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Abstract: Computational protein design relies on several approximations, including the use of fixed

backbones and rotamers, to reduce protein design to a computationally tractable problem. How-

ever, allowing backbone and off-rotamer flexibility leads to more accurate designs and greater
conformational diversity. Exhaustive sampling of this additional conformational space is challeng-

ing, and often impossible. Here, we report a computational method that utilizes a preselected

library of native interactions to direct backbone flexibility to accommodate placement of these
functional contacts. Using these native interaction modules, termed motifs, improves the likelihood

that the interaction can be realized, provided that suitable backbone perturbations can be identi-

fied. Furthermore, it allows a directed search of the conformational space, reducing the sampling
needed to find low energy conformations. We implemented the motif-based design algorithm in

Rosetta, and tested the efficacy of this method by redesigning the substrate specificity of methio-

nine aminopeptidase. In summary, native enzymes have evolved to catalyze a wide range of chemi-
cal reactions with extraordinary specificity. Computational enzyme design seeks to generate novel

chemical activities by altering the target substrates of these existing enzymes. We have imple-

mented a novel approach to redesign the specificity of an enzyme and demonstrated its effective-
ness on a model system.
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Introduction

Computational protein design has advanced rapidly

over the past decade. Despite many impressive suc-

cesses,1–9 generating novel, functional proteins with

activity levels similar to natural proteins remains

challenging. Limitations in scoring functions, struc-

tural representation, and search strategies provide

ample opportunity for improvement. A common

strategy for circumventing these limitations is to

incorporate structural building blocks from experi-

mentally determined structures. For example, com-

putational protein design typically involves the

combinatorial selection of experimentally observed

amino acid conformations (rotamers) that optimize

some scoring function when arranged on the back-

bone of a native protein.4,10–13 Similarly, structure

prediction algorithms often rely upon libraries of

backbone fragments culled from the protein databank

to reduce the conformational space that must be

sampled when assembling structural models of pro-

teins.14–18 This strategy involves a trade-off: native

structural building blocks ensure that our models

contain plausible interactions, but bias us towards

what has already been observed. This can be particu-

larly limiting for protein design, which usually seeks

to realize a novel function or specificity.

Two strategies for leveraging native protein

structures present themselves in the context of the

design of protein function. At the macromolecular

level, we can identify proteins that carry out related
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functions as starting templates and attempt to pre-

serve aspects of this function while redesigning other

residues to accommodate desired changes. At the

atomic level, we can identify specific interactions

involving residues in unrelated proteins that may

prove useful in achieving the change in function or

specificity that we require to move from a starting

template to a novel molecule. We can direct the choice

of mutations required to repurpose the native tem-

plate by focusing on recreating previously observed

interactions from other structural contexts. Using

previously observed functional interactions is likely

to increase the odds of success for a given protein

engineering goal.

The transplantation of atomistic interactions

onto a design template is challenging because the

backbone conformation of the template is unlikely to

present an optimal geometry to reproduce the interac-

tions found in the native context. Introducing modest

backbone flexibility is likely to accommodate a large

number of functional interactions, but it is not possi-

ble to know a priori how the backbone should be

deformed. We previously described a computational

algorithm for addressing this problem in the context

of protein-DNA interactions.19 We identify a set of

previously observed functional interactions (called

motifs) and attempt to transplant them onto our

design template. A motif can be successfully incorpo-

rated if modest movement of the design template

backbone accommodates placement of the motif ’s

functional amino acid. A previous computational

approach to enzyme redesign utilized flexible back-

bones20; however, this did not rely on library of puta-

tive functional interactions and required explicit

selection of mutatable positions.

