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ABSTRACT The accumulation of deleterious mutations is driven by rare fluctuations that lead to the loss of all mutation free
individuals, a process known as Muller’s ratchet. Even though Muller’s ratchet is a paradigmatic process in population genetics,
a quantitative understanding of its rate is still lacking. The difficulty lies in the nontrivial nature of fluctuations in the fitness distribution,
which control the rate of extinction of the fittest genotype. We address this problem using the simple but classic model of mutation
selection balance with deleterious mutations all having the same effect on fitness. We show analytically how fluctuations among the
fittest individuals propagate to individuals of lower fitness and have dramatically amplified effects on the bulk of the population at
a later time. If a reduction in the size of the fittest class reduces the mean fitness only after a delay, selection opposing this reduction is
also delayed. This delayed restoring force speeds up Muller’s ratchet. We show how the delayed response can be accounted for using
a path-integral formulation of the stochastic dynamics and provide an expression for the rate of the ratchet that is accurate across
a broad range of parameters.

BY weeding out deleterious mutations, purifying selection
acts to preserve a functional genome. In sufficiently

small populations, however, weakly deleterious mutations
can by chance fix. This phenomenon, termed Muller’s
ratchet (Muller 1964; Felsenstein 1974), is especially impor-
tant in the absence of recombination and is thought to ac-
count for the degeneration of Y chromosomes (Rice 1987)
and for the absence of long-lived asexual lineages (Lynch
et al. 1993).

A click of Muller’s ratchet refers to the loss of the class of
individuals with the smallest number of deleterious muta-
tions. To understand the processes responsible for such
a click, it is useful to consider a simple model of accumula-
tion of deleterious mutations with identical effect sizes illus-
trated in Figure 1. Because of mutations, the population
spreads out along the fitness axis, which in this model is
equivalent to the number of deleterious mutations in a ge-
nome. The population can hence be grouped into discrete
classes, each characterized by the number of deleterious

mutations. Mutation carries individuals from classes with
fewer to classes with more mutations, hence shifting the
population to the left. This tendency is opposed by selection,
which amplifies fit individuals on the right, while decreasing
the number of unfit individuals on the left. These opposing
trends lead to a steady balance, at least in sufficiently large
populations. However, in addition to selection and mutation,
the distribution of individuals among fitness classes is af-
fected by fluctuations in the number of offspring produced
by individuals of different classes, i.e., by genetic drift. Such
fluctuations are stronger (in relative terms) in smaller pop-
ulations and in particular in classes that carry only a small
number of individuals. When mutation rate is high and se-
lection is weak, the class of individuals with the smallest
number of mutations (k = 0 in Figure 1) contains only
few individuals and is therefore susceptible to accidental
extinction—an event that corresponds to the “click” of Mul-
ler’s ratchet.

Despite the simplicity of the classic model described
above, understanding the rate of the ratchet has been
a challenge and remains incomplete (Stephan et al. 1993;
Gessler 1995; Higgs and Woodcock 1995; Gordo and
Charlesworth 2000; Stephan and Kim 2002; Etheridge
et al. 2007; Jain 2008; Waxman and Loewe 2010). Here,
we revisit this problem starting with the systematic analysis
of fluctuations in the distribution of the population among
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different fitness classes. We show that fitness classes do not
fluctuate independently. Instead, there are collective modes
affecting the entire distribution, which relax on different
time scales. Having identified these modes, we calculate
the fluctuations of the number of individuals in the fittest
class and show how these fluctuations affect the mean fit-
ness. Fluctuations in mean fitness feed back on the fittest
class with a delay and thereby control the probability of
extinction. These insights allow us to arrive at a better ap-
proximation to the rate of the ratchet. In particular, we show
that the parameter introduced in the earlier work (Haigh
1978; Stephan et al. 1993; Gordo and Charlesworth 2000)
to parameterize the effective strength of selection in the
least loaded class is not a constant but depends on the ratio
of the mutation rate and the effect size of mutations. We use
the path-integral representation of stochastic processes bor-
rowed from physics (Feynman and Hibbs 1965) to describe
the dynamics of the fittest class and arrive at an approxima-
tion of the rate of Muller’s ratchet that is accurate across
a large parameter range.

Understanding the rate of the ratchet is important, for
example, to estimate the number of beneficial mutations
required to halt the ratchet and prevent the mutational
meltdown of a population (Lynch et al. 1993; Goyal et al.
2012; Pfaffelhuber et al. 2012) (for an in-depth and up-to-
date discussion of the importance of deleterious mutations
we refer the reader to Charlesworth 2012). Furthermore,
fluctuations of fitness distributions are a general phenome-
non with profound implications for the dynamics of adapta-
tion and genetic diversity of populations. Below we place
our approach into the context of the recent studies of the
dynamics of adaptation in populations with extensive non-
neutral genetic diversity (Tsimring et al. 1996; Rouzine et al.
2003; Desai and Fisher 2007; Neher et al. 2010). The study
of fluctuations in the approximately stationary state of mu-
tation selection balance that we present here is a step to-
ward more general quantitative theory of fitness fluctuations
in adapting populations.

Model and Methods

We assume that mutations happen at rate u and that each
mutation reduces the growth rate of the genotype by s � 1.
Within this model, proposed and formalized by Haigh, indi-
viduals can be categorized by the number of deleterious
mutations they carry. The equation describing the fitness
distribution in the population, i.e., what part nk of the pop-
ulation carries k deleterious mutations, is given by

d
dt

nk ¼ s
�
�k2 k

�
nk2 unk þ unk21 þ

ffiffiffiffiffi
nk

p
hk; (1)

where �k ¼ N21P
kknk (

P
knk ¼ N) and the last term ac-

counts for fluctuations due to finite populations, i.e., genetic
drift, and has the properties of uncorrelated Gaussian white
noise with hhk(t)hl(t9)i = dkld(t 2 t9). In the infinite pop-
ulation limit, this equation has the well-known steady-state
solution �nk ¼ Ne2llk=k!, where l = u/s. A time-dependent
analytic solution of the deterministic model has been de-
scribed in Etheridge et al. (2007).

Note that we have deviated slightly from the standard
model, which assumes that genetic drift amounts to a bi-
nomial resampling of the distribution with the current
frequencies N21nk. This choice would result in off-diagonal
correlations between noise terms that stem from the con-
straint that the total population size is strictly constant. This
exact population size constraint is an arbitrary model choice
that we have relaxed to simplify the algebra. Instead, we
control the population size by a soft constraint that keeps
the population constant on average but allows small fluctu-
ations of N. The implementation of this constraint is de-
scribed explicitly below. We confirmed the equivalence of
the two models by simulation.

