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Abstract

Motivation: High-throughput chromatin immunoprecipitation (ChIP) sequencing-based assays capture genomic
regions associated with the profiled transcription factor (TF). ChIP-exo is a modified protocol, which uses lambda
exonuclease to digest DNA close to the TF-DNA complex, in order to improve on the positional resolution of the TF-
DNA contact. Because the digestion occurs in the 50–30 orientation, the protocol produces directional footprints close
to the complex, on both sides of the double stranded DNA. Like all ChIP-based methods, ChIP-exo reports a mixture
of different regions associated with the TF: those bound directly to the TF as well as via intermediaries. However, the
distribution of footprints are likely to be indicative of the complex forming at the DNA.

Results: We present ExoDiversity, which uses a model-based framework to learn a joint distribution over footprints
and motifs, thus resolving the mixture of ChIP-exo footprints into diverse binding modes. It uses no prior motif or TF
information and automatically learns the number of different modes from the data. We show its application on a
wide range of TFs and organisms/cell-types. Because its goal is to explain the complete set of reported regions, it is
able to identify co-factor TF motifs that appear in a small fraction of the dataset. Further, ExoDiversity discovers
small nucleotide variations within and outside canonical motifs, which co-occur with variations in footprints, sug-
gesting that the TF-DNA structural configuration at those regions is likely to be different. Finally, we show that
detected modes have specific DNA shape features and conservation signals, giving insights into the structure and
function of the putative TF-DNA complexes.

Availability and implementation: The code for ExoDiversity is available on https://github.com/NarlikarLab/
exoDIVERSITY.

Contact: l.narlikar@ncl.res.in

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcriptional regulation is governed by interactions between pro-
teins called transcription factors (TFs) and their corresponding
DNA binding sites. TFs may bind DNA directly or through com-
plexes with other proteins, which make contact with DNA.
Identifying these genomic binding sites is critical to understand their
role in gene-regulation. High-throughput chromatin immunoprecipi-
tation (ChIP) is the method of choice for locating DNA regions asso-
ciated with a TF or protein of interest (POI) (Furey, 2012). Here,
after protein-protein and protein-DNA interactions are cross-linked
in vivo, fragmented chromatin associated with the POI is immuno-
precipitated. The identity of the fragments is usually discerned using
sequencing (ChIP-seq). After mapping the reads back to the genome,
one typically gets genomic regions of length between 100 and
1000 bp: the short 5–20 bp TF-DNA binding site (direct or other-
wise) could be anywhere within that region.

To improve the positional resolution of these binding sites, a
variation of the method was developed, which uses the lambda exo-
nuclease after the immunoprecipitation step (Rhee and Pugh, 2011).
The enzyme digests chromatin to the point where the cross-linked
protein-DNA complex hinders its activity. Specifically, it degrades

single strand of unbounded DNA in the 50–30 direction, leaving the
DNA sequences 30 of the cross-link intact. After sequencing and
mapping the reads, one therefore gets directional footprints close to
the complex, on both sides. Alignment of these footprints is
expected to reveal the DNA contacts made by the POI. However,
the footprints are not the same at all locations and depend on mul-
tiple factors: (i) the actual protein occupying the DNA, which may
be either the POI or a protein with which it complexes/co-occurs,
(ii) the nucleotide sequence, since a TF typically can bind a set of dis-
tinct nucleotide sequences, at times with varying affinities and (iii)
the precise location of the cross-link within the protein-DNA com-
plex, which obstructs the exonuclease activity resulting in the even-
tual distribution of reads (Rhee and Pugh, 2011).

One therefore needs to categorize these footprints in order to
understand the various protein-DNA complexes that may be form-
ing at the reported regions. Two approaches have been pursued for
this. The first scans the reported regions with pre-established DNA
motifs of interest and extracts putative TF binding sites. The foot-
prints are analyzed separately at these regions to gain insights into
potential complexes forming there (Starick et al., 2015). The second
approach, developed by Yamada et al. (2019), aims to learn foot-
prints jointly from the DNA sequence and reads. Their method
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ChExMix first initializes potential binding events into subtypes,
based either on de novo motifs or on diverse read distributions
detected from the top (500–1000) most enriched regions, and then

refines them using expectation maximization in subsequent itera-
tions over the complete set. We propose a new approach

ExoDiversity that does not rely on motifs to be identified a priori
and similar to ChExMix divides the ChIP-exo binding events into
different binding modes based on both the read distributions and the

sequence motifs. However, unlike ChExMix, ExoDiversity is built
on a model-based Bayesian framework that uses both sources of in-

formation simultaneously on the complete set of regions. We show
that ExoDiversity resolves read footprints to a single nucleotide
level, which correlate with single nucleotide differences in the se-

quence motif. The discovered modes provide insights into how the
DNA shape might be influencing protein-DNA binding as well as

exonuclease digestion activity at those complexes.