In this report, we extend the method introduced

in Ref. 19. for selecting motifs from a set of native

interactions to confer a change in the specificity of an

enzyme. Starting with a library of potentially func-

tional motifs, we implement an algorithm that utilizes

iterative cycles of backbone relaxation and motif place-

ment followed by the redesign of additional supporting

mutations. The extended method is general in the

sense that it can be used to design for any target for

which a comprehensive motif-library can be gathered

from databases or constructed from computations. We

describe this approach in detail, and demonstrate its

effectiveness by altering the specificity and activity of

methionine aminopeptidase. Our results show that in

this system, the transfer of residue-level functional

interactions can alter substrate specificity while pre-

serving existing catalytic activity.

Results

Computational redesign of specificity with

backbone flexibility
Methionine aminopeptidase from E. coli (eMAP) is

an essential metallo-aminopeptidase responsible for

post-translational removal of N-terminal methionine

from proteins. As shown in Figure 2, the N-terminal

methionine is directly contacted by two loop regions

surrounding the active site. A number of residues

required for catalysis have been identified by muta-

genesis,21–23 while those involved in substrate recog-

nition are less well-studied but can be inferred from

the crystal structures. Comparing the apo and holo

forms of the protein (purple and white, respectively,

in Figure 1) reveals a relatively rigid binding pocket

that shifts only slightly during substrate recogni-

tion. This “lock-and-key” binding site is amenable to

specificity redesign since no large structural rear-

rangements appear to be required to accommodate

the substrate. We therefore sought to switch the

specificity for N-terminal methionine to specificity

for N-terminal leucine using motif-based design.

This is a relatively stringent test for specificity rede-

sign since leucine and methionine both have similar

hydrophobic properties and are comparable in size.25

Flexible backbone design can be directed by
interaction motifs

A loop region of the protein recognizes the sidechain

of the methionine substrate. We anticipated that the

loop region would need to rearrange to recognize a

leucine sidechain. Because optimal loop conforma-

tions for recognition cannot be determined in the

absence of side chain-side chain interactions, we

employed motif-directed design. In this approach, a

library of previously observed amino acid-amino acid

contacts is collected from a set of experimentally

determined structures.

Each motif in the library is used to place a free,

interacting amino acid in the appropriate location to

realize the interaction with the desired leucine

substrate. An inverse rotamer library19 is used to

sample the side chain degrees of freedom of the

introduced amino acid. This yields a set of virtual

amino acids poised to reproduce previously observed

interactions with leucine, each with an enumerated

Figure 1. Holo-eMAP (PDB ID 2MAT,22 white) shows minimal

conformational changes (0.114 Å RMSD) when bound with

methionine (PDB ID 1C21,24 purple). The residues that con-

tact the substrate are shown in a stick representation.
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set of backbone locations that could give rise to the

interaction. A computational procedure is employed

to search for interactions with the substrate that

can easily be incorporated into the preexisting back-

bone of eMAP with a limited amount of conforma-

tion rearrangement.

Using this approach, we identified residue-level

interactions that could be accommodated by the eMAP

backbone with conformational flexibility. The first is

an interaction between two leucine residues [Fig.

2(A,B)] taken from GTP cyclohydrolase II (positions

47A and 18A, PDB code: 2BZ126). The second is

between residues Leu428A and Ile378A [Fig. 2(C,D)]

from estrogen receptor a (PDB code: 2IOK27). To maxi-

mize flexibility during the search for compatible

backbone-motif matches, we changed residues within

the loop to alanine, with the exception of glycine and

proline amino acids, which were unchanged. Following

the iterative incorporation of the two interaction

motifs, nonmotif residues within the loop were rede-

signed using the RosettaDesign28 program (Fig. 3).

This process was repeated 10 times, with backbone

relaxation performed between each sequence redesign

calculation.29,30 The resulting protein is denoted eLAP,

and differs from eMAP at 19 positions (Fig. 4).

Inactive eMAP exhibits binding specificity for
N-terminal methionine peptides

In the presence of a metal chelator, we found that

eMAP binds N-terminal methionine noncatalytically.