Computer simulations

We implemented the model as a computer simulation with
discrete generations, where each generation is produced by
a weighted resampling of the previous generation. Specifically,

nkðt þ 1Þ)Poisson

 
1
�W

Xk
i¼0

e2uui

i!
ð12sÞk2ink2iðtÞ

!
; (2)

where �W is the mean fitness �W ¼ CN21P
kð12sÞknk and

C ¼ expðNN21
0 21Þ is an adjustment made to the overall

growth rate to keep the population size approximately at
N0. This specific discretization is chosen because it has exactly
the same stationary solution as the continuous-time version
above (Haigh 1978). The simulation was implemented in
Python using the scientific computing environment SciPy
(Oliphant 2007). If the parameter of the Poisson distribution
was larger than 104, a Gaussian approximation to the Poisson
distribution was used to avoid integer overflows.

To determine the ratchet rate, the population was
initialized with its steady-state expectation �nk, allowed to
equilibrate for 104 generations, and then run for further

Figure 1 Deleterious mutation–selection balance. The population is dis-
tributed among classes of individuals carrying k deleterious mutations.
Classes with few mutations grow due to selection (red arrows), but lose
individuals through mutations (green arrows), while classes with many
mutations are selected against but replenished by mutations.
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T = 108 generations. Over these 108 generations, the num-
ber of clicks of the ratchet were recorded and the rate was
estimated as clicks per generation.

The source code of the programs, along with a short
documentation, is available as supporting information (File
S2). In addition, we also provide some of the raw data and
the analysis scripts producing the figures as they appear in
the manuscript.

Numerical determination of the most likely path

The central quantities in our path-integral formulation of
the rate of Muller’s ratchet are (i) the most likely path to
extinction and (ii) the associated minimal action S*l (see
Table 1). To determine the most likely path to extinction
of the fittest class, we discretize the trajectory into m equi-
distant time points ri between 0 and t, where x0ð0Þ ¼ �x0
and x0(rm) = 0. For a given set of x0(ri), a continuous path
x0(r) is generated by linear interpolation. For a given tra-
jectory x0(r), we determine the mean fitness by solving the
deterministic equations for xk(r), k $ 1. Note that in this
scheme, the only independent variable is the path x0(r), and
all other degrees of freedom are slaved to x0(r). From x0(r)
and the resulting �kðrÞ, we calculate the action Sl({x0(r)})
as defined in Equation 28. Sl({x0(r)}) is then minimized by
changing the values of x0(ri), 0 , i , m, using the simplex-
minimization algorithm implemented in SciPy (Oliphant
2007). To speed up convergence, the minimization is first
done with a small number of pivot points (m = 4), which is
increased in steps of 2 to m = 24. The total time t = 20 (in
units of s21) was used, which is sufficiently large to make the
result independent of t. The code used for the minimization is
provided in File S2.

Results and Discussion

Fluctuations of the size n0 of the least loaded class can lead
to its extinction. In the absence of beneficial mutations this

class is lost forever (Muller 1964), and the resulting accu-
mulation of deleterious mutations could have dramatic evo-
lutionary consequences. Considerable effort has been
devoted to understanding this process, and it has been noted
that the rate at which the fittest class is lost depends
strongly on the average number of individuals in the top
class �n0 (Haigh 1978). Later studies have shown that the
rate is exponentially small in �n0s if �n0s � 1 (Jain 2008). If
�n0s is small, the ratchet clicks frequently and a traveling
wave approach is more appropriate (Rouzine et al. 2008).
However, a quantitative understanding of the �n0s � 1 re-
gime is still lacking.

Here, we present a systematic analysis of the problem by
first analyzing how selection stabilizes the population
against the destabilizing influences of mutation and genetic
drift, and later we use this insight to derive an approxima-
tion to the rate of Muller’s ratchet. Before analyzing Equa-
tion 1, it is useful to realize that it implies a common unit of
time for the time derivative, the mutation rate, and the
selection coefficient that is of our choosing (days, months,
generations, etc.). We can use this freedom to simplify the
equation and reveal what the important parameters are that
govern the behavior of the equation. In this case, it is useful
to use s21 as the unit of time and work with the rescaled
time t = ts. Furthermore, we formulate the problem in
terms of frequencies xk = N21 nk rather than numbers of
individuals, and obtain

d
dt

xk ¼
�
�k2 k2 l

�
xk þ lxk21 þ

ffiffiffiffiffiffi
xk
Ns

r
hk; (3)

where l = u/s is the dimensionless ratio of mutation rate
and selection strength. In other words, l is the average
number of mutations that happen over a time s21 (our unit
of time). Note that l uniquely specifies the deterministic part
of this equation and its steady-state solution �xk ¼ lke2l=k!.
The stochastic forces are proportional to 1=

ffiffiffiffiffi
Ns

p
. Again, the

Table 1 List of symbols

Symbol Description

N, u, s Population size, mutation rate, and mutation effect
nkðtÞ;   �nk Number of individuals in class k at time t, steady-state value
l = u/s, t = ts Rescaled mutation rate and time
xkðtÞ; �xk Population frequency in class k at time t, steady-state value
zt, �z Abbreviation for x0(t) and �x0
�k Mean fitness: �k ¼Pkkxk
dxk, d�k Deviations from steady state: dxk ¼ xk2�xk, d�k ¼ l2�k

Sl({zr}) Path integral action depending on the path {zr} with 0 # r # t.

S*lðzt ; z0Þ, z*r Extremal action and the associated path depending on the endpoints zt, z0

S*lðzÞ Long time limit of S*lðzt ; z0Þ with z = zt
Pt(zt|z0) Propagator from z0 to zt in time t

P(z) Steady-state distribution of z
g Rate of the ratchet in units of s
s2 Variance of x0 depending on Ns and l

z2 Rescaled variance of x0 depending on l only: z2 = Nsels2

c
ðiÞ
k , fðiÞ

k kth component of right and left eigenvectors with eigenvalue 2i
ai(t) Projection of dxk on f

ðiÞ
k

a Parameter of the effective potential confining x0 (traditionally a = 0.520.6)
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parameter combination (Ns)21 has a simple interpretation
as the variance of the stochastic effects accumulated over
time s21. Other than through a prefactor determining the
unit of time, any quantity governed by Equation 3 can de-
pend only on l and Ns. Hence it is immediately obvious
that the ratchet rate cannot depend on �n0 ¼ Ne2l alone,
but must depend on �n0s instead (Jain 2008). All times and
rates in rescaled time units are denoted by Greek letters,
while we use Arabic letters for times and rates in units of
generations.

Before turning to the ratchet rate, we analyze in greater
detail the interplay of deterministic and stochastic forces in
Equation 3. A full time-dependent analytic solution of the
deterministic model was found in Etheridge et al. (2007).
Below, we present an analytic characterization of the sto-
chastic properties of the system in a limit where stochastic
perturbations are small.