2 Approach

The input to ExoDiversity are the bound regions and the corre-
sponding mapped reads in both directions, control subtracted if the
control experiment is available. ExoDiversity partitions the regions

into diverse binding modes, each categorized by a DNA motif and a
corresponding read footprint, all of which are learned simultaneous-

ly. Multiple models with different numbers of modes are learned
and the best model is selected using the Bayesian information criter-
ion (BIC).

3 Materials and methods

3.1 Model description
From the experiment, we have the following:

• n reported DNA sequences X ¼ X1;X2; . . . ;Xn. Here Xi;j is one

of fA, C, G, T, Ng; 1 � j � Li where Li is the length of Xi.
• n vectors Rþ ¼ R1

þ;R2
þ; . . . ;Rn

þ, which store read counts cor-

responding to X on the positive strand. Rþi;j denotes the number

of reads whose 50 end maps to the genomic location correspond-

ing to Xi;j on the positive strand. These counts are discretized to

binary values based on the median read count or a user-defined

threshold.
• n vectors R� similar to above but for the negative strand.

A binding mode is characterized with a joint probability distribu-
tion over the DNA motif and the read footprint. The motif is mod-
elled as a product of categorical distributions over the four

nucleotides [the standard position weight matrix, or PWM (Staden,
1984)] and the footprint is modeled as a product of Bernoulli distri-

butions over the positive and negative reads at two small ‘read win-
dows’, respectively, near the motif (Fig. 1). Since the lambda
exonuclease digested reads are concentrated at a few bases near the

binding region, we consider a read window size of five, but this can
be changed by the user (Discussion). The position of these two read

windows with respect to the motif, the motif locations within X, the
motif probabilities, as well as the Bernoulli probabilities are all un-
known a priori. The goal is to partition the dataset into m binding

modes i.e. learn parameters hm of a model Mm, which has six com-
ponents fZ; I;w;/; s; cg:

• Zi: position of the motif in Xi

• Ii: binding mode of Xi; 1 � Ii � m
• wk: width of the PWM motif in mode k; 1 � k � m
• wþk : width of the read window defining the positive strand foot-

print in mode k; here it is set to 5, but can be changed by the user
• w�k : as above, but for the negative strand

• /k: PWM values for motif of mode k. /k;aðbÞ is the probability

of finding nucleotide b at position a in PWM of mode k;

1 � a � wk

• /k
þ: Bernoulli probabilities of finding a read on the positive

strand for mode k. /þk;að1Þ is the probability of having a positive

strand read at position a within the read window of mode k,

while /þk;að0Þ ¼ 1� /þk;að1Þ is the probability of finding no read

there; 1 � a � wþk
• /k

�: Bernoulli probabilities for negative strand reads in mode k

similar to above
• /0: parameters of the background distribution over the DNA

sequences (2nd order Markov model learned directly from X)
• /0

þ and /0
�: parameters of the background strand read distribu-

tion (0th order Markov model learned directly from Rþ and R�,

respectively)
• sþk : distance of the start of positive strand read window from the

start of motif in mode k (positive read window offset)
• s�k : distance of the start of the motif from the start of the

negative strand read window in mode k (negative read window

offset)
• c: Categorical distribution over m modes. ck is the probability of

a sequence containing the binding mode k.

Assuming that the DNA and the read data are independent con-
ditional on the mode information, the likelihood of datapoint i
becomes:

PðXi;Ri
þ;Ri

�jhm;MmÞ ¼ PðXijhm;MmÞ
�PðRi

þjhm;MmÞ � PðRi
�jhm;MmÞ

(1)

The first term in Eq. (1) is the likelihood of Xi modelled with a
motif of mode Ii at position Zi and background nucleotide distribu-
tion elsewhere:

PðXijhm;MmÞ ¼ PðXi;1;Xi;2; . . . ;Xi;Zi�1j/0Þ

�
YwIi

a¼1

/Ii ;aðXi;Ziþa�1Þ

�PðXi;ZiþwIi
; . . . ;Xi;Li

j/0Þ

/

YwIi

a¼1

/Ii ;aðXi;Ziþa�1Þ

PðXi;Zi
; . . . ;Xi;ZiþwIi�1

j/0Þ

(2)

which we get by normalizing by the background probability.
Similarly the second (third) term of Eq. (1) refers to the positive
(negative) strand reads, modelled with the window probabilities
near the motif and background at other places.