We first conducted bio-layer interferometry (BLI)

experiments to measure the affinity of native eMAP

for an N-terminal methionine peptide ligand. The

results indicate that methionine recognition by

eMAP in the absence of catalytic activity is a fairly

weak interaction, with a dissociation constant of

2.65 lM. Next, we assayed the binding activity of

eMAP against an N-terminal leucine peptide ligand.

The measured dissociation constant was 54.2 lM

(Table I). Thus, eMAP exhibits a >20-fold specificity

preference for N-terminal methionine over leucine

(Fig. 5, Table I).

Inactive eLAP exhibits altered specificity profiles

for N-terminal methionine and leucine

We next tested whether our designed eLAP protein

possessed altered specificity for the N-terminal

methionine and leucine peptides. Ideally, a specific-

ity “swap” would result not only in a change of rela-

tive binding preferences relative to eMAP (such a

mutant may still prefer methionine, but by a smaller

amount), but in an absolute preference for leucine

over methionine. We first measured the affinity of

eLAP for the N-terminal leucine peptide and found

detectable binding with a dissociation constant of 0.83

lM. This is slightly better than the affinity of eMAP

for the methioinine peptide. We then attempted to

confirm the specificity swap by measuring the eLAP

affinity for methionine. The resulting dissociation

constant (Kd 5 19.08 lM) is more than an order of

magnitude higher than eLAP for leucine. Thus, eLAP

exhibits a 20-fold preference for leucine over methio-

nine (Fig. 5), verifying that the mutant’s affinity pro-

file is opposite that of eMAP.

Figure 2. Motif donors. The placed motifs are shown here in their final position in eLAP (A,C) and their native background

(B,D). The native contact orientation is maintained throughout the design process by constraining the three atoms that define

the motif coordinate system. Backbone atoms are allowed to move in discrete “inverse-rotameric” conformations to graft the

motif into its acceptor position.
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Active eLAP exhibits altered activity for
N-terminal methionine and leucine substrates

To determine whether the change in binding speci-

ficity translates into a change in substrate specific-

ity, we characterized the enzymatic activity of both

eMAP and eLAP using a fluorogenic assay. When

the substrate [Met/Leu]-AMC is cleaved, the liber-

ated AMC group fluoresces, allowing direct measure-

ment of substrate accumulation. While optimal

eMAP activity is known to require longer peptide

substrates for maximal activity, we selected these

substrates for ease of measurement, and because we

are interested in relative, rather than absolute,

rates. The Met-AMC substrate is roughly equivalent

to a two-amino acid substrate, which according to

previous reports should be cleaved with an activity

around 5% of that of a pentapeptide.31 We measured

the activities of both enzymes against both sub-

strates. Initial velocities for each substrate (RFU

min21) were converted to concentrations of released

AMC, and initial velocities (lM min21) were plotted

as a function of substrate concentration. We deter-

mined the kinetic constants for both enzymes

against Met-AMC and Leu-AMC; the results are

summarized in Table II. The measured kcat/Km (cata-

lytic efficiency) for eMAP against the Met-AMC and

Leu-AMc substrates was 0.74 s21 M21 and 0.02

s21 M21, respectively (Fig. 6). Thus, the catalytic

efficiency of eMAP against Leu-AMC substrate is

�2.7% of that against Met-AMC, similar to the rela-

tive efficiencies found in a previous study utilizing

pentapeptides (�3%),31 indicating that despite the

Figure 4. Alignment of methionine aminopeptidase with the final design for a leucine aminopeptidase. The flexible loop region

encompasses residues 56–70 with the two motif placements shown in bright red. Additional mutations made to accommodate

a greater range of loop conformations are shown in bold letters.