Linear stability analysis

In the limit of large populations, the fluctuations of xk
around the deterministic steady state �xk can be analyzed
in linear perturbation theory. In other words, we express
deviations from the steady state as dxk ¼ xk2�xk and expand
the deterministic part of Equation 3 to order dx2k. This
expansion

d
dt

dxk ¼ 2kdxk þ ldxk21 þ �xk
X
m¼0

ðm2 lÞdxm

¼
X
m

Lkmdxm (4)

defines a linear operator Lkm. A quick calculation shows that
Lkm has eigenvalues ki = 2i with i = 0, 1, 2.... The right
eigenvector corresponding to k0 = 0 is simply c

ð0Þ
k ¼ �xk,

while the right eigenvectors for i . 0 are given by

c
ðiÞ
k ¼ �xk2i 2 �xk; (5)

where k numbers the coordinate of the vector. This is readily
verified by direct substitution (note that �xi ¼ 0 for i , 0).

The eigenvector cð0Þ
k corresponds to population size fluc-

tuations that in our implementation are controlled by a car-
rying capacity. The eigenvalue associated with this mode in
the computer simulation is large and negative and need not
be considered here (see Model and Methods). All other
eigenvalues are negative, which is to say that �xk is a stable
solution.

The eigenvectors for i . 0 have an intuitive interpreta-
tion: Eigenvector i corresponds to a shift of a fraction of the
population by i fitness classes downward. Since such a shift
reduces mean fitness, the fittest classes start growing and
undo the shift. More generally, any small perturbation of the
population distribution can be expanded into eigenvectors
dxkðtÞ ¼

P
jc

ðjÞ
k ajðtÞ and the associated amplitudes aj(t) will

decay exponentially in time with rate j (remember that the
unit of time is s21). Since the amplitudes are projections of

dxk onto the left eigenvectors of Lmk, we need to know those
as well. For k0 = 0, the left eigenvector is simply f

ð0Þ
k ¼ 1,

while the other left eigenvectors are given by

f
ðiÞ
k ¼ ð21Þk2ielli2k

ði2 kÞ! ; 0# k# i; (6)

and f
ðiÞ
k ¼ 0 for k. i. With the left and right eigenvectors and

the eigenvalue spectrum of the deterministic system on hand,
we now reinstantiate the stochastic part of the dynamics:

d
dt

dxk ¼
X
m

Lkmdxm þ
ffiffiffiffiffiffi
�xk
Ns

r
hk: (7)

Note that we approximated the strength of noise by its value
at equilibrium. This approximation is justified as long as
we consider only small deviations from the equilibrium. The
full xk-dependent noise term is reintroduced later when we
turn to Muller’s ratchet. Substituting the representation of
dxkðtÞ ¼

P
ic

ðiÞ
k aiðtÞ and projecting onto the left eigenvector

f
ðjÞ
k , we obtain the stochastic equations for the amplitudes

d
dt

ajðtÞ ¼ 2 jajðtÞ þ
X
k

f
ðjÞ
k

ffiffiffiffiffiffi
�xk
Ns

r
hkðtÞ  : (8)

Each noise term hk contributes to every aj and induces cor-
relations between the aj, but each amplitude can be inte-
grated explicitly:

ajðtÞ ¼
Z t

2N
dt9e2jðt2t9ÞX

k

f
ðjÞ
k

ffiffiffiffiffiffi
�xk
Ns

r
hkðt9Þ: (9)

The covariances of different amplitudes are evaluated in File
S1 and found to be

�
aiðtÞajðt þ DtÞ� ¼ e2jDt

iþ j

X
k

f
ðiÞ
k f

ðjÞ
k �xk

Ns
: (10)

However, we are not primarily interested in the covariance
properties of the amplitudes of eigenvectors, but expect that
the fluctuations of the fittest class and fluctuations of the
mean fitness are important for the rate of Muller’s ratchet
and other properties of the dynamics of the population. To
this end we express dx0(t) and �kðtÞ as

dx0ðtÞ ¼
X
j.0

c
ðjÞ
0 ajðtÞ ¼ 2 e2l

X
j.0

ajðtÞ (11)

d�kðtÞ ¼ 2
X
j.0;k

kcðjÞ
k ajðtÞ ¼ 2

X
j.0

jajðtÞ : (12)

With Equation 10, we can now calculate the desired quan-
tities. The calculations required to break down the multiple
sums to interpretable expressions are lengthy but straight-
forward and detailed in File S1. Below, we present and
discuss the results obtained in File S1.

1286 R. A. Neher and B. I. Shraiman

http://www.genetics.org/cgi/data/genetics.112.141325/DC1/1
http://www.genetics.org/cgi/data/genetics.112.141325/DC1/1
http://www.genetics.org/cgi/data/genetics.112.141325/DC1/1
http://www.genetics.org/cgi/data/genetics.112.141325/DC1/1


Fluctuations of x0 and the mean fitness

For the variance of the fittest class hdx20i and more generally
its autocorrelation, we find

hdx0ð0Þdx0ðtÞi ¼ e2l

Ns

Z 1

0

du
u
Glðu; tÞ

Glðu; tÞ ¼ elu
2e2t2lð1þe2tÞu2 e2lu2 e2lue2t þ   1:

(13)

The variance of thefittest class (t=0 in the above expression) is
therefore s2 ¼ ð�x0=NsÞz2ðlÞ, where z2ðlÞ ¼

R 1
0 duu21Glðu; 0Þ

is the standardized variance of the top bin, which depends only
on l. For small l, it simplifies to z2ðlÞ � 1

2lþOðl2Þ. This limit
corresponds to �x0 close to 1 with only a small fraction of the
population carrying deleterious mutations x1 � l = u/s. The
opposite limit of large l corresponds to a broad fitness distribu-
tion where the top class represents only a very small fraction of
the entire population. In this limit, the leading behavior of the
variances2 is� �x0log l=Ns. The full autocorrelation function is
shown in Figure 2A for different values of l and compared to
simulation results, which agree within measurement error. In
our rescaled units, the correlation functions decay over a time
of order1, corresponding toa timeoforder1/s in real time.More
precisely, the decay time (in scaled units) increaseswith increas-
ing l as log l.

In a similar manner, we can calculate the autocorrelation
of the mean fitness

hd�kð0Þd�kðtÞi ¼ lel

Ns

Z 1

0
duIlðu; tÞ

Ilðu; tÞ ¼ e2telu
2e2t2lð1þe2tÞuðuþ luðue2t 2 1Þðu2 1ÞÞ;

(14)

which asymptotes to ð4Ns�x0Þ21 for large l at t = 0. It is
hence inversely proportional to the size of the fittest class x0.
For large l, x0 represents only a tiny fraction of the popula-
tion and fluctuations of the mean can be substantial even
for very large N. This emphasizes the importance of fluctua-
tions of the size of the fittest class for properties of the
distribution.