Fig. 1. The ith datapoint fDNA sequence Xi, positive reads Ri
þ, negative reads

Ri
�g, belonging to mode k is shown. The red (blue) box of width wþk ðw�k Þ denotes

the positive (negative) read window, which is modeled using Bernoulli probabilities

/k
þð/k

�Þ. The 1 and 0 indicate the presence and absence of reads at those positions.

The pink box is the DNA site at position Zi, modeled using PWM parameters /k.

The positive (negative) read window is at a fixed distance sþk ðs�k Þ from Zi. Only

Xi; Ri
þ and Ri

� are known; the rest are unknown and learned from the data
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PðRs
i jhm;MmÞ ¼ PðRs

i;1; . . . ;Rs
i;Zs

i
�1j/0

sÞ

�
Yw

s
Ii

a¼1

/s
Ii ;a
ðRi;Zs

i
þa�1Þ

�PðRs
i;Zs

i
þws

Ii

; . . . ;Rs
i;Li
j/0

sÞ

/

Yw
s
Ii

a¼1

/s
Ii ;a
ðRs

i;Zs
i
þa�1Þ

PðRi;Zs
i
; . . . ;Rs

i;Zs
i
þws

Ii
�1j/0

sÞ

(3)

where s 2 fþ;�g and the position of the read window Zs
i ¼ Zi þ ss

Ii
.

The full likelihood of the dataset is:

PðX;Rþ;R�jhm;MmÞ ¼
Yn

i¼1

PðXi;Ri
þ;Ri

�jhm;MmÞ

We note that the motifs can be on either strand and the foot-

prints need not be symmetric. To handle this, the original data is
appended with its reverse complement, taking care to reverse the
read counts appropriately.

3.2 Model learning
The goal is to learn the parameters of the model Mm to maximize
the posterior distribution:

argmax
hm

PðhmjX ;Rþ;R�;MmÞ (4)

hm is a high dimensional vector. We therefore use collapsed Gibbs
sampling targeting a marginalized posterior, as has been done previ-

ously with motif discovery (Liu, 1994; Mitra et al., 2018). Here, we
integrate out (i.e. marginalize over) /k;/k

þ;/k
� and c, while itera-

tively sampling the other parameters: locations of motifs (Zi) &
mode of binding (Ii) for each datapoint i and read window offsets
(sþk ; s

�
k ) and width of motifs (wk), for each binding mode k. We as-

sume conjugate Dirichlet/Beta priors for this purpose. The deriv-
ation of all the sampling expressions is detailed in Supplementary

Methods.

3.3 Model selection
We score each sample from the Gibbs sampler using the posterior

distribution of eq. (4) and stop sampling when the value does not in-
crease for 5� n iterations. We further do a hill climbing routine
starting from highest scoring instance (Mitra et al., 2018) and report

the final instance of the read distributions and the motifs as the
MAP estimate of Eq. (4). As we do not know the value of m before

hand, we learn models with different values of m. We calculate the
Bayesian Information Criterion (BIC) score for each model, which is
a function of the posterior score and the number of free parameters

(Murphy, 2021). The model with the minimum BIC score is
reported as the best model.

BICMm
¼ KlnðnÞ � 2lnðP̂Þ (5)

K is the number of free parameters, which for model Mm include

the three parameters for every column of each PWM, one parameter
for every position of each read window, and two parameters for the
read position offsets per mode, while P̂ is the posterior score of the

model at the MAP estimate.

K ¼
Xm

i¼1

ð3wi þwþi þw�i þ 2Þ

3.4 Using models to predict
Given a new datapoint D ¼ fX ;Rþ;R�g, where DNA sequence X is

of length L with associated read counts Rþ and R�, we can calculate
the probability of it belonging to mode k of model Mm, by marginal-
izing over all possible motif positions Z:

PðI ¼ kjD; hm;MmÞ / ck

XL

j¼1

PðD;Z ¼ jjhm;MmÞ (6)

where

PðD;Z ¼ jjhm;MmÞ ¼
1

L
PðXjZ ¼ j;/kÞ

�PðRþjZ ¼ j;/þk ; s
þ
k Þ � PðR�jZ ¼ j;/�k ; s

�
k Þ

(7)

The three individual probability terms are computed using
Equations 2 and 3. In Figure 3B, after the model is learned, the con-
fusion matrix entry (u, v) is computed as the average probability of
assigning a datapoint of mode u to mode v:

1

number of regions in mode u

Xn

Ii¼ui¼1

PðIi ¼ vjDi; hm;MmÞ

In cases where only motif or only reads are used, the correspond-
ing terms are dropped from eq. (7).

We can similarly compute the probability of the datapoint given
model Mm by marginalizing over I and Z:

PðDjhm;MmÞ ¼
Xm

k¼1

ck

XL

j¼1

PðD;Z ¼ jjhm;MmÞ (8)

assuming the position Z of the motif to be equally likely to appear
anywhere within X.

