(pl{Dk) ð4Þ

The expression difference of this gene between disease and

healthy sample is

Db~bdisease{bnormal~Dk|(bm{bl) ð5Þ

Based on the hypothesis that the shifted proportions of myeloid

cells and lymphoid cells are the main factor contributing to the

differential expression levels observed in disease PWB samples,

according to formula (5), the direction of regulation (up- or down-

regulation) of a DE gene in disease PWB samples compared to

healthy PWB samples should be consistent with its direction of

regulation in myeloid cells compared to lymphoid cells.

Results

Reproducibility of DE genes between lung cancer
patients and healthy control subjects

To determine whether mRNA biomarkers for lung cancer can

be reproducibly identified using PWB, we accessed data from

three different microarray experiments. When comparing genes

from multiple datasets generated on different platforms, we only

considered the genes represented in all of the datasets (Table S1 in

File S1). As shown in Table 2, with an FDR ,5%, the DE genes

detected from different datasets for lung cancer were highly

reproducible. For example, among the 2029 DE genes identified

from the LC46 dataset, 81.5% (1654) were also detected as DE

genes in the LC60 dataset, and each of them had the same

direction of regulation across the two datasets, which were derived

from the same study. When comparing the DE genes identified

from LC60 to the DE genes identified from LC153 which were

from a different study, 389 DE genes were commonly detected,

Table 1. Datasets analyzed in this study.

Phenotype Dataseta Reference Case:Controlb GEO acc Noc Platform No. of genes

Lung LC60 Bloom [6] 8:52 GSE42826 GPL10558 30500

LC46 Bloom [6] 8:38 GSE42830 GPL10558 30500

LC153 Rotunno [4] 73:80 GSE20189 GPL571 12790

Sarcoidosis SCD68 Bloom [6] 16:52 GSE42826 GPL10558 30500

SCD55 Bloom [6] 17:38 GSE42830 GPL10558 30500

SCD58 Koth [37] 38:20 GSE19314 GPL570 20283

Pneumonia PNU58 Bloom [6] 6:52 GSE42826 GPL10558 30500

PNU46 Bloom [6] 8:38 GSE42830 GPL10558 30500

PNU26 Koth [37] 6:20 GSE19314 GPL570 20283

Tuberculosis TB63 Bloom [6] 11:52 GSE42826 GPL10558 30500

TB54 Bloom [6] 16:38 GSE42830 GPL10558 30500

TB83 Maertzdorf [38] 46:37 GSE28623 GPL4133 19751

Leukocyte cells LEU33 Allantaz [20] 13:20 GSE28491 GPL570 10698

LEU37 Allantaz [20] 17:20 GSE28490 GPL570 11241

aEach dataset is denoted by the following nomenclature: phenotype followed by the sample number,
bThe number of case and control samples. For leukocyte cells, Case refers to myeloid group; Control refers to lymphoid group,
cGEO accession number. All the microarray data are accessible through NCBI’s Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) with the
corresponding GEO accession number.
doi:10.1371/journal.pone.0108104.t001
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among which 99.2% had the same directions of regulation across

the two datasets. Similarly, 258 DE genes overlapped between the

1372 and 876 DE genes respectively identified from LC46 and

LC153, and 98.8% of them had the same directions of regulation.

Based on the consistency scores, the overlap between each pair of

lung cancer datasets could not be expected to have arisen by

random chance (p-value ,2.2610216, binomial test), indicating

that the DE genes identified from PWB for lung cancer were

significantly reproducible.

Source of DE genes observed in lung cancer PWB
samples

To determine whether differences in the DE genes identified

from different datasets might be explained by different proportions

of myeloid cell and lymphoid cell subsets, we applied the gene

expression deconvolution method [24] to estimate the proportions

of the myeloid cells and lymphoid cells in each dataset of lung

cancer and healthy control samples using the cell-specific

signatures documented in the IRIS database (see Methods). As

shown in Fig. 1, the proportions of myeloid cells were significantly

higher in PWB samples with lung cancer compared to the healthy

controls, while the proportions of lymphoid cells were significantly

lower in lung cancer patients (p-value ,0.05, t-test). Because the

estimation depends on the selection of cell-type specific markers,

we also used the cell-specific signatures defined by Abbas et al.

