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ABSTRACT
The interaction of CNS tumors with infiltrating lymphocytes plays an important role in their initiation and 
progression and might be related to therapeutic responses. Gene expression-based methods have been 
successfully used to characterize the tumor microenvironment. However, methylation data are now 
increasingly used for molecular diagnostics and there are currently only few methods to infer information 
about the microenvironment from this data type. Using an approach based on differential methylation 
and principal component analysis, we developed DIMEimmune (Differential Methylation Analysis for 
Immune Cell Estimation) to estimate CD4+ and CD8+ T cell abundance as well as tumor-infiltrating 
lymphocytes (TILs) scores from bulk methylation data. Well-established approaches based on gene 
expression data and immunohistochemistry-based lymphocyte counts were used as benchmarks. The 
comparison of DIMEimmune to the previously published MethylCIBERSORT and MeTIL algorithms showed 
an improved correlation with both gene expression-based and immunohistological results across differ-
ent brain tumor types. Further, we applied our method to large datasets of glioma, medulloblastoma, 
atypical teratoid/rhabdoid tumors (ATRTs) and ependymoma. High-grade gliomas showed higher scores 
of tumor-infiltrating lymphocytes than lower-grade gliomas. There were overall only few tumor- 
infiltrating lymphocytes in medulloblastoma subgroups. ATRTs were highly infiltrated by lymphocytes, 
most prominently in the MYC subgroup. DIMEimmune-based estimates of TILs were a significant prog-
nostic factor in the overall cohort of gliomas and medulloblastomas, but not within methylation-based 
diagnostic subgroups. To conclude, DIMEimmune allows for robust estimates of TIL abundance and might 
contribute to establishing them as a prognostic or predictive factor in future studies of CNS tumors.
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Introduction
The immune microenvironment is a key factor for tumor 
growth and progression in various cancers including central 
nervous system (CNS) tumors.1,2 There has been an increasing 
interest in tumor immunology with the avenue of immu-
notherapies, as there is growing evidence that the tumor micro-
environment influences the therapeutical outcome. Tumor- 
infiltrating lymphocytes (TILs) have been established as an 
important predictive and prognostic biomarker in several 
solid tumors, particularly in breast cancer (see3–5 for review). 
In neuro-oncology, TILs have been primarily studied in glio-
blastoma and were shown to be associated with molecular 
alterations, such as NF1 and RB1 mutations, although the 
reported prognostic associations are still being controversially 
discussed.6–8 Using transcriptomic approaches, immunological 
differences between molecular subgroups were identified in 
medulloblastoma (MB), ependymoma and ATRT.9–11 

Recently, profiling the immune microenvironment of over 
6,000 primarily pediatric brain tumors (medulloblastomas, 

malignant rhabdoid tumors, and high-grade gliomas) using 
MethylCIBERSORT, Grabovska et al. showed associations of 
particular immune cells with molecular subgroups, mutations, 
as well as the overall survival in these entities.12,13

Different strategies have emerged for the quantification of 
tumor-infiltrating immune cells. TILs are frequently scored on 
hematoxylin and eosin (HE) stained slides, which is easily 
possible in e.g. breast cancer, lung cancer or glioblastoma.3,4 

Recently, machine learning methods have been applied to 
optimize morphological TIL quantification.14 However, it 
becomes increasingly difficult in tumors with morphological 
similarities to immune cells, like small-round-blue-cells 
tumors, where immunohistochemical analyses are needed. 
Also, the high diversity of rare brain tumor entities, spatial 
heterogeneity, and potential interrater variations make it diffi-
cult to obtain solid TIL phenotyping from tissue sections. 
Utilizing molecular diagnostics such as methylation data to 
determine the degree of infiltration and subset phenotype of 
immune cells is therefore appreciated.
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Various techniques have been developed to estimate tumor- 
infiltrating immune cells from bulk molecular profiling data. 
Deconvolution algorithms based on transcriptomic techniques 
are most widely used and include approaches based on specific 
gene signatures for microenvironment cell populations and the 
CIBERSORT method.15–17 On the one hand, estimates based 
on specific immune cell signatures are usually defined as the 
average expression value of the cell-type-specific genes. 
However, most published signatures were not optimized for 
brain tumors resulting in potentially unspecific results. 
Therefore, we recently optimized these methods allowing for 
robust estimates of microenvironmental cells in medulloblas-
toma and pediatric high-grade glioma.8,9

On the other hand, CIBERSORT uses a support-vector 
regression-based deconvolution algorithm to quantify the rela-
tive amount of 22 immune subpopulations, which could be 
used to identify prognostic markers in various cancers.18 The 
algorithm provides a p-value for each sample, which is 
a measure of confidence in the results. In a large gene expres-
sion-based meta-analysis of breast cancer, the overall amount 
of immune infiltration was negatively correlated with this 
p-value, indicating that lower amounts of tumor-infiltrating 
immune cells might result in less robust deconvolution 
results.19

These transcriptomic approaches are well established and 
validated and led to several new insights on the immunological 
landscape of solid tumors. However, transcriptomic data are 
only rarely used in routine diagnostics of brain tumors. 
Conversely, global DNA methylation analysis has been exten-
sively used for molecular analyses of brain tumors,20–24 and 
there is an increasing number of applications in the clinical 
routine for the diagnostic classification of brain tumors and 
other neoplasms.25–28 Therefore, methods that can robustly 
quantify immune cells based on DNA methylation are needed 
and currently much more widely applicable in neuro-oncology 
than transcriptomic approaches.