Given two models Ma and Mb, we can compute the log odds
score for the datapoint:

SðDÞ ¼ log
PðDjha;MaÞ
PðDjhb;MbÞ

; (9)

which is used for classifying D. Eq. (6) is used in Supplementary
Figure S2, while eq. (9) is used in Figure 4.

3.5 Datasets
3.5.1 In silico mixed data

MultiGPS 0.74 (Mahony et al., 2014) was run on BAM files from
CTCF and FoxA1 experiments in the MCF7 cell-line (GSE110502)
separately with the corresponding control file to obtain the summits
for each TF. Regions of length 240 bp around the summits were
extracted and 5000 regions were randomly chosen from each data-
set, ensuring that they did not contain repetitive DNA or overlapped
with each other. The 10 000 regions were mixed, and the BAM files
from both experiments were merged. The regions file and the mixed
& control BAM files were all given to ChExMix to run with its de-
fault parameters. The mixed reads were control subtracted after
scaling and along with the peak regions given to ExoDiversity to run
with its default parameters. ExoDiversity was run with default
parameters on all datasets mentioned in the subsequent sections as
well, except in the case of CTCF, where the initial motif width was
set to 40.

3.5.2 Full datasets

ChIP-nexus data for Sox2, Oct4, Klf4 and Nanog are in mouse
ESCs (Avsec et al., 2021). The bigWig files containing the read
counts and the peak files were taken from the GEO database
(GSE137193), which used the MACS2 peak finder (Feng et al.,
2012). ChIP-nexus reads data for Twist in Drosophila (He et al.,
2015) was taken from GSE55306. MultiGPS peaks for the individ-
ual sets of FoxA1 and CTCF were used as input without mixing
when the full individual sets were analysed by ExoDiversity.
MultiGPS peaks for ERa (Yamada et al., 2019) along with its read
counts were taken from GSE110502. Reads for Glucocorticoid
Receptor(GR) (Starick et al., 2015) in U2OS cell lines was taken
from EBI ArrayExpress (E-MTAB-2955). ChIP-seq peak file (E-
MTAB-2956) was used as the input peak regions for ExoDiversity.
For all datasets, 240 bp around the summits were extracted, repeats

Resolving protein–DNA footprints i369

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab274#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab274#supplementary-data


were masked, and only regions with at least 100 bp of non-repetitive
DNA were used as input.

3.5.3 Other data

DNA shape data is from GBShape website (Chiu et al., 2015).
Placental phastCons scores and gene annotations from refGene file
were obtained from the UCSC Genome Browser (Karolchik et al.,
2004).

4 Results

4.1 In silico mixed data
ExoDiversity should ideally be evaluated on a ChIP-exo dataset
where the true footprints are well-established or on a simulated
dataset where they could be artificially planted. However, the for-
mer does not currently exist and the latter will be constrained by
assumptions of the planter, which may never match reality. We
therefore followed the methodology of Yamada et al. (2019) where
they mix two ChIP-exo datasets for TFs with well-established direct
binding motifs: CTCF and FoxA1. Here, the peak regions were indi-
vidually processed and 5000 such regions of each experiment were
mixed. The goal is to see if CTCF and FoxA1 footprints can be
resolved from the mixture of 10000 regions and the combined reads.
ExoDiversity finds a total of six modes: the first two resemble the
motif of CTCF (over 85% of the sites are in CTCF peaks), the next
two are variants of the FoxA1 motif (almost 90% of the sites are in
FoxA1 peaks), while the last two do not resemble any known motif,
but explain the remaining 24% of the 10000 sequences (Fig. 2A). Of
these, mode 5 is accompanied by a strong positive read signal five
bases upstream, in contrast to mode 6, which has no enrichment of
reads.

We note that modes 1 and 2 differ in the 30 region of the motif:
the existence of these nucleotide dependencies have been shown be-
fore (Eggeling et al., 2014; Narlikar, 2013). Interestingly, the read
footprints are different in intensity within both, the CTCF and the
FoxA1 variants: modes 2 and 3 have stronger read signals than their
variants, modes 1 and 4, respectively. The only other approach that
detects subtypes of binding in ChIP-exo experiments without use of
a motif-database, i.e. ChExMix, finds four subtypes: the largest is a
clear match to CTCF, and like the first two modes of ExoDiversity

has over 85% of the sites in CTCF peaks. The next two are weak
motifs, which bear some resemblance to CTCF, but are less specific
to CTCF peaks. The fourth subtype matches the FoxA1 motif and is

enriched in the FoxA1 peaks, but explains only 42.5% of the total
FoxA1 peaks, in contrast to over 70% of FoxA1 peaks getting

explained by one of modes 3 or 4 of ExoDiversity. Overall, the
motifs learned by ChExMix are weaker in terms of information con-
tent than those learned by ExoDiversity. We suspect this may be be-

cause ChExMix uses the motif discovery method MEME in each
subtype to find motifs in the top 500 regions, but when extended to

the full set of regions the motif becomes weaker. That said, the total
number of peaks not explained by a CTCF or FoxA1 motif are only
a little different between the two methods (2407 for ExoDiversity

and 2651 for ChExMix).

