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Sequencing is widely used to discover associations between microRNAs (miRNAs) and diseases. However, the negative binomial
distribution (NB) and high dimensionality of data obtained using sequencing can lead to low-power results and low reproducibility.
Several statistical learning algorithms have been proposed to address sequencing data, and although evaluation of these methods
is essential, such studies are relatively rare. The performance of seven feature selection (FS) algorithms, including baySeq, DESeq,
edgeR, the rank sum test, lasso, particle swarm optimistic decision tree, and random forest (RF), was compared by simulation under
different conditions based on the difference of the mean, the dispersion parameter of the NB, and the signal to noise ratio. Real
data were used to evaluate the performance of RF, logistic regression, and support vector machine. Based on the simulation and real
data, we discuss the behaviour of the FS and classification algorithms.TheApriori algorithm identified frequent item sets (mir-133a,
mir-133b, mir-183, mir-937, and mir-96) from among the deregulated miRNAs of six datasets from The Cancer Genomics Atlas.
Taking these findings altogether and considering computational memory requirements, we propose a strategy that combines edgeR
and DESeq for large sample sizes.

1. Introduction

MicroRNAs (miRNAs) are small, endogenous, and noncod-
ing RNAs that trigger messenger RNA (mRNA) deregulation
and translational repression by binding the 3 untranslated
region (3UTR) of these targets [1]. Depending on their
biological function and stability, miRNAs are also regarded as
biomarkers to distinguish cases and controls [2, 3].Therefore,
emerging technologies, such as cDNA microarrays, high-
density oligonucleotide chips, and next-generation sequenc-
ing (NGS), have been highly useful in the discovery of
miRNAs that cause or prevent disease [4]. cDNAmicroarrays
and high-density oligonucleotide chips are only capable of
providing relative expression levels, whereasNGS can be used
to count the exact number of reads and obtain sequence
information (arm switching and isomiRs) [5].

To process high-dimensional NGS data and gain deep
insight into biological processes, statistical learning methods
are emerging with the goal of classifying labels by selecting

a subset of features, minimizing the coefficients of features or
reducing their dimension [6, 7]. Using a negative binomial
distribution (NB) assumption, edgeR, DESeq, and baySeq
are three important filter algorithms for selecting significant
variables by intrinsic characteristics [8–10]. Wrapper algo-
rithms based on classification apply a search strategy in the
feature space, including sequential forward searching (SFS)
and sequential forward floating searching (SFFS); however,
the computational intensity of this approach is large [11].
Hybrids of feature selection and classification, known as
embedded methods, such as random forest (RF), regard the
classification model as an internal parameter and reduce the
computational requirements [12]. Furthermore, independent
of the distribution, shrinkage tricks, such as lasso, also play
an important role in high-dimensional NGS [13].

Recently, an evaluation of statistical andmachine learning
algorithms for NGS data has become essential. This eval-
uation can be achieved from three perspectives: (i) com-
paring the performance of seven popular feature selection
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Table 1: Parameter settings used for the simulation data.

Scenario Parameter Settings
A1–A5 Signal to noise (s2n) 0.01, 0.05, 0.1, 0.15, and 0.20
B1–B5 Mean of significant variables in the case 10, 15, 20, 25, and 30
C1–C5 Dispersion parameter of significant variables in the case 0.125, 0.5, 1, 2, and 8

Sample size (+/−) 40 (20/20)
Number of variables 500
Mean of significant variables in the control 5
Mean of insignificant variables 5
Dispersion parameter of significant variables in the control 1
Dispersion parameter of insignificant variables 1

algorithms in the context of simulation, using sensitivity and
specificity; (ii) studying the properties of three classifica-
tion algorithms, logistic regression, support vector machine
(SVM), and RF, in the context of differentially expressed
(DE) miRNAs from The Cancer Genomics Atlas (TCGA)
data to gain deeper insight into the combination of FS and
classification; and (iii) analysing the similarity of six cancers
based on miRNAs and the corresponding pathways.