[24] and the marker genes characterized by HaemAtlas [26] for

the deconvolution. The results also showed that the estimated

proportions of myeloid cells and lymphoid cells were significantly

higher and lower respectively in PWB samples with lung cancer

compared to the healthy controls (p-value ,0.05, t-test).

To further analyze whether DE genes observed in lung cancer

PWB samples might be defined by differential mRNAs between

myeloid cells and lymphoid cells, we compared the DE genes

identified between lung cancer and healthy controls with the DE

genes identified in myeloid cells compared to lymphoid cells. We

defined a reliable list of DE genes for lung cancer and for myeloid

cells respectively. The list of DE genes for lung cancer was defined

as the DE genes detected in all of the three datasets with consistent

directions of regulation, which included 190 DE genes (Table S2

in File S1). To include as many DE genes between myeloid cells

and lymphoid cells as possible, we defined the DE genes for

myeloid cells compared to lymphoid cells by combining two lists of

DE genes identified from two leukocyte datasets and deleting those

DE genes with inconsistent directions of regulation across the two

datasets. The resulting list included 5042 DE genes (referred to as

the M-L DE gene list for simplicity). The integrated M-L DE gene

list was reliable, as the DE genes identified from the two leukocyte

datasets were significantly reproducible: using an FDR,5%, 5069

and 7266 DE genes between myeloid cells and lymphoid cells were

identified, respectively, from the LEU33 and LEU37 datasets, and

4186 of the DE genes were included in both lists, 97.1% of which

had the same directions of regulation across the two datasets,

which was unlikely to be observed by random chance (p-value ,

2.2610216, binomial test).

Among the 190 DE genes consistently identified in lung cancer,

94.7% were included in the M-L DE genes list and all of them had

the same directions of regulation as in myeloid cells versus

lymphoid cells, which could not be expected to occur by random

chance (p-value ,2.2610216, binomial test). This indicates that

the DE genes specific to lung cancer samples are predominately

determined by population shifts in myeloid cells and lymphoid

cells and mainly reflect the expression difference between these

two types of cell. However, 10 of the 190 DE genes defined for

lung cancer were not included in the M-L DE gene list, probably
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due to the incompleteness of the list of DE genes between myeloid

cells and lymphoid cells, which was only derived from two datasets

[27]. As evidence for this possibility, we further evaluated whether

these 10 DE genes had the tendency of differential expression in

any of the two leukocyte datasets. We found that, 4 of the 10 DE

genes defined for lung cancer tended to be significantly expressed

(with an unadjusted p-value ,0.05) between myeloid cells and

lymphoid cells and all of them had the same directions of

regulation as in myeloid cells compared to lymphoid cells, which

was unlikely to happen by random chance (p-value ,2.2610216,

binomial test). When relaxing the unadjusted p-value to 0.1, 6 of

the 10 DE genes defined for lung cancer were DE genes between

myeloid cells and lymphoid cells with the same directions of

regulation. Notably, the DE genes from the lung cancer datasets

with the most significant differences are more likely to be defined

by differential mRNAs between myeloid cells and lymphoid cells.

All of the top 10 most significantly DE genes defined for lung

cancer were included in the M-L DE gene list, and all of them had

the same directions of regulation as in the myeloid cell versus

lymphoid cell datasets. Among the most significant top 100 DE

genes defined for lung cancer, 96 had significantly different

expression in myeloid cells and lymphoid cells, all with the same

directions of regulation as in myeloid cells compared to lymphoid

cells (p-value ,2.2610216, binomial test). These results further

suggested that the myeloid/lymphoid population shift was likely to

constitute the source of the DE genes from lung cancer patients

compared to healthy controls.

Source of DE genes observed in PWB of inflammation-
associated pulmonary diseases

Because the response of immune cells to inflammation could be

represented by shifts in the blood cell populations [14], we also

compared the DE genes identified from various inflammation-

associated pulmonary diseases to the DE genes defined for myeloid

cells. Based on the reproducibility analysis of three PWB gene

expression datasets for each of the inflammation-associated

pulmonary diseases (see Methods), the DE genes identified from

different datasets for each inflammation-associated pulmonary

disease were significantly reproducible (Table 3).