4.2 ExoDiversity discovers 12 modes in Sox2 data
We next applied ExoDiversity to 7465 ChIP-nexus regions targeting
Sox2 in murine embryonic stem-cells (ESCs) (Avsec et al., 2021).

Sox2 is essential for maintaining pluripotency in ESCs and recog-
nizes two types of motifs shown in the box in Figure 3. ExoDiversity

splits the data into a total of 12 modes, the first seven of which
match the Sox2 motif. They differ in their 50 flanking DNA as well
as the read signal, which shifts by one or two positions on either

strand. This suggests that the Sox2-DNA binding at the motif var-
iants is different structurally. Further, the ChIP enrichment scores as

reported by MACS at these modes are different (Supplementary Fig.
S1), with the first mode having a significantly higher Sox2 occu-
pancy (Wilcoxon P-value < 10�10). Modes 8–10 match the

Oct4::Sox2 dimer motif; these modes are also significantly more
occupied by Oct4 (grey plot in Fig. 3). They have differing Sox2
occupancies, with mode 8, like mode 1, having a significantly higher

Sox2 occupancy (Wilcoxon P-value < 10�10, Supplementary Fig.
S1). Curiously, although these motifs when compared to modes 1–7

have an additional Oct4 motif on the 50 region, the positive reads do
not appear to be shifted. This suggests that although Oct4 presum-
ably does not bind to the modes 1–7, the exonuclease activity is

nevertheless hindered similar to the locations where Oct4 does bind.
Perhaps the position of the Sox2 protein is enough to obstruct the

exonuclease from digesting that part of the DNA. Modes 11 and 12
are not obvious matches to any database motifs, however, the
accompanying strong positive read signal for mode 12 suggests a po-

tential experimental bias or artefact.
Visually, many modes appear similar. To quantify this similarity,

we estimated posterior probabilities in three different ways. First,
we calculated the probability of every datapoint belonging to each

mode based on its corresponding reads and sequence (Equation 6,
Supplementary Fig. S2). Unsurprisingly, the ‘true’ mode is always
the most probable. We did a similar exercise using only the sequence

information (X and /) and then using only the read information
(Rþ; R�; /þ and /�). The mean probability of sequences of a par-
ticular mode predicted to belong to other modes, using each of these

scoring techniques, is represented as three separate confusion matri-
ces (Fig. 3B). Modes 1–7 and 8–10, which are variations of Sox2

and Oct4::Sox2 motifs, respectively, show only minor similarities
when the full model is used. However, the similarity is more pro-
nounced when only the motif information is used, as one would ex-

pect. The reads contribute little by themselves, but together with the
motif information, the bold diagonal of the first matrix suggests that

the modes are distinctly defined.
We also ran ExoDiversity on 19 051 ChIP-nexus regions target-

ing Oct4. It again finds several variants of Oct4, Oct4::Sox2 and
Sox2 motifs, with different read footprints. Modes with the
Oct4::Sox2 motif are most highly enriched with Oct4 occupancy. In

addition, ExoDiversity finds motifs of Esrrb, Klf4 and CTCF, all of
which are active in the ESCs (Supplementary Fig. S3). All these
modes have relatively weak read signals, suggesting indirect binding.
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Fig. 2. Motifs found in a dataset with 5000 FoxA1 and 5000 CTCF regions in the

MCF7 cell-line. Note that unlike in ExoDiversity, the numbers in the pie charts for

ChExMix do not add up to 10000, because it finds multiple subtypes in some

regions and none in others
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4.3 ExoDiversity models can distinguish between sets

bound by TFs with similar database motifs
We were struck by the large number of diverse modes captured by
ExoDiversity in the Sox2 and Oct4 datasets. Although the two data-
sets overlap to a great extent, with the Oct4::Sox2 motif variant
being enriched in the overlaps (Fig. 3), the individual modes are dif-
ferent in number and composition between the sets. While the
modes are indeed distinct in probability space, we wanted to ensure
they were not a result of over-fitting. One way to assess this is to see
how general the model is in predicting unseen bound regions. The
formulation of ExoDiversity enables us to find log likelihood ratios
for a datapoint with respect to two models (Eq. 9).