Recently, DNA methylation-based algorithms have been 
established to study tumor-infiltrating immune cells. Jeschke 
et al. used differential methylation analysis between lympho-
cytes and breast cancer to establish a methylation signature 
(MeTIL) that recapitulates TIL evaluations and their prognos-
tic value in breast cancer.29 Adapting the CIBERSORT algo-
rithm to DNA methylation data, Chakravarthy et al. 
introduced MethylCIBERSORT. Using methylation profiles 
from head and neck squamous cell carcinoma, they divided 
their data into immune hot tumors with better response and 
immune cold tumors with worse response to the therapy.13 As 
previously described, this approach has been recently applied 
by Grabovska et al. to study a large cohort of brain tumors.12 

A prerequisite for the reliable immune cell estimation with 
MethylCIBERSORT is a tumor reference signature for the 
entity under consideration. Therefore, cell line data have 
been used, which is, however, not available for rare brain 
tumor entities. Grabovska et al. therefore used 25 cell lines 
from rhabdoid tumors and medulloblastoma only as 
reference.12

As nonspecific tumor signatures result in nonreliable 
deconvolution results, and as the reference data are unavailable 
for many rare brain tumor entities, we established 

DIMEimmune (Differential Methylation Analysis for 
Immune Cell Estimation), a robust DNA methylation-based 
method for the quantification of TILs (DIME-TIL), CD4+ 

(DIME-CD4) and CD8+ (DIME-CD8) lymphocytes in central 
nervous system tumors. The method is not relying on 
a reference signature of pure tumor cells from the studied 
tumor entity and can therefore be directly applied to any 
CNS tumor.

Materials and Methods

All data analyses were performed using the statistical program-
ming language R version 3.6.030 with the packages minfi, lumi, 
missMethyl, ComplexHeatmap, MASS, beeswarm, 
TCGAbiolinks, MethylCIBERSORT, FlowSorted.Blood.450k 
and survival.13,31–39

Datasets and preprocessing of previously published 
methylation data

The methylation data used to train our method as well as the 
data used for comparison with gene expression-based decon-
volution algorithms were previously published, analyzed on the 
Illumina Infinium Methylation 450K Bead Chip and are avail-
able from public data repositories. These raw data can be 
divided into training and validation data (Figure 1a). As refer-
ence for immune cells, publicly available methylation profiles 
of magnetic-activated cell sorted CD4+ and CD8+ lymphocytes 
from 101 cases were downloaded from Gene Expression 
Omnibus (GEO).40,41 Not all samples contain data for both 
CD4+ and CD8+ lymphocytes, therefore profiles from patients 
with missing data either for CD4+ or CD8+ lymphocytes were 
excluded resulting in a dataset of 94 samples. The training 
cohort for the brain tumor classifier published by Capper 
et al. was used as a reference for CNS tumors.25 As we com-
puted differential methylation between bulk tumor methyla-
tion profiles and immune cells, samples from reference tissue 
and tumors with expected high immune infiltration were 
excluded (methylation classes: LYMPHO, PLASMA, CONTR 
INFLAM, CONTR REACT, MELAN, MELCYT) resulting in 
a dataset of 2706 samples from 85 diagnostic categories. As 
validation datasets, the validation cohort from Capper et al. 
was used (1104 samples), as well as 763 methylation profiles 
from medulloblastoma (Cavalli et al.20), 162 methylation pro-
files from atypical teratoid/rhabdoid tumor (ATRT),23,42 534 
methylation profiles from lower-grade glioma (LGG) 
(TCGA43), 155 samples from glioblastoma (GBM) (TCGA43), 
and 557 samples from ependymoma (EPN) (Pajtler et al.).22 

Clinical annotations were extracted from the supplementary 
material of the corresponding publications cited above. All 
DNA methylation profiles were preprocessed with the 
R-package minfi31 using single-sample normal-exponential 
out-of-band (noob) normalization, beta-scores were used for 
the final analysis.38 CpG sites associated with single-nucleotide 
polymorphisms, sex chromosomes, and cross-reactive sites 
were excluded as previously reported, resulting in a dataset of 
428799 CpGs.25

Matching gene expression data were obtained for medullo-
blastoma, ATRT, glioma and ependymoma from GEO or the 
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European Genome-phenome Archive. Expression data for 
medulloblastoma (763 samples) were analyzed on the 

Affymetrix Human Gene 1.1 ST Array and preprocessed as 
previously described.9 Expression data for ATRT (88 samples) 

Figure 1. Overview of the data and the DIMEimmune method. a. Data sources and number of samples; b. Overview of the method: the final lymphocyte-specific signature is 
the intersection of three sets of CpGs. The first two sets are obtained within the framework of differential methylation analysis and the third one by threshold analysis. The first group is 
selected based on the difference between brain tumor samples, and CD4+ and CD8+ T cells by applying an unpaired t-test. The second group is selected by applying a paired t-test on 
different immune cell types in the blood. Additionally, a threshold analysis is conducted, which gives the third group of CpGs. The final estimate for lymphocyte infiltration is obtained 
from dimensionality reduction using PCA; c. Validation: Methylation-based estimates are obtained by applying the learned rotation matrix of PCA on the validation data. Gene 
expression-based estimates are computed from specific signatures as previously described.8 Both methods are compared on the same samples using RNAseq/gene expression and 
methylation-based values in the form of correlation and scatter diagrams.
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were analyzed on the Illumina HT12 gene expression array and 
preprocessed with the R-package lumi.23,39 Preprocessed 
RNAseq data (FPKM) for LGG (532 samples) and GBM (64 
samples) were obtained from Rhaman et al.44 Expression data 
for EPN (129 samples) were analyzed on the Affymetrix HG 
U133 Plus 2.0 microarray and preprocessed with the R-package 
affy using the custom chip definition file hgu133plus2hsen-
trezgcdf (v19.0.0).45,46

Immunohistological validation

Parallel methylation and immunohistological analysis were 
performed on 47 diagnostic cases including pituitary adeno-
mas, gliomas, MBs, EPNs and ATRTs. Formalin-fixed paraffin 
embedded (FFPE) tissue was obtained from the archives of the 
Institute of Neuropathology, University Medical Center 
Hamburg-Eppendorf. Informed consent was obtained for all 
patients prior to the analysis.