2. Methods

2.1. Simulations. First, we assumed that the distribution of
NGS data was NB, corresponding to the parameters, mean,
dispersion parameter (DP) of NB, and ratio of signal to
noise (s2n) in the simulations. The inflating extent of the
data is directly proportional to the DP, and s2n is the ratio
of significant variables to insignificant variables. The second
assumption was that all significant variables are causal, which
indicates the means of case groups were larger than those of
control groups.

Based on these two basic assumptions, three different
settings were involved: s2n ranged from 0.01 to 0.2 (A1–
A5), the means of the significant variables in the case group
ranged from 10 to 30 by 5 (B1–B5), and the DP of the
significant variables in the case group ranged from 0.125
to 8 (C1–C5). A total of 1,000 replications were produced
to obtain a robust result. The parameter settings for the
insignificant and significant variables were the same and fixed
in all situations. When one parameter was studied, the others
settings remained fixed. Details regarding the parameter
settings are presented in Table 1.

2.2. Overviews of FS Algorithms andTheir Evaluation Indexes.
We compared seven different algorithms in the simulations,
including three algorithms specific to NGS data (DESeq,
edgeR, and baySeq), the Wilcoxon rank sum test, lasso, par-
ticle swarm optimal algorithm empowered by decision tree
(PSODT), and RF. Each algorithm included different types
of feature selection. The first five methods are filter methods
because they select variables based on the order of the statistic
or coefficient. PSODT, a wrapper algorithm, searches the
subset of variables by PSO and evaluates the classification
performance by DT. RF combines classification and feature

selection. The Bioconductor packages baySeq, DESeq2, and
edgeR were used, and lasso and RF were completed by the
glmnet and randomForest packages in the R (version 3.0.3)
framework, respectively.

DESeq and edgeR are two essential algorithms for feature
selection in NGS data and are based on the NB distribution
assumption.However, they use differentmethods for estimat-
ing the parameters. DESeq estimates the DP based on pooled
data, which can normalize confounders fromdifferent library
sizes. Local regression is then used to estimate the function
of per-variable raw variance, a component of variance. edgeR
algorithm defines the weighted conditional log-likelihood,
which is a combination of common and individual likelihood,
to estimate the parameter and uses 𝛼 to weigh the importance
of the common part. Exact testing is used by these two
methods [14]. For baySeq, the difference between 1 and
the posterior probability is considered as the 𝑃 value. The
cv.glmnet function estimates the penalty weight in lasso by
cross-validation. We used the same parameter settings as
Chen et al. for PSODT [11]. The score of each variable was
identified as the time of gbest equal to pbest. For RF, we used
the default setting, that is, the number of trees (ntree) = 500
and the number of random variables in each split (mtry) =
√𝑚, where𝑚 is the total number of variables.

In the simulations, type I errors and power were used
to evaluate the performance of the four statistical algorithms
(DESeq, edgeR, baySeq, and rank sum test) because they are
based on hypothesis testing. Type I error and power corre-
spond to the frequency of 𝑃 values of noise and significant
variables less than 0.05 or Bonferroni correction levels in
1,000 replications, respectively. As these procedures involved
four machine learning methods, sensitivity and specificity
were used to compare the entire techniques. These values
were calculated according to

Sensitivity = TP
TP + FN

,

Specificity = TN
TN + FB

,

(1)

where TP, TN, FP, and FN are the means of the number of
true cases, true controls, false cases, and false controls in 1,000
replications, respectively.
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Table 2: Summary of the selected datasets.

Number Cancer Feature Sample (+/−) SDRa

1 BRCA 903 206 (103/103) 0.23
2 HNSC 906 162 (81/81) 0.18
3 KICH 796 82 (41/41) 0.10
4 LUAD 895 218 (109/109) 0.24
5 STAD 857 170 (85/85) 0.20
6 THCA 904 212 (106/106) 0.23
aSDR refers to the ratio between the number of samples and the number of
features.