We set up binary classification using Sox2 and Oct4 as our two
classes of data. Standard five-fold cross-validation was applied,
where ExoDiversity was trained on each fold of each TF separately
using their respective summit regions and reads. The held out sets
for both the TFs were scored using the best models learned by
ExoDiversity for Sox2 and Oct4. We used two scoring systems: one
which used the reads (Rþ and R�) in addition to the DNA X, and
the other used only X. Considering Sox2 as the positive and Oct4 as
the negative class, we plot the receiver operating characteristic
(ROC) curve and the precision-recall curve for one representative
fold (Fig. 4). When the reads of the test set are used to score, as
expected, the performance in distinguishing the sets is higher. But
one may attribute that to the difference in the read counts, which
would naturally be high for Sox2 at the Sox2 bound regions and
vice versa. Indeed, when only the sequence component is used for
scoring, the performance goes down. But it is still higher than the
state-of-the-art SVM based classifier gkm-SVM, which goes beyond
single PWMs, and using gapped k-mers distinguishes between func-
tional regulatory elements to a remarkable degree (Ghandi et al.,
2014). This shows that although we are finally using only the se-
quence features for classification, the reads data used to train by
ExoDiversity is critical in identifying those features. To test whether
the BIC-selected model was not overfitting by identifying excessive
modes, we also scored with the models learned with fewer modes.
Those models also do better than gkm-SVM, but worse than the
BIC-selected model (Supplementary Fig. S4). We also note that the
performance of gkm-SVM on the training data is significantly higher
than that on the test set; the difference is lower in the models learned
by ExoDiversity (dotted curves in Fig. 4). This further confirms that
the model is not over-fitting the training data.

4.4 ExoDiversity finds diverse binding modes in FoxA1

and CTCF datasets
We applied ExoDiversity to the complete FoxA1 data (40 013
sequences) in MCF7 cells, where it finds 13 modes (Supplementary
Fig. S5), 11 of which are variants of the FoxA1 motif. The first two
modes have an additional C three (mode 1) or two (mode 2) bases
upstream of the canonical motif. Of these, the second mode has
been shown to be enriched in regions bound by both FoxA1 and its
paralog FoxA2 (Bochkis et al., 2012). The position of the reads on
the positive strand also moves correspondingly upstream when com-
pared to mode 5, which is the best match to the canonical motif
(box in Fig. 2). Similarly, modes 7 and 9 lack a strong A at the start
and the corresponding cut goes a base deeper towards the motif.
Strikingly, having more informative positions in the motif, although
does result in small shifts in the read patterns, does not necessarily
correlate with more reads. This is counter-intuitive since one expects
to see higher occupancy of the TF at motifs with more information
content. We surmise that these regions may also be bound by other
proteins (e.g. FoxA2 in mode 2), and due to the resulting

Fig. 4. Performance of ExoDiversity-based classifier and gkm-SVM on distinguish-

ing between Sox2-bound and Oct4-bound regions. The programs were trained on

80% of the dataset, with ExoDiversity being supplied the reads at those regions as

well. The average area under the curves across all five folds for the different pro-

grams is shown in Supplementary Figure S4

A

B

Fig. 3. ExoDiversity finds 12 modes in the Sox2 dataset. (A) The DNA sequence and

the two sets of reads in the 50 bp neighborhood are shown, with the central two

lines in each plot marking the site corresponding to the Sox2 motif. The last column

indicates which of the regions overlap with the peaks reported in the Oct4 ChIP-

nexus experiment. (B) The three matrices show the probability distribution of a se-

quence over the 12 possible modes, averaged over sequences in each mode. The first

matrix considers the full model, while other two use only one of the components: se-

quence or reads (Methods)
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competition between FoxA1 and other TFs for the site, fewer instan-
ces of the POI-DNA complex are pulled down, causing fewer reads.

The last two modes are a low complexity region (mode 13) and
the CTCF motif (mode 12), both of which are associated with very
few reads. CTCF is known to be interact with FoxA1 and indirect
binding between them has been suggested before (Yamada et al.,
2019).