For methylation analysis, DNA isolation was performed on 
FFPE tissue, 10 × 10 μm sections were cut and DNA isolated 
using the ReliaPrep™ FFPE gDNA Miniprep System (Promega) 
according to manufacturer’s instructions. About 100–500 ng 
DNA was used for bisulfite conversion by the EZ DNA 
Methylation Kit (Zymo Research). Afterward, the DNA Clean 
& Concentrator-5 (Zymo Research) and the Infinium HD 
FFPE DNA Restore Kit (Illumina) were employed to clean 
and restore the converted DNA. Finally, the Infinium 
MethylationEPIC BeadChip Kit (Illumina) was used to quan-
tify the methylation status of 850,000 CpG sites on an iScan 
device (Illumina). Preprocessing was performed analogously to 
samples from public data repositories. FFPE human tumor 
samples were used for immunohistochemistry. Analyses were 
done on an automated Ventana system using anti-CD3 pri-
mary antibodies (Zytomed, M3974, 1:100). CD3+ cells were 
counted in three representative image regions of 2000 × 2000 
pixels (at magnification x400) for each sample.

DNA methylation-based estimation of tumor-infiltrating 
lymphocytes

Three signatures were defined to estimate the amount of 
tumor-infiltrating CD8+ T cells (DIME-CD8), tumor- 
infiltrating CD4+ T cells (DIME-CD4), and a mixed signature 
of tumor-infiltrating lymphocytes (DIME-TIL). To this end, 
multiple steps of differential methylation analysis were applied 
to identify specific CpG sites. This was followed by dimension-
ality reduction using principal component analysis (PCA) 
resulting in an estimate for the studied cell populations. The 
details of the method are described in the following.

Differential methylation analysis between immune cells and 
CNS tumors
First, an unpaired one-sided Welch’s t-test was used to assess 
the significance of differential methylation between the profiles 
of 94 CD8+ T cells, 94 CD4+ T cells as well as the combined set 
of both T cells (188 profiles) and the methylation profiles 
assigned to the selected diagnostic categories in the training 

cohort of Capper et al.25,36,47 Significance of hypomethylation 
and hypermethylation was computed separately, as we aimed 
for the identification of CpG sites consistently hypo-/hyper-
methylated between lymphocytes and tumors across all 85 
diagnostic categories. The mean p-value for differential methy-
lation over the 85 statistical tests was used to rank CpGs. Only 
those CpGs with a mean p-value < 0.05/428799 (Bonferroni 
correction) were retained for further analysis. This resulted in 
373, 387, and 362 hypomethylated as well as 287, 217, and 243 
hypermethylated CpGs between immune cells and tumor for 
CD8+, CD4+, and the mixed set of lymphocytes, respectively. 
As there was a large overlap between those CpG sites identified 
for CD4+ and CD8+ T cells, we next used immune cell profiles 
from the peripheral blood to identify specific CpG sites for 
each cell type.

Differential methylation analysis between immune cells 
from the peripheral blood
Methylation data from sorted blood cells using flow cyto-
metric analyses of CD4+, CD8+ T cells, monocytes (CD14+), 
NK cells (CD56+), B cells (CD19+) as well as neutrophils, 
eosinophils, (mixed) granulocytes and (mixed) peripheral 
blood mononuclear cells (PBMCs) from six patients were 
obtained from Reinius et al. via the R-package flow.sorted. 
blood.450k.36,47 In a first step, to obtain specific CpGs for 
CD8+ and CD4+ T cells, the mean p-value of a paired one- 
sided Welch’s t-test was computed between CD4+/CD8+ cells 
and the remaining populations of blood cells in a similar way 
as for the analysis of immune cells and tumor. Next, we 
selected those CpGs whose mean beta values were consis-
tently higher/lower in CD4+/CD8+ than in all the remaining 
blood cell populations (threshold = 0.1). Differentially methy-
lated sites were defined by the intersection of these sets 
resulting in 601 and 959 hypomethylated as well as 857 and 
954 hypermethylated CpGs specific for CD8+ and CD4+ 

T cells, respectively. Specific CpG sites for lymphocytes were 
computed analogously comparing the CD4+ and CD8+ pro-
files with the CD14+, neutrophils, eosinophils and granulo-
cytes using an unpaired t-test resulting in 19393 
hypomethylated and 30604 hypermethylated sites.

Definition of specific immune signature and dimensionality 
reduction
To obtain the final signatures of specifically differentially 
methylated CpGs, the intersection of the hypo/hypermethy-
lated CpGs from the comparison of immune cells and tumor 
was built with the hypo/hypermethylated CpG sites comparing 
the studied immune cell type and the immune cells from the 
peripheral blood (monocytes (CD14+), NK cells (CD56+), 
B cells (CD19+), neutrophils, and eosinophils). Next, hypo- 
and hypermethylated CpGs were combined. This resulted in 
44, 30, and 197 specific CpGs for CD8+ T cells (DIME-CD8), 
CD4+ T cells (DIME-CD4) and tumor-infiltrating lymphocytes 
(DIME-TIL), respectively.