For each of the three inflammation-associated pulmonary

diseases, we also defined a reliable list of DE genes. With an

FDR,5%, 441 genes that were significantly differentially

expressed in all three sarcoidosis datasets with the same directions

of regulation were defined as DE genes for sarcoidosis. Similarly,

550 and 34 genes were defined as DE genes for tuberculosis and

pneumonia, respectively. Among the 441 DE genes defined for

sarcoidosis, 90.2% (398) overlapped with the M-L DE genes and

97.0% of them had the same directions of regulation with respect

as in the myeloid cells versus lymphoid cells. The number of DE

Figure. 1. Boxplot of proportions of myeloid and lymphoid cells in lung cancer and control PWB samples. The estimated proportions of
myeloid and lymphoid cells in lung cancer and healthy PWB samples for each dataset. * denotes statistically significant differences (P,0.05).
Abbreviations are same as in Table 1.
doi:10.1371/journal.pone.0108104.g001
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genes overlapping between tuberculosis DE genes and M-L DE

genes was 499, among which 97.0% were consistent in their

directions of regulation. In pneumonia DE genes, 91.2% (31) of

the 34 DE genes were included in the M-L DE gene list, and only

one gene had an inconsistent directions of regulation in the M-L

DE gene list. All of the consistency scores suggested that the data

could not be observed by random chance (p-value ,0.05,

binomial test).

Deconvolution of gene expression profiles also verified that the

proportions of myeloid cells and lymphoid cells in the datasets for

inflammation-associated pulmonary diseases changed, with the

proportions of myeloid cells significantly increased and the

proportions of lymphoid cells significantly decreased in inflamma-

tion-associated pulmonary disease samples compared to healthy

controls (Fig. 2). This suggested that the observed differential gene

expressions in the PWB transcriptome of inflammation-associated

pulmonary diseases also tended to be overwhelmingly defined by

differential mRNAs between myeloid cells and lymphoid cells.

Comparison between lung cancer and inflammation-
associated pulmonary diseases

As described above, the DE genes observed in both cancer and

inflammation-associated pulmonary diseases tended to be pre-

dominantly originated from shifted populations of myeloid and

lymphoid cells, suggesting that the DE genes might be consistent

between them. Consequently, we compared the consistent DE

genes defined for lung cancer to the consistent DE genes defined

for each inflammation-associated pulmonary disease. For the 190

DE genes defined for lung cancer, 75, 104 and 7 were included in

the 441, 550 and 34 DE genes defined for sarcoidosis, pneumonia

and tuberculosis, respectively. All of them had the same directions

of regulation with respect to their directions in the corresponding

inflammation-associated pulmonary diseases, which could not be

observed by random chance (p-value ,0.05, binomial test). Then,

we directly compared DE genes detected between lung cancer and

each inflammation-associated pulmonary disease respectively.

With an FDR,5%, few DE genes were identified between lung

cancer and each inflammation-associated disease. Only one DE

gene was commonly identified between lung cancer and sarcoid-

osis samples from GEO series GSE42826 and GSE42830, from

which 28 and 30 DE genes were identified respectively. Five and

94 DE genes were identified between lung cancer and tuberculosis

samples from GEO series GSE42826 and GSE42830 respectively,

which shared only one gene. Extremely, no DE genes were

identified between lung cancer and pneumonia samples from

GEO series GSE42830. These results verified that the DE genes in

lung cancer and inflammation-associated pulmonary diseases were

likely to be defined by their differing cell populations rather than

revealing differences in the disease conditions.