CTCF is a protein with 11 zinc fingers and while it binds to a
core motif shown in Figure 2, it employs its zinc fingers to bind
DNA in multiple ways. Two specific motifs on each side of the core
have been shown to provide additional stability to the CTCF-DNA
complex (Nakahashi et al., 2013). In order to capture these, we
applied ExoDiversity to the CTCF set (55 885 regions) in the same
cells with an initial width of 40. It finds eight modes that resemble
the CTCF core motif, with differing strengths of the additional
flanking motifs (Fig. 6). Indeed, modes that contain at least one of
the additional motifs, are marked by high intensity positive/negative
reads at both ends, although the position of the reads changes de-
pending on the strength of the additional motifs. For example,
modes 1 and 2 both have the upstream motif, but mode 2 has a
much weaker downstream motif: the negative strand reads are cor-
respondingly shifted towards the core in this mode. Similarly, the
core motif misses a few downstream bases in mode 7, but is associ-
ated with a band of reads on both strands (albeit weak); in contrast,
although the core motif is fairly well conserved in mode 3, the bands
of reads are missing. The only other difference between the two
modes is the presence of the upstream motif in mode 7.
Furthermore, sequence conservation varies across the modes (modes
1, 2, 4, 5 are significantly more conserved, while modes 3, 6–8 are
less; Wilcoxon P-value < 10�10), which generally correlates with
the number of reads associated with the modes. It does not necessar-
ily correlate with the information content of the core motif.

4.5 Twist
We next applied ExoDiversity to 29 353 ChIP-nexus regions from
the E-box binding TF Twist in early Drosophila embryos (He et al.,
2015). It finds a total of 25 modes, of which nine match the E-box
(Fig. 7). The authors had shown that while overall, three peaks of
reads are visible around the bound E-box, the individual peaks are
specific to certain E-box core motifs: the first peak is enriched about
11 bp upstream of CAYATG and the second is enriched 2 bp inside
CAKCTG. That analysis was done using the top 200 most enriched
regions for each E-box variant. ExoDiversity also identifies similar
correlations from the complete dataset, without any prior informa-
tion about the E-box. It finds additional variations of small shifts in
the first peak which co-occur with small differences within and
around the E-box.

Genomic regions flanking E-box binding sites have been shown
to possess specific local DNA shapes that correlate with binding
(Gordan et al., 2013). The propeller twist of the DNA, which
denotes the rotation of one base with respect to its base-pair has
been shown to be important for other proteins recognizing E-boxes
(He et al., 2015). We therefore plotted computationally predicted
propeller twist (proT) (Chiu et al., 2015) at the DNA for each mode.
Motifs at modes 1, 2, 4, 6–8, which correspond to the CAYATG E-
box have a lower propeller twist than the motifs at modes 3, 5 and
9, which correspond to the CAKCTG E-box. Since these DNA shape
measures are based on the sequence, it is not surprising that the two
variants have strikingly different shape profiles. However, the up-
stream flanks, which do not have a strong motif signal, possess a
higher propeller twist at the CAYATG modes than the CAKCTG
modes. Curiously, the signal of reads on the positive strand aligns 7–
10 bp upstream of the positions with high propeller twist across the
E-box modes. Similarly the signal on the negative strand aligns 7–10
bp downstream of the high propeller twist regions (Fig. 7). A high
propeller twist indicates more DNA rigidity, which might explain
the differing positions of the read signal and their intensities at the
nine modes.

The Twist modes explain less than half of the total reported
regions. ExoDiversity finds 16 modes that do not have E-box motifs,
but many of which are well-studied fly motifs. For instance, mode
10 matches the Drosophila core promoter motif 1 (Ohler et al.,
2002). Indeed, the median distance of the sequences in that mode
from the closest transcription start site is 25 bp (Wilcoxon P-value
< 10�10 when compared to the rest of the set). On the other hand,
modes 17–20 contain specific di- and tri-nucleotide repeat patterns,
which are characteristic of fly enhancers (Brittain et al., 2014;
Yanez-Cuna et al., 2014). Considering that these non-Twist motifs
have far fewer reads overall, they are likely indirect binding events
involving Twist.

5 Discussion

ExoDiversity resolves protein-DNA binding footprints by learning a
joint distribution over DNA regions and corresponding read counts
arising from exonuclease-based ChIP experiments. On a range of
ChIP-nexus and ChIP-exo datasets, we showed that it detects varia-
tions within the DNA motif, which correlate with read signals in the
immediate neighborhood. We further showed that some of the
detected modes have distinct characteristics such has higher/lower
sequence conservation, specific DNA shapes and proximity to tran-
scription start sites. We note that while we cannot definitively estab-
lish whether the variations in all the detected modes are biologically
relevant, these modes together are needed to describe the whole
dataset. The ROC curves demonstrate that the models are not a re-
sult of overfitting. Indeed, ExoDiversity is unique in its goal of find-
ing an explanation for each reported region. It therefore identifies
potential cofactors like CTCF and Esrrb in Oct4, which have rela-
tively poor read signals and make up a small fraction of the total
data.