Based on the assumption that the main variance over the 
methylation of these specific CpGs is explained by the amount 
of infiltrating lymphocytes, we applied principal component 
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analysis (PCA) on these CpGs on the brain tumor training 
dataset for dimensionality reduction and defined the first prin-
cipal component as a marker for the immune cell population. 
The amount of immune infiltration on a new dataset can then 
be estimated by applying the learned PCA representation to the 
new dataset. The orientation of the first PCA component was 
selected to correlate with the negative of the mean of the 
hypomethylated sites. The R code for the computation of 
DIMEimmune estimates is available as supplementary 
material.

Statistical and computational analyses, data visualization

DNA methylation-based diagnostic classification of brain 
tumors was executed with the Heidelberg classifier v11b6.25 

Gene ontology enrichment analyses for significant CpGs were 
performed with the gometh function.32 Gene expression-based 
estimates for T cells and CD8+ T cells were computed as 
previously described.8 Briefly, well-established methods for 
TIL estimation16,17 were adapted for the use with brain tumors 
by manually reviewing the signatures and excluding unspecific 
genes using correlation analyses. The MeTIL score was com-
puted as described by Jeschke et al.29 MethylCIBERSORT 
analysis was performed as implemented by Chakravarthy 
et al. using the brain tumor-specific signature matrix as pub-
lished by Grabovska et al.12,13 Gene expression-based/immu-
nohistological TIL scores and methylation-based TIL scores 
were correlated with Spearman’s rank correlation coefficient 
and robust linear regression was applied as implemented in the 
R package MASS.38 Differences in estimates of TILs between 
different tumor entities were computed with the Kruskal- 
Wallis test. Proportional hazards modeling was performed 
with the R-package survival introducing immune scores as 
continuous variables.35 P-values < 0.05 were considered statis-
tically significant.

Results

Definition of specific signatures for tumor-infiltrating 
lymphocytes

The major principle of our approach is differential DNA 
methylation analysis between tumor profiles and lymphocytes 
as well as between different immune cell populations in the 
peripheral blood (Figure 1). As reference for the different 
tumor types, 2,706 samples from 85 different entities pub-
lished by Capper et al. were used.25 For immune cells, we 
used large cohorts of profiles from CD4+ T cells and CD8+ 

T cells, published by Tserel et al.40 Applying different t-test 
statistics on brain tumors and immune cells resulted in lym-
phocyte-specific CpG sites (Selected CpGs 1, Figure 1b, see 
Methods). As there was considerable overlap between specific 
sites identified for CD4+ T cells and CD8+ T cells, we next 
used differential methylation as well as a thresholding analysis 
on the average methylation value between immune cell popu-
lations from the peripheral blood to identify specific CpG 
sites for CD4+ and CD8+ T cells (selected CpGs 2 + 3, 
Figure 1b). Furthermore, a mixed TIL signature was com-
puted by performing the differential methylation analysis for 

the combined set of CD4+ and CD8+ T cells analogously (see 
methods). The final signature was obtained by intersecting 
the three selected groups of CpGs. Based on the assumption 
that the main variance in tumor profiles for the selected CpGs 
is based on the number of infiltrating lymphocytes, PCA was 
applied for dimensionality reduction on the selected CpGs in 
the tumor cohort. The first principal component was defined 
as an estimate for the tumor-infiltrating immune cells (Figure 
1b). To validate our method, we compared our estimated 
score for immune cells with lymphocyte counts based on 
immunohistological images and signatures obtained from 
gene expression analysis. To this end, the PCA obtained in 
the training phase is applied to the methylation values of the 
independent test samples for the CpGs of the signature. 
Hence, the first component is defined as an estimate for the 
infiltration of the corresponding lymphocyte population 
(Figure 1c).

Analysis of computed signatures

We defined specific methylation signatures for CD4+ (DIME- 
CD4) and CD8+ T cells (DIME-CD8) as well as a mixed 
signature for tumor-infiltrating lymphocytes (DIME-TIL) 
(Figure 2a-c). These can be used to estimate the amount of 
infiltration of the corresponding cell type from bulk methy-
lation profiles. Both, specific hypomethylated and specific 
hypermethylated CpGs exist in the obtained signatures. 
DIME-TIL contains 105 hypermethylated and 92 hypo-
methylated CpGs. DIME-CD4 has 4 hypermethylated and 
26 hypomethylated CpGs, and DIME-CD8 has 17 hyper-
methylated and 27 hypomethylated CpGs. To get an over-
view of all three signatures and compare them to MeTIL, 
they have been applied to the flow-sorted blood dataset47 

(Figure 2d).
The methylation values divide the heatmaps into two dif-

ferent vertical areas. One area corresponds to the studied 
immune cells, and the other to the rest of the cell populations. 
In DIME-CD4 (Figure 2b), CpGs are the most hypo/hyper-
methylated for the CD4+ T cells. This is also the case for DIME- 
CD8 and CD8+ T cells. (Figure 2c). In DIME-TIL, both T cell 
types are differentially methylated as expected (Figure 2a). Our 
scores were compared with those from the previously pub-
lished method by Jeschke et al. (MeTIL), which is also shown 
in Figure 2d. In contrast to our signatures, MeTIL results in 
highest scores for the CD19+ B cells, followed by the other 
lymphocyte populations, showing a different weighting of the 
lymphocyte subpopulation during TIL estimation. All studied 
methods were able to differentiate between lymphocytes and 
CD14+ cells as well as granulocytes.