Figure 3. eLAP design. (A) Initial placement of the LL motif (cyan, sphere representation) pulls the remodeled loop (cyan, car-

toon) inwards towards the substrate (orange). This step repositions the loop from its native conformation (green). (B) A second

motif, the LI motif (purple, right) is placed adjacent to the substrate, and the loop is again remodeled (purple, cartoon) to

accommodate the new motif. The LL motif is constrained in this step. (C) Residues surrounding both motifs in the loop region

(black) are mutated to support the dual-motif placement, and relaxed in 10 iterations. Resulting loop movement is minimal, and

the native interactions are maintained during remodeling.

Borgo and Havranek PROTEIN SCIENCE VOL 23:312—320 315



difference in absolute magnitudes, the AMC sub-

strate provides an accurate measurement of relative

catalytic efficiency.

We next assayed the activity of eLAP against

both substrates. The engineered enzyme has a kcat/Km

of .0056 s21 M21 against Leu-AMC, and a kcat/Km of

.0024 s–1 M–1 against Met-AMC. While the lower

activity indicates that our mutated enzyme is signifi-

cantly less efficient than the native for both sub-

strates, eLAP is more than twice as efficient at

cleaving the Leu-AMC substrate than the Met-AMC.

The Km of eLAP for the methionine substrate is

actually lower than the Km for the leucine substrate.

However, kcat is nearly two orders of magnitude

worse. We speculate this is due to the significantly

greater conformational heterogeneity of the methio-

nine side-chain and the adoption of a greater variety

of bound states, which though they are tightly associ-

ated, render catalysis impossible. The notion of a less-

ordered loop is consistent with an observed decrease

in solubility of eLAP versus eMAP.

Discussion
The ability to engineer specific activities into pro-

teins using computational techniques has advanced

rapidly over the past several years and has enor-

mous potential for generating novel therapeutics,

industrial enzymes, and biotechnology tools. Current

algorithms rely heavily on harnessing the native prop-

erties of existing proteins, either explicitly through

the use of rotamers or implicitly through knowledge-

based energy terms, to reconstruct enzymes or pro-

teins with altered activity or specificity. In algorithms

that explicitly target predefined interactions, stable

modules that possess the desired properties are either

designed or identified from a database of empirical

structures and computationally matched to a region in

the target protein. This type of “building-block”

approach to synthetic biology has become popular in

metabolic engineering32–35 and several reports have

demonstrated its applicability to protein design.7,8,36,37

Perhaps the most striking examples of module

transplantation have been generated as a product of

de novo enzyme engineering. The Rosetta software

suite’s enzyme design protocol, for example, has suc-

cessfully transplanted artificial active sites onto

native backbone scaffolds.7,9,38 While this is an extra-

ordinary feat of protein engineering, and a stringent

test of our understanding of protein structure and

Figure 5. Changes in specificity in designed eLAP. On, off and dissociation rates for eMAP and eLAP show similar specificities

(�20-fold affinity preference) for their target substrates (A), indicating that motif-based design successfully changes the specific-

ity of eMAP. A comparison of binding to each substrate (B), shows that the primary increase in affinity is for the positive design

state (ie eLAP for leucine) rather than against methionine. A raw sensogram used to derive the specificity comparisons is shown

in (C).

Table I. Binding parameters of native and designed
proteins

Protein/peptide kon (M21 s21) koff (s21) KD (mM)

Emap/Met 1.85 3 103 4.89 3 1023 2.65
Emap/Leu 2.71 3 102 1.47 3 1022 54.2
Elap/Met 2.14 3 102 4.08 3 1023 19.1
Elap/Leu 1.72 3 103 1.42 3 1023 0.826

Table II. Kinetic parameters of native and designed
proteins

Protein/substrate kcat (s21) Km (mM) kcat/Km

Emap/Met-AMC 0.0033 0.0044 0.7397
Emap/Leu-AMC 0.0031 0.157 0.0201
Elap/Met-AMC 8.22 3 10-5 0.0336 0.0024
Elap/Leu-AMC 3.48 3 10-4 0.0619 0.00562
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function, de novo design is a much more difficult

problem than need be solved to generate novel enzy-

matic activities for many practical applications. By

contrast, redesign of native enzymes requires less

effort and can draw upon a supply of over 4000 chem-

ical activities39 that could be amenable to redesign.