2.3. Real Data. For TCGA, six different cancer sequencing
datasets (with features and samples) were involved, including
breast invasive carcinoma (BRCA), head and neck squa-
mous cell carcinoma (HNSC), kidney chromophobe (KICH),
lung adenocarcinoma (LUAD), stomach adenocarcinoma
(STAD), and thyroid carcinoma (THCA). We only selected
the matched samples. The low expression miRNAs whose
sum expression levels in all samples were less than 10 were
excluded (Table 2).

2.4. Landscape of Classification Algorithms and Indexes.
Classification algorithms, including logistic regression, RF,
and SVM, were regarded as another essential point because
they indicate the predictive performance of the selected
biomarkers. Logistic regression, a type of generalized linear
model (GLM), was widely applied in case-control study, as its
exponential coefficient, odds ratio (OR), directly elucidated
the risk of variables. Based on the theory of Lagrange duality
and kernel function, SVM solved dual problems rather than
theminimumprimary problemandmapped the variables to a
higher dimension.Therefore, the nonlinear classified samples
were discriminated using hyperplane.The following equation
shows the standard form of this method:

𝑦 = ℎ

𝑤,𝑏
(𝑥) = 𝑤

𝑇
𝑥 + 𝑏.

(2)

We chose the default settings of the svm function, which was
a Gaussian kernel, and set the hyperparameter to 𝛾 = 3 and
error term to 𝜀 = 0.2.

Random fivefold cross-validation was applied to real data
to estimate the performance of the classification algorithms.
This cross-validation meant that four-fifths of samples were
used to construct the model and select the features, and the
residual was used to test the validation; this process was
replicated 100 times. The area under the ROC curve (AUC),
positive predictive value (PPV), and negative predictive
value (NPV) evaluated the classification performance of the
featured subsets.

2.5. Apriori forDetecting the Frequent ItemSet ofmiRNAs from
Different Datasets. Apriori defines the frequency of item sets
based on three indexes, including support, confidence, and
lift. The support of an item set is defined as the percentage
of the dataset that contained it. The confidence represents the
association of the rule like {𝐴} → {𝐵}, which is calculated by
the conditional probability of 𝑃(𝐵 | 𝐴). The lift, the ratio of
𝑃(𝐵 | 𝐴)/𝑃(𝐵), is the quotient of the posterior and the prior

confidence of an association rule. The first two standards can
select the frequent item set.

The frequent miRNA sets were defined from the DE
miRNAs in the six datasets by the following criteria: (a) the
miRNAs satisfied the Bonferroni correction; (b) the miRNAs
were selectedmore than or equal to 80 times in one algorithm;
and (c) themiRNAswere defined by at least 3 algorithms.The
frequent DE miRNA was then identified as having support
and confidence values larger than or equal to 0.5. Finally, their
targets were predicted twice from three datasets (TargetScan,
miRanda, andmiRTarBase), and enrichment analysis defined
the deregulated pathways by Gene Ontology (GO) [15–17].

3. Results

3.1. The Evaluation of FS Algorithms Using a Simulation

3.1.1. Empirical Type I Error and Power of Four Statistical
Algorithms. The type I error and power results are shown
in Figures 1 and 2. baySeq, DESeq, and the rank sum test
appeared to control type I error at a significance level of 0.05,
although the rank sum test failed after Bonferroni correction.
The type I error of edgeR was slightly inflated. s2n appeared
to have no relationship to the power, whereas the mean and
DP influenced the power. Based on the difference between
the increasing mean or decreasing DP, the power of all of the
algorithms increased. In particular, a decreasing trend in the
rank sum test was observed with increasing DP because it
included little consideration of the dispersion of the variables.
However, the power of the three sequencing methods was
high, especially for baySeq.