Next, gene ontology enrichment was performed to identify 
pathways related to the lymphocyte-specific CpG signatures 
(Table 1). The most significantly enriched pathways for the 
DIME-TIL were “regulation of innate immune response” 
(p = 3.51e-04, FDR = 0.64) and “T cell activation” (p = 5.86e- 
04, FDR = 0.64). The most significantly enriched pathways for 
the DIME-CD4 were “regulation of defense response to virus 
by virus” (p = 1.82e-05, FDR = 0.04) and “positive regulation of 
interleukin-2 biosynthetic process” (p = 1.19e-04, FDR = 0.13). 
Finally, the most significantly enriched pathways for the 
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DIME-CD8 were “type I interferon signaling pathway” 
(p = 1.10e-04, FDR = 0.24) and “interferon-gamma-mediated 
signaling pathway” (p = 5.14e-04, FDR = 0.45). Most of the 
enrichment results are not significant after correction for 

multiple testing. Nonetheless, the most enriched categories 
are almost all related to the immune system, suggesting that 
the identified CpGs are related to genes belonging to immune 
system-related processes.

Figure 2. Visualization of the DIMEimmune signatures using heatmaps. Each colorful dot represents the methylation value of the corresponding CpG in the 
specified sample; a. DIME-TIL signature for tumor-infiltrating lymphocytes; b. DIME-CD4 signature of CD4+ T cells; c. DIME-CD8 signature for CD8+ T cells. d. Overview 
comparing estimates based on the three aforementioned signatures and MeTIL on the flow-sorted blood dataset. The DNA methylation values of samples of the same 
type have been averaged.
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Validation and comparison of immune cell estimates with 
immunohistological results

As a first validation, methylation-based scores for infiltration of 
T cells (DIME-TIL, MeTIL, and the sum of the T cell signatures 
of MethylCIBERSORT) were compared to T cells counts from 
immunohistological images in a series of 47 diagnostic cases 
from our institution (Figure 3, Methods). Examples of cases 
with low/absent, intermediate, and high infiltration of CD3+ 

cells are shown In Figure 3a-c. The DIME-TIL score showed 
the strongest correlation with the number of CD3+ cells 
(R = 0.74, p = 2e-09), followed by MeTIL (R = 0.32, 
p = 0.029). The MethylCIBERSORT T cell signatures also 
showed a positive correlation with the number of CD3+ cells 
quantified using immunohistochemistry (R = 0.26), but the 
correlation was not significant.

Validation and comparison of immune cell estimates with 
gene expression-based results

As a second benchmark, we used results from RNAseq and gene 
expression analysis. The validation data sets included 5 types of 
tumors: 763 medulloblastomas (MB), 129 ependymomas (EPN), 
88 atypical teratoid/rhabdoid tumors (ATRT), 532 lower-grade 
gliomas (LGG), and 64 glioblastomas (GBM), for which both 
methylation and gene expression/RNAseq data were available. 
The remaining samples, with methylation data only, could not 
be used for this analysis. Our approach was also compared to the 
results for the two previously published methylation-based 

methods (MethylCIBERSORT and MeTIL). Whereas MeTIL pro-
vides only a global TIL score, MethylCIBERSORT can estimate 
several immune and stromal subpopulations. The comparative 
analysis for DIMEimmune and MeTIL is shown in Figure 4a.

The correlation of DIME-TIL with the gene expression-based 
T cell signature (Figure 4a) is best for GBM (R = 0.72, p < 2.2e- 
16), followed by LGG (R = 0.56, p < 2.2e-16), ATRT (R = 0.53, 
p = 2.3e-6), EPN (R = 0.28, p = 0.0012) and MB (R = 0.13, 
p = 0.00032). For MeTIL, the correlation is also best for GBM 
(R = 0.6, p = 3.8e-7), followed by LGG (R = 0.5, p < 2.2e-16), 
ATRT (R = 0.42, p = 3e-04) and EPN (R = 0.21, p = 0.019), 
whereas it is not significant for MB (R = 0.042, p = 0.25). Overall, 
correlation is superior for all 5 tumor entities for DIMEimmune 
based estimates compared to MeTIL based estimates.

Next, DIME-CD4 and CD4 estimates from MethylCIBERSORT 
(“CD4_Eff” + “Treg”) were compared to the gene expression-based 
estimation of T cells (Figure 4b). For DIME-CD4, correlation is 
again best for GBM (R = 0.5, p = 3.3e-5), followed by LGG (R = 0.42, 
p < 2.2e-16) and ATRT (R = 0.41, p = 0.00047) and lowest for MB 
(R = 0.072, p = 0.045), whereas it is positive, but not significant for 
EPN (R = 0.092, p = 0.3). Correlation between MethylCIBERSORT 
CD4 and gene expression-based T cells estimates are best for ATRT 
(R = 0.25, p = 0.036) followed by LGG (R = 0.19, p = 7.8e-06) and 
not significant for GBM (R = 0.19, p = 0.14), MB (R = −0.0034, 
p = 0.93) and EPN (R = 0.084, p = 0.35).

Finally, methylation-based estimates for CD8 were compared 
with gene expression-based estimation of CD8+ T cells (Figure 4c). 
DIME-CD8 showed highest correlation in GBM (R = 0.52, p = 1.6e- 
5), followed by ATRT (R = 0.39, p = 0.00093), LGG (R = 0.33, 

Table 1. Enrichment analysis of immune signatures. Results are tabulated for: DIME-TIL signature of tumor-infiltrating lymphocytes; DIME-CD4 signature of CD4+ 

T cells; DIME-CD8 signature of CD8+ T cells.

