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Purpose: To propose a novel deep learning (DL) approach to transmit-B1

(B1
+)-artifact mitigation without direct use of parallel transmission (pTx), by

predicting pTx images from single-channel transmission (sTx) images.
Methods: A deep encoder–decoder convolutional neural network was con-
structed and trained to learn the mapping from sTx to pTx images. The feasibility
was demonstrated using 7 T Human-Connectome Project (HCP)-style diffusion
MRI. The training dataset comprised images acquired on 5 healthy subjects
using commercial Nova RF coils. Relevant hyperparameters were tuned with a
nested cross-validation, and the generalization performance evaluated using a
regular cross-validation.
Results: Our DL method effectively improved the image quality for sTx images
by restoring the signal dropout, with quality measures (including normalized
root-mean-square error, peak SNR, and structural similarity index measure)
improved in most brain regions. The improved image quality was translated
into improved performances for diffusion tensor imaging analysis; our method
improved accuracy for fractional anisotropy and mean diffusivity estimations,
reduced the angular errors of principal eigenvectors, and improved the fiber ori-
entation delineation relative to sTx images. Moreover, the final DL model trained
on data of all 5 subjects was successfully used to predict pTx images for unseen
new subjects (randomly selected from the 7 T HCP database), effectively recov-
ering the signal dropout and improving color-coded fractional anisotropy maps
with largely reduced noise levels.
Conclusion: The proposed DL method has potential to provide images with
reduced B1+ artifacts in healthy subjects even when pTx resources are inacces-
sible on the user side.
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1 INTRODUCTION

Ultrahigh field (UHF) MRI systems (operating at a field
strength of 7 T and above) offer a practical solution for
boosting image SNR and thereby, pushing the limit of
image resolution, which have shown tremendous value in
both clinical and neuroscience applications.1 One example
fMRI and diffusion MRI (dMRI) with high spatiotempo-
ral resolutions achieved via the 7 T Human Connectome
Project (HCP).2–4 However, a major challenge at UHF is
the severe transmit B1 (B1

+) inhomogeneity encountered
when using a conventional single-channel transmit RF
volume coil.5,6 The B1

+ inhomogeneity, if not corrected,
can result in flip-angle variations across the brain, which
in turn may yield variations in tissue contrast or even sig-
nal dropout, especially in lower brain regions such as the
temporal lobe and cerebellum.

An effective way to address the B1
+ inhomogeneity

at UHF is by RF parallel transmission (pTx),7–13 a tech-
nique that uses a multi-channel RF transmit system and
allows channel-specific RF pulse shapes to be applied. It
is shown that pTx can substantially improve flip-angle
uniformity and eliminate signal dropout across the brain
when compared with conventional single-channel trans-
mission (sTx). Additionally, pTx allows for control of RF
power deposition in tissues (i.e., specific absorption rate
[SAR]) by incorporating corresponding power constraints
into the formulation of the pulse design problem.14–16

To date, pTx has been demonstrated in many UHF MRI
applications including high-quality structural brain17–20

and body21–23 imaging, whole-brain high-resolution BOLD
fMRI24,25 and dMRI.26

However, the conventional pTx workflow is tedious
and relies on special expertise. First, it requires on-fly cal-
ibration scans to be obtained in each subject to acquire
prior knowledge of channel-specific B1

+ maps and main
field inhomogeneity (ΔB0) maps for the subsequent pulse
design. Second, it usually involves solving a non-convex
optimization problem for pTx pulse waveforms,15,27 which
can take up to several minutes or even longer especially
when designing large-tip-angle pulses.28 All these have
been a hurdle that prevents pTx from being widely adopted
in the UHF community.

Recently, great strides have been made to develop
solutions for a user-friendly pTx workflow. One effective
solution is the universal pulse (UP) method.29 Instead
of online pTx pulse design during the scan session, the
UP method aims to pre-calculate a universal pTx pulse
waveform using B1

+ and ΔB0 field maps acquired from
a representative sample of adult population. It is shown
that such UP can improve flip angle homogeneity across
the human brain relative to the circularly polarized mode
when used in a new human subject. The use of the UP

method is demonstrated for 7 T neuroimaging with various
contrasts,25,29,30 and 7 T body imaging.31

Other solutions for a user-friendly pTx workflow
include using machine learning in pulse design. Smart-
Pulse has been introduced to improve the robustness of the
UP method against the inter-subject variation and demon-
strated useful for liver imaging at 3 T.32 In this method, a
number of group-wise optimized UP candidates are opti-
mized and 1 UP is selected during the scan depending on
the features of the subject under scan. Another approach is
machine-learning-based RF shimming proposed by Ianni
et al.33 Based on the assumption that RF field distribu-
tion is highly dependent on the shape of the subject, this
method uses kernelized ridge regression to predict the RF
magnitudes and phases of individual transmit channels
(or RF shims) from several shape-related features, with
reduced computational time and minimal requirement of
B1

+ mapping (only the k-space center line of B1
+ maps is

needed). It is shown that this method can be used to obtain
SAR-efficient RF shims that can produce B1

+ uniformities
comparable to conventional RF shimming method.