Currently we use non-informative priors for all parameters in the
model. However, the Bayesian formulation allows one to incorpor-
ate prior knowledge, if available. For example, if the structural

Fig. 5. ExoDiversity finds 13 modes in the FoxA1 dataset. The DNA sequence and

the two sets of reads in the 50 bp neighborhood are shown, with the central two

lines in each plot marking the site corresponding to the FoxA1 motif
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family of the profiled TF is known, one could use motif priors corre-
sponding to its family-motifs. This might shed more light on poten-
tial indirect binding modes. We also note that motifs that are not
obvious TF binding sites should be explored for possible experiment
biases, especially when they are accompanied by strong read signals.

ChExMix is another method that attempts to find subtypes
based on motifs and reads. However, it is different from
ExoDiversity in its problem formulation. First, it is also a peak or
event finder, and therefore at times detects binding events well over
500 bp away from the input peak region. Second, it treats each sub-
type independently, in a way, so allows for multiple subtypes to
occur in a region as well as some regions to not have any binding
event. Finally, motif discovery is conducted only in the top few
regions of each sub-type. Indeed, most downstream motif-based
analyses focus on the top x regions, either because of the time taken
to analyze the full set, or because those regions have a higher likeli-
hood of containing the expected motif. ChExMix uses these strong
motifs for subsequent scanning or as priors, but this causes the final
motifs, those made by all the final predicted binding events to be
weaker (Supplementary Figs S1, S3, S5 and S6), giving an average
description of the dataset. In contrast, because ExoDiversity maxi-
mizes a joint distribution, its modes are not necessarily guided only
by strong reads or enriched regions. This, we believe is critical, since
regions with lower read counts are not necessarily uninformative. At
times the motif slightly differs from the canonical one, but affects
exonuclease activity, or it may be a motif of a different protein, but
captured due to its association with the POI. We also note that

unlike ChExMix, we focus on a narrow window of reads (5 bp here)
in the immediate neighborhood of the motif. As a result,
ExoDiversity’s modes are not only characterized by exonuclease
cuts differing at the level of a few nucleotides, but also have stronger
corresponding motifs, when compared to ChExMix. Indeed, when
we run ExoDiversity with larger width values (10, 50, 100), we no-
tice that while the results for 10 are not too different from five, the
motifs get progressively weaker for larger read widths
(Supplementary Figs S7, S8). This is because the read distribution
starts dominating over the motif information, effectively making a
larger contribution to the joint distribution of eq. (1). ExoDiversity
gives the user the option of supplying a read width of their choice;
however, learning the read width in a manner similar to the motif
width is a promising extension.

Avsec et al. (2021) use BPNet, a deep learning based approach,
which trains on ChIP-nexus profiles and predicts profiles for unseen
DNA regions to a remarkable degree. Their primary goal is to de-
cipher the syntax or the architecture of TF binding sites within regu-
latory regions, and not specifically to resolve footprints. We note
that ExoDiversity is currently limited to identifying one mode in
each region. Changing the model to a module finder, based on com-
binations of binding modes (Biswas and Narlikar, 2020), will be
useful. Further, ExoDiversity approximates the read distributions as
a product of independent Bernoulli distributions, conditional on the
mode. The assumption here is that the cleaving activity, i.e. location
where the cut happens, depends only on the type of complex form-
ing at the DNA. This effectively results in an extension of the PWM

Fig. 6. ExoDiversity finds 10 modes in the CTCF dataset. The read profiles from both the positive strand (red) and negative strand (blue) over a 100 bp window about the

motifs along with motifs learned by ExoDiversity on the eight modes that resemble the canonical CTCF motif are shown in the left. The DNA sequence, the two sets of reads

and the corresponding sequence conservation in terms of phastCons scores in the 100 bp neighborhood are shown. The X-axes of the read profiles are aligned corresponding to

the 19 bp JASPAR CTCF motif (Fig. 2), which is also shown with a box in the middle of the four heat-map images and two ticks in the read profile. Note that the read profile

is over a 100 bp region and the motif shown below is over a 40 bp region
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model, which also assumes independence between positions of the
binding site. However, other approximations as well as different dis-
tributions which overcome this assumption are worth exploring.

We note that because ExoDiversity relies heavily on read infor-
mation at the nucleotide level, it is not applicable to the more popu-

lar ChIP-seq protocol which reports wider read distributions.
However, several modifications have been suggested recently to the

original ChIP-exo protocol, which may result in a broader adoption
of the technique, substituting ChIP-seq (Rossi et al., 2018). We
therefore envision ExoDiversity being used more widely

(Supplementary Figs S9–S12 show results on four other TFs–Nanog,
Klf4, GR and ERa–not discussed here). That said, the formulation

behind ExoDiversity can be extended to other sources of informa-
tion, which are of high resolution and are indicative of DNA motifs
in the neighborhood, such as transcription start site data or sequence

conservation information.
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