If fluctuations of the mean fitness �k are driven by fluctu-
ations of the fittest class x0, we expect a strong correlation
between those fluctuations (Etheridge et al. 2007). Further-
more, fluctuations of x0 should precede fluctuations of the
mean. These expectations are confirmed by the analytic
result

�
dx0ð0Þd�kðtÞ

� ¼ l

Ns

Z 1

0
duHlðu; tÞ; (15)

where

Hlðu; tÞ ¼
(
ðu2 1Þe2tþe2tlu22lð1þe2tÞu þ e2t2e2tlu; t.0

ðetu2 1Þeetlu22lð1þetÞu þ e2lu; t, 0:

(16)

This expression is shown in Figure 2B for different values of
l. The cross correlation hdx0ð0Þd�kðtÞi is asymmetric in time:
With larger l, the peak of the correlation function moves
slowly (logarithmically) to larger delays. This result is in-
tuitive, since we expect that fluctuations in the fittest class
will propagate to less and less fit classes and that the dy-
namics of the entire distribution is, at least partly, slaved to
the dynamics of the top class.

In all of these three cases, the magnitude of the fluc-
tuations is governed by the parameter Ns, while the shape of
the correlation function depends on the parameter l. Only
the unit in which time is measured has to be compared to
the strength of selection directly.

Figure 2 (A) The covariance of the size of the fittest class x0(0) with x0(t)
a time t later. The normalized autocorrelation of x0 increases with l. (B)
The covariance of x0(0) with the mean fitness at time t in the past or
future. One observes a pronounced asymmetry, showing that fluctuations
of the fittest class propagate toward the bulk of the fitness distribution
and results in delayed fluctuations. Simulation results are shown as
dashed lines; theory curves are solid. In all cases, s = 0.01 and Nx0s ¼
100. Note that time is measured in units of 1/s, which is the natural time
scale of the dynamics.
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The rate of Muller’s Ratchet

The ratchet clicks when the size of the fittest class hits 0,
and the rate of the ratchet is given by the inverse of the
mean time between successive clicks of the ratchet.
Depending on the average size �x0 of the fittest class, the
model displays very different behavior. If Ns�x0 is compara-
ble to or smaller than 1, the ratchet clicks often without
settling to a quasi-equilibrium in between clicks. This limit
has been studied in Rouzine et al. (2008). Conversely, if
Ns�x0 � 1, ratchet clicks are rare and the system stays
a long time close to its quasi-equilibrium state �xk. Such
a scenario, taken from simulations, is illustrated in Figure
3. Figure 3A shows the distribution of x0 prior to the click,
while Figure 3B shows the realized trajectory that ends at
x0 = 0. Prior to extinction, x0(t) fluctuates around its
equilibrium value and large excursions are rare and short.
The final fluctuation that results in the click of the ratchet
is zoomed in on in Figure 3C. Compared to the time the
trajectory spends near �x0, the final large excursion away
from the steady is short and happens in a few units of
rescaled time. Translated back to generations, the final
excursion took a few hundred generations (s = 0.01 in
this example).

In rescaled time, the equation governing the frequency of
the top class is

d
dt

x0ðtÞ ¼ d�kðtÞx0ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
x0ðtÞ
Ns

r
h0ðtÞ; (17)

where d�k ¼ l2 �k. The restoring force d�k depends on x0, as
well as on the size of the other classes xk. For sufficiently
large l, x0 is much smaller than xk with k $ 1, such that the
stochastic force is most important for x0. The dynamics of xk,
k $ 1, is approximately slaved to the stochastic trajectory of
x0(t). We can therefore try to find an approximation of d�kðtÞ
in terms of x0(t) only. The linear stability analysis of the
mutation–election balance has taught us that the restoring
force exerted by the mean fitness on fluctuations in x0 is
delayed with the delay increasing } log l. The latter obser-
vation implies that the restoring force on x0 will depend
mainly on the values of x0 some time of order log l in the
past. Such history dependence complicates the analysis, and
this delay has been ignored in previous analysis, which as-

sumed that d�kðtÞ depends on the instantaneous value of
x0(t) via d�kðtÞ ¼ að12x0ðtÞ=�x0Þ (Stephan et al. 1993; Gordo
and Charlesworth 2000; Jain 2008). The parameter a was
chosen ad hoc between 0.5 and 0.6. This restoring force is
akin to a harmonic potential centered around �x0 and the
stochastic dynamics is equivalently described by a diffusion
equation for the probability distribution P(x0, t),

@

@t
Pðz; tÞ ¼ 1

2Ns
@2

@z2
zPðz; tÞ2a

@

@z
�
12 z=�z

�
zPðz; tÞ; (18)

where we have denoted x0 by z for simplicity. The fact that
the fittest class is lost whenever its size hits 0 corresponds to
an absorbing boundary condition for P(z, t) at z = 0. For
such a one-dimensional diffusion problem, the mean first
passage time can be computed in closed form (Gardiner
2004) and this formula has been used in Stephan et al.
(1993) and Gordo and Charlesworth (2000) to estimate
the rate of the ratchet. An accurate analytic approximation
to that formula has been presented by Jain (2008). For
completeness, we present an alternative derivation of these
results that helps interpret the more general results pre-
sented below. In the limit of interest, Ns�z � 1, clicks of
the ratchet occur on much longer time scales than the local
equilibration of z. We can therefore approximate the distri-
bution as P(z, t) � e2gt p(z), where g is the rate of the
ratchet. In this factorization, p(z) is the quasi-steady distri-
bution shown in Figure 3A, while g is the small rate at which
P(z, t) loses mass due to events like the one shown in Figure
3C. Inserting this ansatz and integrating Equation 18 from
z to N, we obtain

2gPðX. zÞ ¼ 1
2Ns

@

@z
zpðzÞ2az

�
12 z=�z

�
pðzÞ; (19)

where PðX. zÞ ¼ RNz dz9pðz9Þ, which is �1 for z,�z and
rapidly falls to 0 for z.�z. To obtain the rate g, we solve
this equation in a regime of small z � �z, where the term on
the left is important but constant, and in a regime z �
(Ns)21, where the term on the left can be neglected. For
the general discussion below, it is useful to solve this equa-
tion for a general diffusion constant D(z) (here equal to
z/2Ns), force field A(z) (here equal to 2azð12z=�zÞ), and
a constant C

Figure 3 An example of a click of the ratchet with N¼ 5 ·
107, s ¼ 0.01, and l ¼ 10, corresponding to an average
size of the fittest class �n0 � 2269. (A) The distribution of x0
averaged over the time prior to extinction. (B and C) The
trajectory of x0(t), with the part of the trajectory that ulti-
mately leads to extinction magnified in C. The final run
toward x0 ¼ 0 takes a few time units, as expected from
the results for the correlation functions, which suggest
a (rescaled) correlation time of �log l. Note this time cor-
responds to a few hundred generations since s ¼ 0.01.
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2C ¼ @

@z
DðzÞpðzÞ1AðzÞpðzÞ (20)

with solution

pðzÞ ¼ 1
DðzÞ e

2
R z

0
dy AðyÞ

DðyÞ

2
64b2C

Z z

0
dye
R y

0
dy9Aðy9ÞDðy9Þ

3
75: (21)