Cell Type ID TERM DE P.DE FDR

TIL GO:0045088 regulation of innate immune response 3 3.51e-04 0.64
GO:0042110 T cell activation 4 5.86e-04 0.64
GO:0060337 type I interferon signaling pathway 4 1.61e-03 1.00
GO:0030217 T cell differentiation 3 4.00e-03 1.00
GO:0031295 T cell costimulation 3 8.40e-03 1.00
GO:1900017 positive regulation of cytokine production involved in inflammatory response 2 9.34e-03 1.00
GO:0001816 cytokine production 2 9.54e-03 1.00
GO:0030101 natural killer cell activation 2 9.86e-03 1.00
GO:0043551 regulation of phosphatidylinositol 3-kinase activity 2 1.12e-02 1.00
GO:0048535 lymph node development 2 1.16e-02 1.00

CD4 GO:0050690 regulation of defense response to virus by virus 3 1.82e-05 0.04
GO:0045086 positive regulation of interleukin-2 biosynthetic process 2 1.19e-04 0.13
GO:0006953 acute-phase response 2 4.76e-04 0.35
GO:0050829 defense response to Gram-negative bacterium 2 1.20e-03 0.51
GO:0033572 transferrin transport 2 1.27e-03 0.51
GO:0034097 response to cytokine 2 1.56e-03 0.51
GO:0042102 positive regulation of T cell proliferation 2 1.63e-03 0.51
GO:0050731 positive regulation of peptidyl-tyrosine phosphorylation 2 7.97e-03 1.00
GO:0033674 positive regulation of kinase activity 1 1.72e-02 1.00
GO:0046039 GTP metabolic process 1 1.73e-02 1.00

CD8 GO:0060337 type I interferon signaling pathway 3 1.10e-04 0.24
GO:0060333 interferon-gamma-mediated signaling pathway 3 5.14e-04 0.45
GO:0043551 regulation of phosphatidylinositol 3-kinase activity 2 6.14e-04 0.45
GO:0061512 protein localization to cilium 2 9.56e-04 0.52
GO:0042110 T cell activation 2 3.09e-03 1.00
GO:0048701 embryonic cranial skeleton morphogenesis 2 3.82e-03 1.00
GO:0002479 antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent 2 8.92e-03 1.00
GO:0060071 Wnt signaling pathway, planar cell polarity pathway 2 1.59e-02 1.00
GO:0019835 cytolysis 1 1.81e-02 1.00
GO:0032897 negative regulation of viral transcription 1 1.97e-02 1.00
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p = 3.7e-15) and EPN (R = 0.25, p = 0.0039), whereas it was not 
significant for MB (R = −0.071, p = 0.051). Correlation for 
MethylCIBERSORT CD8 estimates were best in ATRT (R = 0.46, 
p = 6.4e-5). Correlation in LGG (R = 0.085, p = 0.049) was weak and 
correlation in MB (R = −0.08, p = 0.027) was negative. Correlation in 
GBM (R = 0.18, p = 0.15) and EPN (R = 0.15, p = 0.085) was not 
significant.

Overall, our method resulted in an increased correlation with 
well-established gene expression-based results compared to pre-
viously published algorithms for all brain tumor types except for 
the MethylCIBERSORT estimate of CD8+ T cells in ATRT.

Lymphocytic infiltration in brain tumors

Next, we used DIME-TIL estimation on the validation set of the 
Heidelberg Brain Tumor classifier (n = 1,104). Although larger, 
the training set was not used to avoid bias. As expected, the 
highest TIL score was found in CNS lymphoma (LYMPHO, 
Figure 5a). Further, there were high TIL scores in inflammatory 
and reactive control tissue (CONTR, REACT and CONTR, 
INFLAM). Other entities with high TIL scores included 
mesenchymal glioblastoma (GBM, MES), MYC ATRT, anaplas-
tic pilocytic astrocytoma (ANA PA), melanoma (MELAN), 
chordoma (CHORDM) and pituitary adenomas (PITAD, 
TSH). Low TIL scores were found in posterior fossa 
B ependymoma (EPN, PF B), paraganglioma (PGG, nC) and 
group 4 medulloblastoma (MB, G4) (Figure 5a).

To get a more detailed insight into the distribution of TILs in 
different brain tumor subgroups, we applied our method to the 
validation data of LGG, GBM, MB, ATRT and EPN. Methylation- 
based diagnoses were computed with the Heidelberg Brain Tumor 
classifier.25 As WHO grade III and IV tumors were present in the 
LGG and the GBM dataset, both datasets were combined to 
a glioma dataset. The differences in TIL scores between the 6 
glioma entities were highly significant (Figure 5b, p = 1.6e-36). 
Estimated infiltration was lowest in IDH (Isocitrate dehydrogen-
ase) mutated oligodendroglioma and in IDH mutated astrocytoma 
and highest in mesenchymal glioblastoma. For medulloblastoma, 
although statistically significantly different between molecular 
subgroups (p = 1.7e-49), the TIL score was overall low. The lowest 
number was found in Group 4 medulloblastoma and the largest 
number in Group 3 (Figure 5c). ATRTs showed prominent lym-
phocytic infiltration. The ATRT MYC subgroup had significantly 
more TILs than TYR (intermediate) and SHH (lowest) ATRT 
(p = 0.00012, Figure 5d). The TIL scores were significantly differ-
ent between ependymoma subgroups (p = 4.4e-0.8, Figure 5e) with 
the lowest scores in the YAP and the PF B subgroup and the 
highest scores in the PF A and the RELA subgroup.