3.1.2. Sensitivity and Specificity with Different Settings of
Three Parameters. The results from the simulation using
scenarios A1–A5, B1–B5, and C1–C5, including the variable
frequency, sensitivity, and specificity in different situations,
are presented in Table 3 and Figure 3. First, DP influenced
the two indexes of the machine learning algorithms and
rank sum, although it had only a small influence on the
performance of three sequencing methods. The sensitivities
of edgeR andDESeqwere larger than that of baySeq, although
the extent of the increase and decrease of their sensitivity
was larger. With increasing dispersion, the sensitivities of
the rank sum and lasso methods were approximately zero.
Second, when the difference between the means of the case
and the control samples increased from 5 to 25, the sensitivity
increased to different extents. For the three sequencing
methods and the rank sum test, the index showed an obvious
increase, and the frequency of selected significant variables
was higher. The sensitivity and specificity of PSODT and RF
showed little change with the change of mean. Third, greater
s2n values led to increased sensitivity for the frequency of
significant variables of baySeq and RF but appeared to have
no relationship with the residuals.

For the seven algorithms, we obtained the following
outcomes.The sensitivity of baySeq appeared to be lower than
the other sequencingmethods.The variations of the power of
DESeq and edgeR were relatively similar, although the latter
was not control type I error. Lasso also strictly controlled
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Figure 1: Type I error of four statistical algorithms. (a) 𝛼 = 0.05 condition. (b) Bonferroni correction.

type I errors, although its power was lower than that of the
other methods in multiple situations. The rank sum test,
a nonparametric method, was also influenced by the three
parameters and is perhaps not suitable for sequencing data. In
particular, when DP increased from 0.125 to 8, its sensitivity
decreased from 1.00 to 0.23. The sensitivity of PSODT was
highly stable when the parameters changed.The sensitivity of
RF was only related to the s2n factor.

3.2. The FS and Classification Methods in Real Data. The
number of significant miRNAs identified by different FS
algorithms and the relationships between them are shown
in Figure 4 and Additional File 1 available online at
http://dx.doi.org/10.1155/2015/178572. Based on the frequency
bar plots and Venn diagrams of each dataset, these results are
clear. First, baySeq, edgeR, and the rank sum test selected the
highest number ofmiRNAs in different datasets. For example,
in KICH, the rank sum test selected 87 significant miRNAs,
which was the greatest number of significant miRNAs iden-
tified by the six algorithms. Second, the three sequencing
methods and the rank sum test hadmore intersections. How-
ever, PSODT rarely identified the same significant miRNAs
during cross-validation, and intersections were also rare.

As shown in Table 4, the results of classification algo-
rithms were as follows. First, RF and SVM performed better
than logistic regression. For example, based on the results
from edgeR in the KICH, the ROC of logistic regression was
0.39, which was lower than that of RF and SVM. Interestingly,
logistic regression performed best using the variables selected
by lasso, perhaps because the ratio between the number
of variables and the number of samples was unsuitable
for logistic regression, with the exception of lasso. Second,
although the power of PSODTwas lowest among the seven FS

algorithms, the classification performance was not the worst.
For example, in BRCA, the classification of the variables
selected form PSODT was better than that of the rank sum
test.

3.3. Run Time. The run time of the seven algorithms is
shown in Additional File 2. In the simulations, baySeq
required approximately 2 hours, which is longer than the
other methods. However, different results were observed
using real data. The time of DESeq sharply increased with
larger sample sizes; however, the variations of other methods
were not obvious with increasing sample sizes. Thus, baySeq
consumed the greatest computational resources, and the
resource consumption of DESeq in particular was largely
determined by the sample size.