Note that this solution is inversely proportional to the
diffusion constant, while the dependence on selection is
accounted for by the exponential factors. For z � �z, C = g

and 2aNs
R z
0 dy  ð12z=�zÞ � 2aNsz, such that

pðzÞ � g
e2Nsaz2 1

az
; z � �z; (22)

where b is fixed by the boundary condition that p(z) is finite
at z = 0. Note that g = p(0)/2Ns relates the rate of extinc-
tion to p(0). To determine the latter we need to match the
z � �z regime to the bulk of the distribution z � �z. As can be
seen from Equation 22, the constant term C is unimportant
in this regime (e2Nsaz � 1). Setting C= 0 in Equation 21, we
find

pðzÞ � �z
z

ffiffiffiffiffiffiffiffi
Nsa

p ffiffiffiffiffiffi
�zp

p exp

"
2aNs

ðz2�zÞ2
�z

#
; zNsa � 1: (23)

The integration constant b in Equation 21 is fixed by the
normalization. Since p(z) is concentrated around z ¼ �z and
has a Gaussian shape around �z, the normalization factor is
simply 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

p
, where s2 ¼ �z=2aNs is the variance of the

Gaussian. The factor �z=z corresponds to the 1/D(z) term,
scaled so that it equals 1 in the vicinity of �z. Note that we
have already calculated the variance of p(z) earlier, Equation
13, and that consistency with this result would require that
a is determined by Equation 13.

The two approximate solutions, Equation 22 and Equa-
tion 23, are both accurate in the intermediate regime
ðNsaÞ21 � z � �z, which allows us to determine the rate g in
Equation 22 by matching the two solutions. This matching
implies that

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�zNsa3

p
ffiffiffiffi
p

p e2aNse2l

; (24)

which agrees with result obtained previously (Jain 2008).
Note that this rate depends only on the parameters l and Ns
of the rescaled model. Since rates have units of inverse time,
this expression has to be multiplied by s to obtain the rate in
units of inverse generations.

However, Equation 24 does not describe the rate accu-
rately, as is obvious from the comparison with simulation
results shown in Figure 4A. The plot shows the rescaled
ratchet rate g ·

ffiffiffiffi
p

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�zNsa3

p
, which according to Equation

24 should be simply exp[2aNse2l], indicated by the black
line. The plot shows clearly that the simulation results often

differ from the prediction of Equation 24 by a large factor. It
seems as if a needs to depend on l, as we already noted above
when comparing the variance of p(z) to Equation 13. In fact,
fixing a via Equation 13 improves the agreement substantially,
but still does not describe the simulations quantitatively.

The reason for the discrepancy is the time delay between
d�k and z, which we quantified by calculating the correlation
between d�kðtÞ and z(t + Dt). Hence we cannot use an
approximation where d�k depends on the instantaneous
value of z, but must calculate d�k from the past trajectory
of z. If the fittest class is the only one that is strongly sto-
chastic, we can calulate d�kðtÞ for a given trajectory z(r), r #

t, by integrating the deterministic evolution equations for xk
with k $ 1 with z(r) as an external forcing.

Equation 17 now depends not only on z(t), but on all
z(r) with r # t and cannot be mapped to a diffusion equa-
tion. Nevertheless, it corresponds to a well-defined stochas-
tic integral, known as a path integral in physics (Feynman
and Hibbs 1965), which is amenable to systematic numeri-
cal approximation. To introduce path integrals, it is useful to
discretize Equation 17 in time and express z(ri) in terms of
the state at time ri21 = ri 2 Dt and the earlier time points.
For simplicity, we use the notation zi for z(ri),

zi 2 zi21 ¼ Dtd�ki21zi21 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zi21Dt

Ns

r
  hi21; (25)

where d�ki21 depends on all previous time points rj with j, i.
In the limit Dt / 0, this difference equation converges
against Equation 17 interpreted in the Itô sense since the
z-dependent prefactor of the noise term is evaluated at ri21

rather than at an intermediate time point between ri 21

and ri. We can express this transition probability Pt(z|z0)
between the initial state z0 and the final state z = zm as a
series of integrals over all intermediate states zi for 0,i,m,

Ptðzjz0Þ ¼
Z Ym2 1

i¼1

dziPDt
�
zj�zj	j,m



PDt
�
zm21j

�
zj
	
j,m21



⋯PDtðz1jz0Þ:

(26)

Each of these infinitesimal transitions corresponds to sol-
utions of Equation 25 with hi drawn from a standard Gauss-
ian (Lau and Lubensky 2007). Hence

PDt
�
zij
�
zj
	
j, i



¼

ffiffiffiffiffi
Ns

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pDtzi21

p exp

"
2Ns

ðzi2zi212Dtzi21d�ki21Þ2
2Dtzi21

#
:

(27)

In the limit of many intermediate steps and small Dt, the
transition probability can therefore be written as

Ptðzjz0Þ ¼
Z

Dzr   exp

"
2Ns

Z t

0
dr

�
_zr2zrd�kr

�2
2zr

#

¼
Z

Dzr   e2NsSlðfzrgÞ; (28)

where Dzr is the limit of
Qm

i¼1dzið2pDtzi21=NsÞ21=2 known
as the path-integral measure, and we have replaced the
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discrete time index by its continuous analog. The path in-
tegral extends over all continuous path connecting the end-
points z0 and zt = z. The functional Sl({zr}) in the exponent
closely corresponds to the “action” in physics (Feynman and
Hibbs 1965), which is minimized by classical dynamics.
Here minimization of the “action” defines the most likely
trajectory. Note that Sl({zr}) depends on the entire path
{zr} with 0 # r # t, while the functional itself depends only
on l. The strength of genetic drift appears as a prefactor of
Sl({zr}) in the exponent.

The most likely path z*r connecting the endpoints points z0
and zt in time t can be determined either by solving the
Euler–Lagrange equations or by numerical minimization,
see below. Along with the functional, z*r depends only on l.
Given this extremal path, we can parameterize every other
path connecting z0 and zt as zr ¼ z*r   þ   dzr, where dzr van-
ishes at both endpoints (dz0 = dzt = 0). Denoting
the minimal action associated with z*r by S*lðzt; z0Þ, we have

Ptðzt jz0Þ ¼ e2NsS*lðzt ;z0Þ
Z

Ddzr   e2Ns  dSlðfdzrg;zt ;z0Þ ¼ N21e2NsS*lðzt ;z0Þ;

(29)

where N21 factor is equal to the integral over the fluctua-
tions, which in general depends on z*r. The prefactor Ns in
e2Ns  dSðfdzrg;zt ;z0Þ implies that deviations from the optimal
path are suppressed in large populations. If dS({dzr}, zt, z0)
is independent of the final point zt, N can be determined by
the normalizing Pt(zt|z0) with respect to zt. In the general
case, calculating the fluctuation integral is difficult, and we
determine it here by analogy to the history-independent
solution presented above Equations 18–24.