Associations of tumor-infiltrating lymphocytes with 
survival

Finally, we investigated the associations between the TIL esti-
mates and overall survival in glioma, MB, ATRT and EPN. In the 

Figure 3. Immunohistological validation of methylation-based TIL estimates. Parallel immunohistological analyses for CD3 as well as methylation analyses were 
performed in a cohort of 47 brain tumors. Examples of tumors with low/absent CD3+ cells; a. anaplastic astrocytoma IDH-mutant, WHO grade III, intermediate CD3+ cells; 
b. rosette forming glioneuronal tumor, WHO grade I, and high numbers of CD3+ cells; c. glioblastoma IDH wild-type, WHO grade IV. Immunohistological counts of CD3+ 

cells are compared to DIME-TIL (d), MeTIL (e) and the sum of the T cells signatures analyzed by MethylCIBERSORT (f).
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Figure 4. Comparison of DIMEimmune with previous studies for different tumor types (GBM, LGG, MB, ATRT, and EPN). Here, the gene expression/RNAseq- 
based results are used as the benchmark. In the diagrams, the dots are the samples, for which both gene expression/RNAseq and methylation data are available. The 
y-axis represents the gene expression/RNAseq-based estimates and the x-axis contains the methylation-based estimates; a. Comparison of DIME-TIL and MeTIL with 
gene expression/RNAseq-based estimation of T cells; b. Comparison of DIME-CD4 and CD4+ T cells estimates obtained from MethylCIBERSORT (MCS) with gene 
expression/RNAseq-based estimation of CD4+ T cells; c. Comparison of DIME-CD8 and CD8+ T cells estimates obtained from MethylCIBERSORT with gene expression/ 
RNAseq-based estimation of CD8+ T cells.
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overall glioma cohort, the DIME-TIL score was a strong negative 
prognostic factor (p = 6.06e-15, HR = 6.26). However, within 
methylation-based diagnostic subgroups, there was no signifi-
cant association with survival (Figure 5f). Similarly, the DIME- 
TIL score was also a negative prognostic factor in medulloblas-
toma (p = 0.003, HR = 4.3), but not within methylation-defined 
subgroups (Figure 5g). There were no significant associations 
with survival in ATRT, likely due to low sample size compared to 
the other tumor types (Figure 5h). TIL scores were also not 
associated with survival in ependymoma and the studied sub-
groups, for which sufficient amount of survival data was avail-
able (Figure 5i).

Discussion
Although tumor-infiltrating lymphocytes in the CNS have been 
extensively studied using conventional immunohistological 
techniques (see Bienkowski and Preusser for review5) or gene 
expression-based analyses (e.g.8,9,11,18,48), reports using DNA 
methylation-based methods are still relatively rare. In contrast, 
DNA methylation has been central to brain tumor research in 
the last decade, and diagnostic tumor classification using DNA 

methylation data has been established in the diagnostic routine 
at several institutions.49,50 This makes DNA methylation data 
widely available in the clinical routine in neuro-oncology. 
Although there are well-established techniques for immune cell 
estimation using, e.g., bulk gene expression data, we aimed for 
the development of a robust and user-friendly method, which 
can be used on DNA methylation data.

Specific reference signatures are key for quantification 
methods of immune cell signatures from DNA methylation 
data. Approaches based on MethylCIBERSORT do not only 
require specific signatures for immune cells, but also the tumor 
entity under consideration.13 For the latter, DNA methylation 
data from cell lines are used.12,13 While these data are widely 
available for common cranial and extra-cranial solid tumors, 
there are only few well-established cell lines for rare brain 
tumor entities. Further, ex vivo cell lines might have different 
methylation profiles from tumors in vivo. To allow for broader 
applicability of the method, we opted for differential methyla-
tion analysis using bulk data from brain tumors, which is far 
more widely available than cell lines.25

Overall, we established three methods to estimate CD8+ 

T cells (DIME-CD8), CD4+ T cells (DIME-CD4) and tumor- 

Figure 5. Clinical application of immune cell estimation. The estimated score of tumor-infiltrating lymphocytes for different subgroups of the Capper et al. validation 
data set (a), the TCGA glioma samples (b), medulloblastoma samples (c), ATRT (d), and ependymoma samples (e). The p-values are calculated based on the Kruskal- 
Wallis test. f-i.: Survival analysis for the prognostic relevance of DIME-TIL estimates for the same data as in panel b-e in the form of forest plots. HR: hazard ratio, CI: 
confidence interval.
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infiltrating lymphocytes (DIME-TIL). Several steps of analysis 
were performed to obtain specific signatures for the cell type 
under consideration. Although several CpGs were identified as 
lymphocyte-specific, there were only few showing specific 
hypo/hypermethylation in CD4+ and CD8+ cells (Figure 2), 
underlining the difficulty to precisely separate lymphocyte 
subpopulations based on methylation data.