3.4.The FrequencymiRNA Sets in Six Cancers and Enrichment
Analysis. For the DE miRNAs in each cancer set, Apriori
selected the frequency item sets thatmight be co-DEmiRNAs
in cancers (Additional File 3). mir-133a-1, mir-133b, mir-183,
mir-937, and mir-96 were frequently identified DE miRNAs
in six cancers. Some miRNAs were deregulated at the same
time; for example, the confidence of mir-96 to mir-133a-1 was
1, and the lift was equal to 2. Furthermore, the enrichment
pathways of their cotargets were also identified using GO
(Additional Files 4 and 5).

4. Discussion

Using simulations and real data, we compared the per-
formance of seven feature selection algorithms and three
classification algorithms. Simulations identified the differing
performances of the seven FS methods: baySeq, DESeq,
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Figure 2: Power of four statistical algorithms with different settings of three parameters. (a) Different settings of the s2n of the variables. (b)
Different settings of the mean. (c) Different settings of DP in the case group.

edgeR, the rank sum test, lasso, PSODT, and RF. In the
comparisons of four statistical methods, we observed the
following: (a) a larger DP may lead to a low power in the
rank sum test due to a failure to estimate DP; (b) when
the difference of the mean is greater than 15, the power of
the sequencing methods is robust; (c) with increasing DP,
there is a small decrease in the power of the sequencing
methods, especially for baySeq. Regarding the sensitivity and

specificity, the following conclusions were reached: (a) s2n
influences the performance of baySeq and RF; (b) an increase
in the difference of means causes increased sensitivity; and
(c) increasing DP has little effect on the three sequencing
algorithms but decreases the sensitivity of the others. Fur-
thermore, real data showed that (a) logistic regression is
unsuitable for the high dimension and small sample data and
(b) the performance of RF is better than that of SVM.
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Figure 3: The frequency of selected variables of seven FS methods in the simulation. (a) Different settings of the s2n of the variables. (b)
Different settings of the mean. (c) Different settings of DP.

Table 3: Sensitivity and specificity of the seven algorithms in different settingsa.

Scenario baySeq DESeq edgeR Lasso Rank sum PSODT RF
𝑃 = 0.05 Bonb

𝑃 = 0.05 Bonb
𝑃 = 0.05 Bonb

𝑃 = 0.05 Bonb

s2n
A1 0.68/1.00 0.16/1.00 0.97/0.96 0.43/1.00 0.99/0.93 0.68/1.00 0.62/0.99 0.92/0.95 0.16/1.00 0.10/0.99 0.60/1.00
A2 0.74/1.00 0.18/1.00 0.97/0.96 0.37/1.00 0.98/0.92 0.63/1.00 0.49/0.99 0.92/0.95 0.16/1.00 0.11/0.95 0.70/0.98
A3 0.77/1.00 0.19/1.00 0.95/0.94 0.32/1.00 0.98/0.91 0.57/1.00 0.32/1.00 0.92/0.95 0.16/1.00 0.14/0.90 0.71/0.97
A4 0.77/1.00 0.17/1.00 0.93/0.93 0.27/1.00 0.96/0.89 0.50/1.00 0.23/1.00 0.92/0.95 0.16/1.00 0.18/0.86 0.70/0.95
A5 0.76/1.00 0.16/1.00 0.90/0.90 0.22/1.00 0.95/0.86 0.43/1.00 0.18/1.00 0.18/1.00 0.92/0.95 0.17/1.00 0.70/0.93

Mean of significant variables
B1 0.05/1.00 0.00/1.00 0.41/0.95 0.01/1.00 0.52/0.92 0.04/1.00 0.13/0.99 0.40/0.95 0.01/1.00 0.12/0.90 0.33/0.93
B2 0.45/1.00 0.03/1.00 0.81/0.95 0.12/1.00 0.88/0.92 0.27/1.00 0.30/1.00 0.77/0.95 0.05/1.00 0.13/0.90 0.57/0.95
B4 0.91/1.00 0.41/1.00 0.99/0.94 0.53/1.00 0.99/0.91 0.78/1.00 0.32/1.00 0.97/0.95 0.31/1.00 0.14/0.91 0.79/0.98
B5 0.96/1.00 0.62/1.00 1.00/0.94 0.66/1.00 1.00/0.90 0.90/1.00 0.32/1.00 0.99/0.95 0.45/1.00 0.14/0.91 0.83/0.98