If the stochastic dynamics admits an (approximately)
stationary distribution, Pt(zt|z0) becomes independent of t
and z0 and coincides with the steady-state probability distri-
bution p(z). It therefore becomes the analog of Equation 23,
which for arbitrary diffusion equations is given by the in-
verse diffusion constant (the prefactor z21), multiplied by an
exponential quantifying the trade-off between deterministic
and stochastic forces. In this path-integral representation,
the exponential part is played by e2NsS*lðzÞ, where S*lðzÞ. is
a function of the final point z and l only. The prefactor is
independent of the selection term and can hence be deter-
mined through the analogy to the Markovian case discussed
above

pðzÞ � �z
z

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e2NsS*lðzÞ; Nsz � 1; (30)

where the normalization is obtained by assuming an ap-
proximately Gaussian distribution around the steady-state
value �z and the variance s2 is given by Equation 13. Note
that this solution is not valid very close to the absorbing
boundary since this boundary is not accounted for by the
path integral, at least not without some special care. As in
the history-independent case discussed above, this approxi-
mate distribution should be thought of as the time-indepen-
dent “bulk” distribution in P(z, t) = e2gtp(z). To determine
the rate extinction rate g, we again need to understand how
probable it is that a trajectory actually hits z = 0, given that
it has come pretty close.

To this end, we need a local solution of Equation 17 in
the boundary layer z � �z as already obtained for the history
independent case in Equation 22. Once a trajectory comes
close to z = 0, its fate, i.e., whether it goes extinct or returns
to z � �z, is decided quickly. Hence we can make an instan-
taneous approximation for d�k, which does depend on the
past trajectory, but for the time window under consideration

Figure 4 The ratchet rate from simulation vs. prediction. Both A and B
show the ratchet rate g, rescaled with a prefactor to isolate the exponen-
tial dependence predicted by analytic approximations; l is color-coded.
(A) Comparison of simulation results with the prediction of Equation 24,
which is shown as a straight line. The approximation works only for
a particular value of l, for otherwise the exponential dependence on
N�x0s is not predicted correctly. (B) Comparison of simulation results with
the prediction of Equation 32, again indicated by the straight line. The
exponential dependence of rate on NsS*lð0Þ is well confirmed by simula-
tion results.
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it is simply a constant, a, yet to be determined. Having re-
duced the problem to Equation 22 we can determine a, and
hence g, by matching of the boundary solution to Equation
30 in the regime ðNsÞ21 � z � �z, where both are accurate.
The matching condition is

�z
z

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e2NsðS*lð0Þþz@zS*lðzÞjz¼0Þ ¼ g

az
e2aNsz; (31)

which determines a and g by the matching requirement
2a ¼ 2@zS*lðzÞjz¼0 and

g ¼
@zS*lðzÞ�ze2NsS*lð0Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

p � S*lð0Þffiffiffiffiffiffiffiffiffiffiffiffi
8ps2

p e2NsS*lð0Þ; (32)

where we approximated j@zS*lðzÞjz¼0 � S*lð0Þ=�z. The vari-
ance s2 is given by Equation 13 and depends on l and Ns
as s2 ¼ �zz2ðlÞ=Ns. Note that g is in units of s and needs to
be multiplied by s for conversion to units of inverse gener-
ations. In contrast to Markovian case above, the variance of
the “bulk” is no longer simply related to strength of selection
near the z = 0 “boundary.”

Since we don’t know how to calculate S*lð0Þ or the most
likely path z*r analytically, we determined discrete approxi-
mations to z*r numerically as described in Model and Meth-
ods. Examples of numerically determined most likely path
and the corresponding trajectory of the mean fitness are
shown in Figure 5 for different values of l. Generically, we
find a rapid reduction of the size z of the size of the fittest
class such that the mean fitness has only partially responded.
The inset of Figure 5A shows how changes in mean fitness
d�k are related to z for different l. For large l, the mean fitness
changes only very slowly with z, which increases the proba-
bility of large excursions and hence the rate of the ratchet.

This numerically determined minimal action S*lð0Þ to-
gether with the approximation Equation 32 describes the
rate of the ratchet, as determined in simulations, extremely
well. Figure 4B shows the same simulation data as Figure
4A, but this time rescaled by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ps2ðlÞp

=S*lð0Þ as a function
of NsS*lð0Þ. After this rescaling, we expect all data points to
lie on the same curve given by exp½2NsS*lð0Þ�, as is indeed
found for many different values of u, s, and N with l = u/s
ranging from 1 to 30. Note that the vertical shift of the black
line relative to the data points depends on the prefactor,
which we have approximated. Hence we should not expect
agreement better than to a factor of �2. The important point
is that the exponential dependence of the rate on NsS*lð0Þ is
correctly captured by Equation 32.

Previous studies of Muller’s ratchet suggested that the
rate depends exponentially on aNse2l (Jain 2008). To relate
this to our results, we determined “Haigh’s factor” a numer-
ically from S*lð0Þ and plotted it in Figure 5B. We find that
a(l) drops from around 0.8 to 0.3 as l increases from 1 to
30. The previously used values 0.5–0.6 for a correspond to
l � 6. Using aðlÞ ¼ S*lð0Þel as shown in Figure 5B, we can

recast Equation 32 into its traditional form and undo the
scaling with s. In units of generations, the mean time be-
tween clicks is given by

Tclick �
2:5zðlÞ

aðlÞs
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nse2l

p eNsaðlÞe
2l

; (33)

where z(l) is determined by Equation 13 and the factor 2.5
is introduced to approximate the part of the prefactor that is
independent of N, s, or l. A direct comparison of this expres-
sion with simulation results is shown in File S1.

Conclusion

The main difficulty impeding better understanding of even
simple models of evolution is the fact that rare events
involving a few or even single individuals determine the fate

Figure 5 (A) The most likely path x*0ðtÞ to extinction of the fittest class
and the concomitant reduction of the mean fitness for different l are
plotted against time. Times are shifted such that x*0ð0Þ ¼ �x0=2. The inset
shows the mean fitness d�kðtÞ plotted against x*0ðtÞ for different values
of l. (B) Haigh’s factor aðlÞ ¼ S*lð0Þel as a function of l determined
numerically.
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of the entire population. The important individuals are those
in the high fitness tail of the distribution. Fluctuations in the
high fitness tail propagate toward more mediocre individu-
als, which dominate a typical population sample.

We have analyzed the magnitude, decay, and propaga-
tion of fluctuations of the fitness distribution in a simple
model of the balance between deleterious mutations and
selection. In this model, individuals in the fittest class evolve
approximately neutrally. Fluctuations in the size of this class
propagate to the mean, which in turn generates a delayed
restoring force opposing the fluctuation. We have shown
that the variance of the fluctuations in the population n0 of
the top bin is proportional to n0/s and increases as log l with
the ratio l of the mutation rate u and the mutational effect s.
Fluctuations of n0 perturb the mean after a time �s21log l.
These two observations have a straightforward connection:
Sampling fluctuations can accumulate without a restoring
force for a time s21log l. During this time, the typical per-
turbation of the top bin by drift is �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0s21log l

p
and hence

the variance is � n0s21log l. We have used these insights in
the coupling between n0, the mean fitness, and the resulting
delayed restoring force on fluctuations of n0 to approximate
the rate of Muller’s ratchet.