Discussion

The selection of candidate blood-based mRNA biomarkers

among the most significant DE genes in cancer blood samples

compared to controls is a common strategy [28–30]. However, our

results suggested that this strategy for distinguishing lung cancer

from inflammation-associated pulmonary diseases may yield

misleading results. Our results showed that DE genes detected

from several PWB datasets for lung cancer and inflammation-

associated pulmonary diseases were predominantly determined by

subpopulation shifts in myeloid and lymphoid cells and mainly

reflected the expression difference between myeloid cells and

lymphoid cells. The comparison between the DE genes consis-

tently identified from lung cancer and from each inflammation-
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associated pulmonary disease further showed that the overlapping

DE genes in PWB samples of patients from these two groups of

diseases were highly consistent in direction of regulation. Our

results also showed that in PWB samples for lung cancer compared

to healthy controls, the highest-ranking DE genes were most likely

to be determined by the expression difference between myeloid

cells and lymphoid cells, reflecting population shifts in myeloid

cells and lymphoid cells. Because PBMCs include lymphocytes (T

cells, B cells and NK cells) and monocytes, the DE genes observed

in PBMCs of tumour patients could also mainly reflect shifted

subpopulations of myeloid cells and lymphoid cells. Therefore,

reported blood-based biomarkers by comparing gene expression

profiles for cancer patients and healthy controls [4,30–32] may

have reduced power in distinguishing cancer from inflammation-

associated disease because they are defined by DE genes between

myeloid cells and lymphoid cells which will cause similar

expression changes in inflammation-associated pulmonary diseas-

es.

On the other hand, though the directions of regulation of DE

genes in lung cancer and inflammation-associated pulmonary

diseases versus healthy controls were almost the same, we could

not exclude the possibility that the extent of subpopulation shifts in

myeloid and lymphoid cells may be different between lung cancer

and inflammation-associated pulmonary disease patients, which

may cause subtle difference of gene expression between cancer and

inflammation-associated pulmonary diseases. Bloom et al. have

identified 144 genes that could distinguish tuberculosis from lung

cancer [6]. Among these 144 genes, 59 were included in the genes

analyzed in our study. We found that 47 of the 59 genes were

detected as significant between myeloid cells and lymphoid cells

with an FDR,5%, indicating that this 144-gene signature was

likely to be influenced by the shifted populations of myeloid and

lymphoid cells. As the signature was reported to be able to

distinguish lung cancer from tuberculosis, this result may also hint

that differences could exist in the extent of subpopulation shifts

between lung cancer and inflammation-associated diseases.

Considering the strong and similar influence of subpopulation

shifts in PWB myeloid and lymphoid cells on the expression

changes in cancer and inflammation-associated diseases, we

suggested that an appropriate study design for finding cancer-

specific diagnostic biomarkers might be to compare both the

subpopulation shifts in myeloid cells and lymphoid cells and gene

expression profiles between cancer and inflammation-associated

diseases.

Another possibility is that subsets of peripheral blood cells may

exhibit different gene expression patterns between healthy and

disease states of cancer [33]. Actually, Showe and colleagues have

reported that a 29-gene signature identified from PBMCs was

promising in distinguishing lung cancer from nonmalignant

pulmonary disease [3]. Though lack of validation in independent

studies [2], this signature may suggest the feasibility of identifying

cancer specific biomarkers from PWB cell subtypes as PBMCs are

mainly composed of lymphocytes. Recent studies have also

demonstrated that some interferon-stimulated genes (ISGs) are

significantly down-regulated in blood T cells and B cells of patients

with melanoma, breast cancer and gastrointestinal cancer [34,35].

Conversely, ISGs tend to be significantly up-regulated in patients

with inflammation-associated diseases such as SLE [36], which

suggests a possible strategy for distinguishing disease types. We

have explored the potential of this strategy using two datasets that

include subsets of lymphocytes from SLE and healthy control

blood (Table S3 in File S1). From the 190 DE genes defined for

lung cancer, we obtained two genes that were least likely to be

differentially expressed between myeloid and lymphoid cells (with

an unadjusted p-value.0.2), one of which was significantly down-

regulated in the B cells and CD4 T cells from SLE samples

compared to healthy controls (Table S4 in File S1). This suggest

that future identification of biomarkers from tumour PWB samples

might be developed through comparing cancer and inflammation

cell subsets directly.

Figure. 2. Boxplot of proportions of myeloid and lymphoid cells in inflammation-associated pulmonary disease and control PWB
samples. The estimated proportions of myeloid and lymphoid cells in sarcoidosis, pneumonia and tuberculosis and healthy PWB samples for each
dataset. * denotes statistically significant differences (P,0.05). Abbreviations are same as in Table 1.
doi:10.1371/journal.pone.0108104.g002
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