Dispersion parameter of significant variables
C1 1.00/1.00 0.87/1.00 1.00/0.92 0.57/1.00 1.00/0.89 0.92/1.00 0.37/1.00 1.00/0.95 0.97/1.00 0.26/0.95 0.97/1.00
C2 0.89/0.99 0.38/0.94 0.98/1.00 0.40/0.94 0.99/1.00 0.75/0.97 0.35/0.93 1.00/1.00 0.61/0.96 0.14/0.90 0.86/0.90
C4 0.71/1.00 0.14/1.00 0.90/0.95 0.29/1.00 0.92/0.92 0.36/1.00 0.24/0.99 0.46/0.95 0.01/1.00 0.14/0.90 0.52/0.95
C5 0.73/1.00 0.28/1.00 0.73/0.96 0.29/1.00 0.71/0.93 0.16/1.00 0.00/1.00 0.23/0.95 0.00/1.00 0.13/0.90 0.44/0.94
aThe conditions where the mean = 20, dispersion parameter = 1, and s2n = 0.1 are the same. Each cell includes the sensitivity and specificity.
bBon indicates a result using the Bonferroni correction.

Moreover, seven algorithms were evaluated using dif-
ferent conditions. edgeR was found to be suitable for large
sample sizes because of low calculation time, although its type
I error increases slightly. The type I error and power indicate
that the performance of baySeq is perhaps best for selecting
significant genes, although a large sample size may require
a long computation time [18]. Similar to baySeq, DESeq
requires more time with increasing sample size, although its
advantage is that it can analyse data using only one replicate
in each treatment group (Figure 1 and Additional File 2) [10].
The selection of the three algorithms is determined by the

experimental design [18]. The rank sum test can be fit to any
distribution assumption, but it fails to select the variables
in NB, especially with increasing DP. The penalty of lasso
is possibly too large because few significant variables are
selected. PSODT rarely chooses the significant variables and
has no association with the three factors because it defines
a combination of variables having the best performance of
DT. Considering the power, type I error, and calculation
cost, an FS selection process can consist of two or more
processes: (a) primary selection, which requires fast and
high-power algorithms, and (b) further selection, which



8 Computational and Mathematical Methods in Medicine

0

100

200

300

ba
yS

eq

baySeq

D
ES

eq
DESeq

ed
ge

R

edgeR

La
ss

o

Lasso

rs

rs

PS
O

Algorithms

158

1

0

0

0

0

0
0

0

0

00

0

0

0

0

0

2

2

40

40

40

25

12

47

45

31

1

41

7

36

N
um

be
r o

f s
ig

ni
fic

an
t m

iR
N

A
s

 fr
om

 cr
os

s-
va

lid
at

io
n

(a)

baySeq

DESeq

edgeR
Lasso

rs

0

25

50

75

100

125

ba
yS

eq

D
ES

eq

ed
ge

R

La
ss

o rs

PS
O

Algorithms

N
um

be
r o

f s
ig

ni
fic

an
t m

iR
N

A
s

 fr
om

 cr
os

s-
va

lid
at

io
n

2

2

2

12

68

39

8

7

10

23
1

1

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

30

(b)

baySeq

DESeq

edgeR
Lasso

rs

ba
yS

eq

D
ES

eq

ed
ge

R

La
ss

o rs

PS
O

Algorithms

N
um

be
r o

f s
ig

ni
fic

an
t m

iR
N

A
s

 fr
om

 cr
os

s-
va

lid
at

io
n

0

25

50

75

57

0

0

0

0
0

0

0

0

0000

00

0

0

0

3

1

1

1

4
38

11

12
25

6

2

2

2

(c)