The history dependence of the restoring force has not
been accounted for in previous analysis of the rate of
Muller’s ratchet (Haigh 1978; Stephan et al. 1993; Gordo
and Charlesworth 2000; Jain 2008) who introduced a con-
stant factor to parameterize the effective strength of the
selection opposing fluctuations in the top bin, or Waxman
and Loewe (2010), who replaced all mutant classes by one
effective class and thereby mapped the problem to the fixa-
tion of a deleterious allele. We have shown that to achieve
agreement between theory and numerical simulation one
must account for the delayed nature of selection acting on
fluctuations. Comparing our final expression for the ratchet
rate with that given previously (Stephan et al. 1993; Gordo
and Charlesworth 2000; Jain, 2008), the history depen-
dence manifests itself as a decreasing effective strength of
selection with increasing l = u/s. This decrease is due to
a larger temporal delay of the response of the mean fitness
to fluctuations of the least loaded class. History dependence
is a general consequence of projecting a multidimensional
stochastic dynamics onto a lower dimensional space (here,
the size n0 of the fittest class). Such memory effects can be
accounted for by the path-integral formulation of stochastic
processes, which we used to approximate the rate of Mul-
ler’s ratchet.

Even though the model is extremely simplistic and the
sensitive dependence of the ratchet rate on poorly known
parameters such as the effect size of mutations, population
size, and mutation rate precludes quantitative comparison
with the real world, we believe that some general lessons
can be learned from our analysis. The propagation of
fluctuations from the fittest to less fit individuals is expected
to be a generic feature of many models and natural pop-
ulations. In particular, very similar phenomena arise in the

dynamics of adapting populations driven by the accumu-
lation of beneficial mutations (Tsimring et al. 1996; Rouzine
et al. 2003, 2008; Cohen et al. 2005; Desai and Fisher
2007; Neher et al. 2010; Hallatschek 2011). The speed of
these traveling waves is typically determined by stochastic
effects at the high fitness edges. We expect that the fluctua-
tions of the speed of adaptation can be understood and
quantified with the concepts and tools that we introduced
above.

Populations spread out in fitness have rather different
coalescence properties than neutral populations, which are
described by Kingman’s coalescent (Kingman 1982). These
differences go beyond the familiar reduction in effective
population size and distortions of genealogies due to back-
ground selection (Charlesworth et al. 1993; Higgs and
Woodcock 1995; Walczak et al. 2011). The most recent
common ancestor of such populations most likely derives
from this high fitness tail and fluctuations of this tail de-
termine the rate at which lineages merge and thereby the
genetic diversity of the population (Brunet et al. 2007; Rouzine
and Coffin 2007; Neher and Shraiman 2011). Thus, quanti-
tative understanding of fluctuations of fitness distributions
is also essential for understanding nonneutral coalescent
processes.

Generalizing the analysis of fluctuations of fitness dis-
tributions to adapting “traveling waves” and the study of
their implications for the coalescent properties of the pop-
ulation are interesting avenues for future research.
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Covariance properties of the fitness distribution

To analyze the covariances of different fitness classes, we begin with Eq. (7) of the main

text, which expresses δxk(τ) in terms of eigenvectors δxk(τ) =
∑

j ψ
(j)
k aj(τ). Projecting on

the left eigenvectors then results in equations for aj(τ)

d

dτ
aj(τ) = −jaj(τ) +

∑
k

φ
(j)
k

√
x̄k

Ns
ηk(τ) (1)

where ηk(τ) are uncorrelated Gaussian white noise terms with 〈ηk(τ)ηl(τ
′)〉 = δklδ(τ − τ ′).

Since each noise term ηk contributes to all aj, the noise induces correlated fluctuations of

the aj(τ), which we need to understand in order to analyze the fluctuations of the fitness

distributions. The inhomogeneous Eq. (1) has the solution

aj(τ) =

∫ τ

−∞
dτ ′e−j(τ−τ ′)

∑
k

φ
(j)
k

√
x̄k

Ns
ηk(τ

′) (2)

The autocorrelation function of the loadings of different eigendirections separated by ∆τ in

time is therefore given by

〈ai(τ)aj(τ + ∆τ)〉 =

∫ τ

−∞
dτ ′
∫ τ+∆τ

−∞
dτ ′′e−i(τ−τ ′)−j(τ+∆τ−τ ′′)

∑
k,l

φ
(i)
k φ

(j)
l

√
x̄kx̄l

Ns
〈ηk(τ

′)ηl(τ
′′)〉

=

∫ τ

−∞
dτ ′e−i(τ−τ ′)−j(τ+∆τ−τ ′)

∑
k

φ
(i)
k φ

(j)
k x̄k

Ns

=
e−j∆τ

i+ j

∑
k

φ
(i)
k φ

(j)
k x̄k

Ns

(3)

where we have used 〈ηk(τ)ηl(τ
′)〉 = δklδ(τ − τ ′).
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Correlation functions n0 and the mean

To calculate the variances and covariance of x0 and the mean fitness, we express them in

terms of the eigenmodes aj(τ) (j > 0)

δx0(τ) =
∑
j>0

ψ
(j)
0 aj(τ) = −e−λ

∑
j>0

aj(τ) (4)

δk̄(τ) = −
∑
j>0,k

kψ
(j)
k aj(τ) = −

∑
j>0,k

k(x̄k−j − x̄k)aj(τ) = −
∑
j>0

jaj(τ) (5)

The auto-correlation of x0

The auto-correlation of x0 is given by

〈x0(τ)x0(τ + ∆τ)〉 = e−2λ
∑
i,j>0

e−j∆τ

i+ j

∑
k

φ
(i)
k φ

(j)
k x̄k

Ns

=
e−λ

Ns

∑
i,j>0

λi+je−j∆τ

i+ j

min(i,j)∑
k=0

(−1)i+jλ−k

(j − k)!(i− k)!k!

=
e−λ

Ns

∫ ∞

0

dz
∑
i,j>0

e−z(i+j)λi+je−j∆τ

min(i,j)∑
k=0

(−1)i+jλ−k

(j − k)!(i− k)!k!

(6)

Let us focus on the triple sum inside the integral and simplify it by introducing a = −λe−z

and b = −λe−z−∆τ . Furthermore, let us look at the i = j and the i 6= j contributions

separately. The diagonal contribution (i = j) is∑
i=0

aibi
i∑

k=0

λ−k

(i− k)!(i− k)!k!
=
∑
i>0

i∑
k=0

(ab)i−k(ab)kλ−k

k!((i− k)!)2

=
∑
k>0

∑
i≥k

(ab)i−k(ab)kλ−k

k!((i− k)!)2
+
∑
i>0

(ab)i

(i!)2

=
∑
k>0

(ab)kλ−k

k!