We note that although computational design

with motif-directed backbone flexibility was success-

ful in this case, the two motifs that were incorpo-

rated into the flexible region of the protein both

involved hydrophobic residues. It remains to be seen

whether this approach will prove successful for the

design of hydrogen-bonded or electrostatic interac-

tions, which has proven more difficult than design

involving only hydrophobic contacts.40,41 Hydrogen

bonded interactions require more stringent geometric

constraints, and the many-body, networked nature of

these interactions may be a poor fit for standard

design schemes, which typically employ scoring func-

tions that are truncated at two-body terms.

In eMAP, the catalytic, metal-chelating residues

are readily distinguished from the side-chain speci-

ficity-determining residues. Approaches such as

motif-directed design are likely to work well in pro-

teins where this is the case, or when the desired

function is limited to binding or recognition. In this

study, eLAP exhibited binding kinetics for an N-

terminal leucine that were similar to those of eMAP

for an N-terminal methionine. In general, however,

specificity, catalysis, and binding energy are inti-

mately entangled in enzymes.42 Our results from

the enzymatic assays indicate that in the case of

eMAP this is minimal but still apparent, as the kcat

of the designed eLAP is significantly less than that

of the native enzyme for both substrates. This may

limit the applicability of the residue level, motif-

based approach for the design of certain novel

catalysts.

Despite this limitation, our results also suggest

that this approach may work well in combination

with directed evolution. Directed evolution is very

effective at optimizing a pre-existing activity, but is

often incapable of generating large, coordinated

changes to establish novel function. Our results

demonstrate the ability of motif-based computational

design to change specificity, and to cope with a large

number of mutations (19 for eLAP relative to

eMAP). While it is likely that not all mutations are

essential for our desired goal, such a large number

of simultaneous mutations cannot be encoded in a

Figure 6. Enzyme kinetics data for (A) eMAP cleaving methionine (eMAP-met), (B) eMAP-leu, (C) eLAP-met, and (D) eLAP-leu.

Best-fit curves using the Michaelis-Menten model are overlaid along with error bars for reaction velocities measured in tripli-

cate. Parameters are listed in Table II.
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genetic library. In cases where a preexisting activity

is lacking, motif-based design may thus allow pro-

tein engineers to generate a starting point that

would not be discoverable by directed evolution

alone. It is also possible that directed evolution

would be able to identify additional mutations to

improve upon the activity of eLAP.

Methods

Construction of motif library
We extracted motifs from a subset of the PDB43

obtained from the PISCES server.44,45 We required

that all structures be solved using x-ray crystallog-

raphy to a resolution of 1.6 Å or better, with

R-factors of 0.25 or better, and that no two domains

shared more than 20% sequence identity. This

yielded 1682 structures. For each structure, all

residue-residue interactions that include a leucine

were scored using the Rosetta full-atom scoring

function. We isolated hydrophobic interactions by

considering individual scoring terms. If the total

Lennard-Jones potential score was greater than –1.0

Rosetta energy units (REU) (lower values are more

favorable), the interaction was discarded. Otherwise,

the geometry between the sidechains was deter-

mined as previously described.19 Briefly, a coordi-

nate system is defined for each of the amino acids

by predefined terminal heavy atoms (e.g., Cg, Cd1,

and Cd2 for leucine). The translation vector and

rotation matrix relating the coordinate systems

between residues is obtained, and may be used to

recreate one interacting partner given the other. To

eliminate redundant interactions, the geometric

transformation is checked against previously calcu-

lated examples. Any interaction whose translation

vector and rotation matrix differ from another by

less than 1.0 Å and 0.4 radians, respectively, are

deemed to be redundant and are discarded. Each

such interaction (called a motif) is defined by the

identities of the amino acids involved, the atoms

used to define the coordinate systems, and the trans-

formation relating the two systems. We call the

resulting set of nonredundant, previously observed

interactions a motif library.