First, we used the correlation between the TIL scores of methy-
lation-based methods (DIMEimmune, MeTIL and 
MethylCIBERSORT) and lymphocyte counts based on immuno-
histological images to validate and compare the efficiency of our 
method. Second, we used correlation analysis of TIL estimates 
from gene expression and methylation data as validation. These 
datatypes were selected as paired gene expression and methylation 
profiling is available for large cohorts of brain tumors. Overall, the 
DIME-TIL approach showed improved correlations with gene 
expression-based signatures compared to MeTIL and the imple-
mentation of MethylCIBERSORT, which was used for a pan- 
central nervous system cancer analysis by Grabovska et al.12

The MeTIL algorithm has been established using 
a methodologically related approach for immune cell estimation 
in breast cancer.29 While it shows robust results for breast cancer, 
our approach gives better results for brain tumors. The correlation 
analysis for medulloblastoma in Figure 4a shows a bimodal dis-
tribution of the immune infiltration score, which is likely due to 
a nonspecific signature in medulloblastoma. We observed similar 
results in a previous gene expression-based study of immune 
infiltrates in medulloblastoma, where published lymphocyte sig-
natures developed using extracranial tumors as reference con-
tained genes linked to embryonal brain development.9 This 
highlights the need for a brain tumor-specific TIL quantification 
algorithm, as algorithms and reference signatures developed for 
extracranial tumors might result in unspecific results in the CNS.

The MethylCIBERSORT algorithm showed mixed results in 
the correlation analysis with gene expression data and was out-
performed by DIME-CD8 and DIME-CD4 for all comparisons 
except for the estimation of CD8+ T cells in ATRT. For both CD4+ 

and CD8+ T cells the best performance of MethylCIBERSORT 
was in ATRT. The tumor reference signature used by Grabovska 
et al.12 was composed solely of cell lines from medulloblastoma 
and rhabdoid tumors, but did not contain tumor cell lines from 
other brain tumors. This is likely to be the cause for better 
performance in ATRT than in gliomas, where the correlation is 
weak and highlights the need to include tumor-specific references. 
In their work, Grabovska et al. report immune cell contents from 
75% to 100% for several brain tumors, in particular low-grade 
gliomas, which further underlines that tumor cells recognition by 
the algorithm is compromised for certain brain tumor entities due 
to unspecific tumor reference signatures. Further, the perfor-
mance of CIBERSORT-based approaches might be compromised 
in tumors with low overall immune infiltration, as it has been 
previously shown for breast cancer.19 Therefore, our approach 
might be more robust for the estimation of TIL abundance in CNS 
tumors, in particular for rare entities, for which there are only few 
or no cell line data available.

All algorithms showed only weak correlations with gene expres-
sion-based approaches in medulloblastoma, in particular for CD8+ 

T cells. Only the correlation reported for DIME-TIL (R = 0.13, 

p = 0.00032) and DIME-CD4 (R = 0.072, p = 0.045) were significant. 
Medulloblastoma has rather low numbers for tumor-infiltrating 
immune cells as seen here (Figure 5a) as well as in other 
studies.9,12 This might result in an unfavorable signal-to-noise 
ratio, which might be particularly pronounced for methylation 
analysis due to bimodal distribution of the underlying data. 
Therefore, immunohistology, gene expression (in particular RNA- 
sequencing) or single cell sequencing-based methods might be more 
suitable to study tumors with very low amounts of infiltrating 
immune cells. Nonetheless, methylation-based analysis keeps the 
advantage of a much broader application field.

Overall, estimates of TIL abundance based on DIME-TIL 
were in line with previously reported findings. The high scores 
in CNS lymphoma as well as reactive and inflammatory tissue 
can be regarded as a validation of our method. 
Medulloblastoma showed rather low scores for tumor- 
infiltrating immune cells as previously reported.9,51 However, 
the methylation-based analysis did not find larger amounts of 
T cells in the SHH subgroups as identified by gene expression 
analysis,9,52 possibly due to a high noise to signal ratio.

Lower TIL scores in lower-grade gliomas as well as in IDH 
mutated compared to IDH wild-type gliomas are in line with 
previously reported results.53–55 Further, the mesenchymal 
subgroup is well known to be particularly highly infiltrated 
by TILs.6,8 The larger estimates of TILs in MYC ATRTs com-
pared to SHH and TYR ATRT has also been previously 
reported.10,56 PF A ependymoma are among the subgroups of 
ependymoma with the largest estimated number of TILs, which 
is well compatible with the inflammatory phenotype that has 
been shown to be a key feature of this subtype.11,57

Survival analysis showed a significant negative prognostic 
effect of the DIME-TIL score in the overall glioma and the 
medulloblastoma cohort, but not within methylation subgroups. 
In glioma, this effect may be caused by increasing numbers of 
TILs in more aggressive WHO grade IV forms of glioma.55 

Similarly, the difference in TIL estimates in medulloblastoma 
subgroups, which are highest in the poor prognosis Group 3 
medulloblastoma might also act as a confounder. Overall, there 
are conflicting reports in the literature on the prognostic effects 
of tumor-infiltrating immune cells in glioma and 
medulloblastoma.6–9,12,51,55,58 These results emphasize the need 
for studies on the prognostic role of TILs in brain tumors in large 
cohorts of well-defined diagnostic subgroups, as the histological 
or molecular subtype might otherwise confound the results. To 
this end, methylation data-based methods offer a unique oppor-
tunity, as such data are very widely available.

To conclude, we established a method for the estimation 
of tumor-infiltrating lymphocytes in CNS tumors from 
methylation data based on differential analysis. The method 
showed better performance than previous methods taking 
lymphocyte counts based on immunohistological images 
and gene expression-based TIL estimates as reference. 
Estimates are most robust in tumors with more pronounced 
lymphocytic infiltrates. As it can be applied to any brain 
tumor entity, it can contribute to the identification of TILs 
as a prognostic or predictive factor in oncoming studies 
involving methylation data from tumors of the central ner-
vous system.
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