∑
n≥0

(ab)n

(n!)2
+ J0(−ι2

√
ab)− 1 using n = i− k

= (eab/λ − 1)J0(−ι2
√
ab) + J0(−ι2

√
ab)− 1

= eab/λJ0(−ι2
√
ab)− 1

(7)

where Jn(z) is the nth Bessel function of first kind, and ι =
√
−1. When evaluating the

off-diagonal contribution, we will encounter terms like∑
k>0

(ab)k

k!(k +m)!
=
∑

k

(ab)k

k!(k +m)!
− 1

m!
=
Jm(2ι

√
ab)

(ι
√
ab)m

− 1

m!
(8)
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The off-diagonal contribution can be further split into the parts i > j and i < j which can

be evaluated as follows:∑
0<i<j

aibj
i∑

k≥0

λ−k

k!(j − k)!(i− k)!
=
∑
i>0

∑
j>i

aibj−i+i

i∑
k≥0

λ−k

k!(i+ (j − i)− k)!(i− k)!

=
∑
i>0

∑
m>0

aibm+i

i∑
k≥0

λ−k

k!(i+m− k)!(i− k)!
using m = j − i

=
∑
k>0

∑
m>0

∑
i≥k

aibm+iλ−k

k!(i+m− k)!(i− k)!
+
∑
m>0

∑
i>0

aibm+i

(i+m)!i!

=
∑
k>0

∑
m>0

∑
n≥0

an+kbm+n+kλ−k

k!(n+m)!n!
+
∑
m>0

bm
∑
i>0

(ab)i

(i+m)!i!
using n = i− k

=
∑
k>0

∑
m>0

akbm+kλ−k

k!

Jm(2ι
√
ab)

(ι
√
ab)m

+
∑
m>0

bm

(
Jm(2ι

√
ab)

(ι
√
ab)m

− 1

m!

)

=
∑
m>0

∑
k≥0

akbkbm/2a−m/2λ−k

k!

Jm(2ι
√
ab)

(ι)m
− eb + 1 =

∑
m>0

(
b

a

)m/2

eab/λJm(2ι
√
ab)

(−1)m/2
− eb + 1

= eab/λ
∑
m>0

(
b

a

)m/2

(−ι)mJm(2ι
√
ab)− eb + 1

(9)

The off-diagonal terms for i > j is obtained by interchanging a and b such that the full

off-diagonal contribution is

eab/λ
∑
m>0

[(
b

a

)m/2

+
(a
b

)m/2
]

(−ι)mJm(2ι
√
ab)− ea − eb + 2 (10)

Next, we use the definition of the generating function of the Bessel functions (Gradshteyn

and Ryzhik [1], 8.511)

e
1
2
(t−t−1)z = J0(z) +

∑
m>0

(tm + (−t)−m)Jm(z) (11)

which turns the off-diagonal contribution into

eab/λ

(
e
√

ab
“√

b
a
+
√

a
b

”
− J0(2ι

√
ab)

)
− ea − eb + 2 (12)

Combining the diagonal and off-diagonal contributions and substituting a and b, we find for

the integrand in Eq. (6)

e
ab/λ+

√
ab

“√
b
a
+
√

a
b

”
− ea − eb + 1 = eλe−2z−∆τ−λe−z−λe−z−∆τ − e−λe−z − e−λe−z−∆τ

+ 1 (13)
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The auto-correlation of x0 is therefore given by

〈x0(τ)x0(τ + ∆τ)〉 =
e−λ

Ns

∫ ∞

0

dz
(
eλe−2z−∆τ

e−λ(e−z+e−z−∆τ ) − e−λe−z − e−λe−z−∆τ

+ 1
)

=
e−λ

Ns

∫ 1

0

dθ

θ

(
eλθ2e−∆τ−λθ(1+e−∆τ ) − e−λθ − e−λθe−∆τ

+ 1
) (14)

Auto-correlation of the mean fitness

The autocorrelation function of the mean is defined as

〈δk̄(τ)δk̄(τ + ∆τ)〉 =
∑
i,j>0

ij〈ai(τ)aj(τ + ∆τ)〉

= ∂µ∂ν
eλ

Ns

∫ ∞

0

dz
∑
i,j>0

µiνje−z(i+j)λi+je−j∆τ

min(i,j)∑
k=0

(−1)i+jλ−k

(j − k)!(i− k)!k!

(15)

where the last line is to be evaluated at ν = µ = 1. Hence the problem is reduced to the

one already solved with a = −µλe−z and b = −νλe−z−∆τ . We find

〈δk̄(τ)δk̄(τ + ∆τ)〉 =
λeλ

Ns

∫ 1

0

dθe−∆τeλθ2e−∆τ−λ(1+e−∆τ )θ
(
θ + λθ

(
θe−∆τ − 1

)
(θ − 1)

)
(16)

Cross-correlation of x0 and the mean fitness

When calculating the cross-correlation between x0 and the mean fitness we have to distin-

guish the cases where x0 precedes the mean fitness and vice-versa. Otherwise, the calculation

proceeds almost unchanged from the cases discussed above.

〈x0(τ)δk̄(τ + ∆τ)〉 = −e−λ
∑
i,j>0

j〈ai(τ)aj(τ + ∆τ)〉

= −∂ν
1

Ns

∫ ∞

0

dz
∑
i,j>0

aibj
min(i,j)∑

k=0

(−1)i+jλ−k

(j − k)!(i− k)!k!

(17)

with a = −λe−z, b = −νλe−z−∆τ if ∆τ > 0 and a = −λe−z+∆τ , b = −νλe−z if ∆τ < 0. The

result is

〈δx0(τ)δk̄(τ + ∆τ)〉 =
λ

Ns

e
−∆τ

∫ 1

0
dθ
(
(θ − 1)ee−∆τ λθ2−λ(1+e−∆τ )θ + e−e−∆τ λθ

)
∆τ > 0∫ 1

0
dθ
(
(e∆τθ − 1)ee∆τ λθ2−λ(1+e∆τ )θ + e−λθ

)
∆τ < 0

(18)
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Figure S 1: The approximation of the mean time between clicks of the ratchet is accurate over a

large range of parameters if Nsα(λ)e−λ is large compared to one. Nsα(λ)e−λ determines whether

the clicks of the ratchet are far apart compared to the relaxation time of the distribution and is

indicated as the color of the data points. The condition Nsα(λ)e−λ > 1 is violated for the fastest

clicks shown, resulting in the deviation of the dark blue points.

[1] Gradshteyn, I. S. and I. M. Ryzhik, 2007 Table of Integrals, Series, and Products. Academic

Press, New York.
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