baySeq

DESeq

edgeR
Lasso

rs

N
um

be
r o

f s
ig

ni
fic

an
t m

iR
N

A
s

 fr
om

 cr
os

s-
va

lid
at

io
n

ba
yS

eq

D
ES

eq

ed
ge

R

La
ss

o rs

PS
O

Algorithms

0

25

50

75

50

8

31

1

2

2

2

0

0

0

0

0

0

0

0

0

0 0 0

0

0

0
0

0

0

0

0

32

59

13

(d)

baySeq

DESeq

edgeR
Lasso

rs

ba
yS

eq

D
ES

eq

ed
ge

R

La
ss

o rs

PS
O

Algorithms

N
um

be
r o

f s
ig

ni
fic

an
t m

iR
N

A
s

 fr
om

 cr
os

s-
va

lid
at

io
n

0

20

40

60

32

3

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0
0

0
0

0

0
0

1

1

1

2

4

53

26

(e)

baySeq

DESeq

edgeR
Lasso

rs

ba
yS

eq

D
ES

eq

ed
ge

R

La
ss

o rs

PS
O

Algorithms

N
um

be
r o

f s
ig

ni
fic

an
t m

iR
N

A
s

 fr
om

 cr
os

s-
va

lid
at

io
n

0

20

40

60

35

4

4

10

0

0

0

0

0

00

0

0

0

0 0

0

0

0

0

0

0

0

0

3

1

1

1

18

2

40

(f)

Figure 4: The bar plots and Venn diagrams of a number of significant miRNAs identified by different FS algorithms in six cancers. The bar
plot indicates the number of significant variables. The Venn diagram illustrates the relationships of the significant variables among the six
methods. (a) BRCA; (b) HNSC; (c) KICH; (d) LUAD; (e) STAD; and (f) THCA.
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Table 4: Summary of three classification methods using real data.

Datasets FS Logistic regression RF SVM
PPV NPV AUC PPV NPV AUC PPV NPV AUC

BRCA

baySeq 0.53 0.53 0.53 1.00 0.99 0.99 0.95 0.96 0.96
DESeq 0.70 0.72 0.70 1.00 0.99 1.00 1.00 0.94 0.97
edgeR 0.54 0.55 0.55 1.00 0.99 0.99 0.54 0.55 0.55
Lasso 0.97 0.98 0.98 1.00 0.99 0.99 0.97 0.98 0.98

Rank sum 0.55 0.55 0.55 1.00 0.99 0.99 0.55 0.55 0.55
PSODT 0.85 0.86 0.86 0.99 0.98 0.98 0.85 0.86 0.86

HNSC

baySeq 0.35 0.38 0.37 0.54 0.56 0.55 0.63 0.52 0.58
DESeq 0.52 0.57 0.55 0.53 0.52 0.52 0.91 0.47 0.69
edgeR 0.32 0.35 0.33 0.54 0.54 0.54 0.32 0.35 0.33
Lasso 0.52 0.76 0.64 0.55 0.55 0.55 0.52 0.76 0.64

Rank sum 0.35 0.31 0.33 0.54 0.54 0.54 0.35 0.31 0.33
PSODT 0.43 0.44 0.43 0.55 0.54 0.54 0.43 0.44 0.43

KICH

baySeq 0.36 0.38 0.37 0.65 0.66 0.66 0.68 0.70 0.69
DESeq 0.37 0.39 0.38 0.66 0.65 0.66 0.68 0.84 0.76
edgeR 0.40 0.38 0.39 0.66 0.65 0.66 0.40 0.38 0.39
Lasso 0.64 0.82 0.73 0.65 0.66 0.65 0.64 0.82 0.73

Rank sum 0.39 0.38 0.39 0.66 0.66 0.66 0.39 0.38 0.39
PSODT 0.37 0.38 0.37 0.66 0.65 0.66 0.37 0.38 0.37