Design template preparation
The starting point for redesign calculations was the

experimentally determined structure for eMAP in

complex with the transition state analog norleucine

phosponate (PDB code: 2GTX46. We modeled a leu-

cine amino acid superimposed upon the norleucine

phosponate, and predicted the favored side chain

conformation using the Rosetta program.47 The con-

formation of the leucine amino acid was held fixed

for all subsequent calculations. Residues 56–70 were

selected as a loop region. In order to give the loop

region flexibility in accommodating interactions with

the leucine substrate, residues 56–70, as well as

neighboring residues 42,46,81,101,177, and 221 were

replaced with alanine, with the exception of glycine

and proline residues, which were not changed.

Motif incorporation

The procedure for motif-directed backbone move-

ment and incorporation of interacting virtual amino

acids is given in detail in Ref.19. Briefly, the leucine-

specific motif library was used to generate possible

interactions between the protein and the leucine

substrate in two steps. First, the geometric informa-

tion for each motif was used to place a virtual inter-

acting amino acid in contact with the substrate. The

motif defines the relative orientation of the terminal

heavy atoms in the interacting amino acid. Second,

we made copies of each virtual amino acid that dif-

fered only in their side chain torsion angles, which

were taken from a rotamer library. Copies that

clashed with the substrate or residues outside the

loop region, or that had main chain atoms too far

from any protein residue (rmsd > 2.0 Å over the Cb,

Ca, C, and N atoms) were discarded. Thus, each

motif in the motif library gives rise to multiple vir-

tual amino acids, each satisfying the geometric

requirements of the motif interaction, but with dif-

ferent locations for their backbone atoms.

We next determined whether the protein back-

bone atoms could be made to superimpose with those

of each virtual interacting amino acid. We performed

loop relaxation under the Rosetta scoring function

augmented with harmonic constraints between the

Cb, Ca, C, and N atoms of the amino acid and the cor-

responding atoms of the closest backbone position in

the flexible loop. Backbone movement was considered

successful if the final rmsd over the constrained

atoms was below 1.0 Å. In this case, the virtual motif

amino acid was modeled onto the backbone. As align-

ing the backbone atoms causes the terminal atoms to

shift, we performed a second round of loop relaxation

in which constraints are applied to restore the motif-

defining terminal atoms to their ideal locations. We

accepted as successful those cases with final rmsd

values below 1.0 Å. These motif-incorporating models

served as the starting point for further attempts to

incorporate additional motifs.

Redesign of loop residues

Following the final motif placement, surrounding

residues in the design region are mutated to support

the altered backbone conformation using a combina-

tion of standard protocols for fixed backbone design

and energy minimization from RosettaDesign.28

First, we redesigned any positions in the flexible

loop or the neighboring residues that had been

replaced with alanine prior to motif incorporation,

excluding incorporated motif residues. Then, the

“backrub” loop relaxation protocol was applied to the
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loop (residues 56–70).30 We performed 10 iterations

of this combined procedure.

Cloning and mutagenesis

The gene for methionine aminopeptidase was ampli-

fied from E. coli genomic DNA, cloned into the

pET42(a) expression vector (Novagen, MA) upstream

of a 63 his-tag, and verified by sequencing. Site

directed mutagenesis was done by the Kunkel

method, with oligos ordered from IDT and mutants

verified by sequencing. Proteins were expressed

using an autoinduction protocol.48 Proteins were

purified by immobilized metal affinity chromatogra-

phy, eluted with an imidazole gradient, and concen-

trated by ultrafiltration. Identity and purity were

verified by SDS-PAGE. Purified protein was dialyzed

against 1x phosphate buffered saline (pH 7.4) for 24

h, and stored in 50% glycerol. Concentrations were

determined by absorbance at 280 nm.

Binding assays

Substrate peptides with a sequence of X-GMMSC

were obtained (Cel-Tek, TN), where X is either methi-

onine or leucine. Biolayer interferometry using the

BLItz platform (Forte Bio, CA) requires the immobili-

zation of the substrate onto a fiber optic tip coated

with amine-reactive chemical groups. Each substrate

was attached by activating the tip with a 0.4M 1-

ethyl-3-3-dimethylaminopropyl)-carbodiimide (EDC)

and 0.1M N-hydroxysuccinimide (NHS) solution for

10 min, attaching a N-beta-maleimidopropionic acid

hydrazide (BMPH) hetero-bifunctional crosslinker in

0.1M sodium borate at pH 8.5 to introduce an

exposed, reactive thiol, quenching unreacted amine-

reactive groups with 1M ethanolamine, attaching the

substrate by reacting the C-terminal Cysteine with

the BMPH thiol, and quenching unreacted thiols with

a solution of 50 mM cysteine and 1M NaCl in 0.1M

sodium acetate at pH 4.3. The substrate derived tips

where then washed with 100 lM BSA and stripped to

remove any protein contaminants with 8M guanidine

chloride twice before starting the binding assay. To

measure affinity constants, each tip was first blanked

against a 1x PBS buffer containing no protein. 4 uL

of 1x PBS containing 3.7 lM (eMAP) or 4.9 lM

(eLAP) were loaded and the association of the protein

to the subtrate was measured for 2 min. The tip was

transferred back into a 1x PBS blank and dissociation

kinetics were measured for 2 min. The tip surface

was then washed with 8M guanidine chloride to strip

off any remaining protein before the tip was reused.

Negative controls with both BSA and the buffer blank

showed no association/dissociation curves. Data was

globally fit using the built-in BLItz software to a 1:1

binding model to determine kon, koff, and KD.

Aminopeptidase assays
Fluorogenic amino-methylcoumarin substrate (x-AMC,

where x is either methionine or leucine) were ordered

from BaChem. Cleavage of AMC from the substrates

was monitored on a 96-well plate fluorometer using a

Synergy 2 Multi-Mode Microplate Reader (Bio-Tek,

VT) at an excitation wavelength 360 nm and an emis-

sion wavelength 485 nm for all substrates. Assays

were conducted on 96-well round bottom black poly-

styrene microplates (Corning Life Sciences, MA) in a

reaction volume of 150 mL containing 3.7 lM eMAP or

4.9 lM eLAP, assay buffer (13 PBS, pH 7.4) and sub-

strate at concentrations ranging from 1 to 80 mM.

Reaction mixtures were held at 4 C during combining,

preincubated for 1 h at 25�C and started by addition

of 10 lM cobalt chloride to the mixture. Fluorescence

accumulation was monitored every 1 min over a

period of 60 min and relative fluorescence units were

converted to rates of substrate cleavage by calibration

with a free AMC standard curve (Sigma Aldrich,

MO). Reaction rates at steady state were calculated

from the slope of the fluorescence time courses by

linear regression of initial velocities, and kinetic

parameters were calculated assuming Michaelis-

Menten kinetics, v 5 Vmax(S)/(S) 1 Km by nonlinear

regression in the R statistical software package.
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Popović Z, Havranek JJ, Karanicolas J, Das R, Meiler
J, Kortemme T, Gray JJ, Kuhlman B, Baker D,
Bradley P (2011) ROSETTA3: an object-oriented soft-
ware suite for the simulation and design of macromole-
cules. Methods Enzymol 487:545.

48. Studier FW (2005) Protein production by auto-induction
in high-density shaking cultures. Protein Expr Purif 41:
207–234.

320 PROTEINSCIENCE.ORG Motif-Directed Redesign of Enzyme Specificity