LUAD

baySeq 0.40 0.47 0.43 0.46 0.45 0.46 0.45 0.69 0.57
DESeq 0.30 0.78 0.54 0.46 0.41 0.44 0.95 0.36 0.65
edgeR 0.44 0.47 0.46 0.47 0.45 0.46 0.44 0.47 0.46
Lasso 0.47 0.74 0.61 0.47 0.45 0.46 0.47 0.74 0.61

Rank sum 0.30 0.36 0.33 0.47 0.45 0.46 0.30 0.36 0.33
PSODT 0.36 0.50 0.43 0.47 0.45 0.46 0.36 0.50 0.43

STAD

baySeq 0.42 0.56 0.49 0.44 0.45 0.44 0.44 0.63 0.54
DESeq 0.14 0.85 0.49 0.41 0.38 0.40 0.91 0.25 0.58
edgeR 0.37 0.42 0.40 0.49 0.46 0.47 0.37 0.42 0.40
Lasso 0.43 0.77 0.60 0.46 0.46 0.46 0.43 0.77 0.60

Rank sum 0.40 0.48 0.44 0.44 0.46 0.45 0.40 0.48 0.44
PSODT 0.36 0.44 0.44 0.44 0.46 0.45 0.36 0.44 0.40

THCA

baySeq 0.49 0.63 0.56 0.56 0.57 0.57 0.77 0.50 0.63
DESeq 0.49 0.85 0.67 0.54 0.58 0.56 0.54 0.82 0.68
edgeR 0.53 0.59 0.56 0.56 0.60 0.58 0.53 0.59 0.56
Lasso 0.54 0.88 0.71 0.56 0.59 0.57 0.54 0.88 0.71

Rank sum 0.44 0.44 0.44 0.57 0.58 0.58 0.44 0.44 0.44
PSODT 0.48 0.56 0.52 0.56 0.56 0.56 0.48 0.56 0.52

requires an algorithm that controls type I error. In our study,
we present the combination of edgeR andDESeq as a strategy
for selecting the significant variables for large sample sizes.

This study has some advantages over previous studies
[18, 19]. First, the simulations not only assumed that the
NGS data had a NB distribution but also compared the FS
or classification algorithms in different settings of the mean,
DP, and s2n. Lacking a gold standard, the real data failed to
compare the FS methods. To guarantee the effectiveness, the
parameter settings are obtained from the real data. Second,
this study involves not only three sequencing algorithms but
also machine learning methods.

However, this study also has many drawbacks. First,
the three involved classifiers perhaps neglect the interac-
tions between different variables; however, the interactions
play important roles in explaining the association between
molecules and diseases. With the network successfully used
in biology, the classifiers based on network are perhaps more
suitable to explain the association [20]. Second, some new
bioinformatics classifiers are not included, such as LibD3C,
HPFP, and miRClassify [21–23]. Particularly, LibD3C, clas-
sifying the cytokines from the protein sequence, applies
ensemble classifiers in each layer to improve the prediction
accuracy and uses SMOTE to overcome the imbalance of
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samples. It also selects 120 features as the eight physicochem-
ical properties of protein and can be used in analyzing the
sequencing data [21].

When studying real data, we found that mir-133a-1, mir-
133b, mir-183, mir-937, and mir-96 were frequent miRNAs
sets in six cancers, and some combination of these can
increase the probability of finding others. By regulating the
expression ofMCL-1 andBCL2L2,mir-133b is associatedwith
lung cancer, which was also observed in our results [24].
As one of the frequent item sets, mir-133b is also related to
oesophageal squamous cell carcinoma by FSCN1 [25]. mir-
96 and mir-183 both contribute to the stage and grade of
urothelial carcinoma [26].

In conclusion, we propose the use of a combination of
edgeR and DESeq to analyse miRNA sequencing data with
a large sample size. Apriori detects the frequent item sets that
might contribute to other tumours.
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