Although effective in reducing the pTx workflow, the
above-mentioned methods still require that the user has
access to the pTx hardware, which is usually expensive.
Here, we propose a novel deep-learning (DL) framework
that aims to train a deep neural network to directly pre-
dict pTx-style images from those obtained with sTx. This
is purely an image-to-image mapping method, which does
not require any pTx expertise, pTx software or pTx hard-
ware on the user side. Here, we demonstrate the feasibility
of our DL method for creating 7 T HCP-style dMRI free of
B1

+ artifacts in healthy subjects. Our results show that the
proposed method can substantially enhance image quality
and improve downstream diffusion analysis relative to sTx
acquisitions.

2 METHODS

2.1 Training dataset

Our training dataset was created based on our previ-
ous data acquisition aimed at demonstrating the use
of pTx for high-resolution, whole-brain dMRI at 7 T.26

Specifically, it consisted of data acquired on 5 healthy
subjects using a 7 T MR scanner (Siemens, Erlangen,
Germany). All subjects signed a consent form approved
by the local Institutional Review Board. For each sub-
ject, the data comprised a pair of matched, 1.05-mm
HCP-style dMRI datasets: one obtained with sTx using
the commercial Nova single-channel transmit 32-channel
receive (1Tx32Rx) coil and the other with pTx using
the commercial Nova 8Tx32Rx coil. As in the 7 T HCP
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F I G U R E 1 The architecture of the deep convolutional neural network developed in this study. The neural network takes
single-transmission (sTx) diffusion and T1-weighted (T1w) MPRAGE images as input and spits out the parallel-transmission (pTx) version of
diffusion images. The core of the neural network is an encoder–decoder model with N encoder levels and N decoder levels (an example
network with N = 3 is illustrated here). Each encoder level contains a 2× 2 downsampling layer (via max pooling), followed by 2 repetitions
of 3 consecutive layers: 3× 3 convolution, batch-normalization and ReLU activation (3× 3 Conv-BN-ReLU); each decoder level contains a
2× 2 upsampling layer, followed by 2 repetitions of the 3× 3 Conv-BN-ReLU operation. The number of channels are doubled after each
downsampling layer, and are halved after each upsampling layer. Concatenated skip connections are added between corresponding encoder
and decoder levels to reduce resolution loss, and a global addition connection is appended to promote the training performance by enabling
residual learning. In this study, the number of encoder and decoder levels (i.e., N) and the number of output channels for the first layer were
considered as hyperparameters and were tuned during the model selection process

dMRI protocol,3 the sTx acquisition used dielectric pads
to improve the B1

+ uniformities in the brain. Even with
dielectric padding, the B1

+ field of sTx was still inhomo-
geneous across the brain, with the coefficient of variation
(i.e., SD/mean) of the whole-brain B1

+ ranging from∼22%
to ∼27% for the 5 subjects scanned (Supporting Informa-
tion Figure S1). Both sTx and pTx dMRI datasets con-
sisted of 36 preprocessed image volumes (including 32
diffusion-weighted images with b-value of 1000 s mm−2

[b1000] and 4 b0 images), with each volume having 100
slices covering the whole brain. The preprocessing was
conducted following the HCP pipelines34 for correction
of head motion and geometric EPI distortions and for
co-registration. As a result, the training dataset comprised
18 000 samples (5 subjects× 100 slices× 36 volumes), each
sample being a pair of corresponding sTx and pTx image
slices. The intensity of sTx and pTx images were indepen-
dently normalized to the range of 0 to 1 to form the training
dataset.

2.2 Deep encoder–decoder
convolutional neural network

We constructed a deep encoder–decoder convolutional
neural network (CNN)35,36 for a specific realization of
our DL method to predict pTx diffusion images given
sTx ones. The reason we chose an encoder–decoder

CNN was its demonstrated use for various applications
including image reconstruction,37–39 denoising,40 and
artifact correction.41 Specifically, our encoder–decoder
CNN (Figure 1) comprised a same number, N, of encoder
and decoder levels. Each encoder level contained a 2× 2
downsampling layer (via max pooling) and 2 repetitions
of 3× 3 convolution, batch-normalization, and ReLU acti-
vation (3× 3 Conv-BN-ReLU) operations; each decoder
level contained a 2× 2 upsampling layer and 2 repetitions
of 3× 3 Conv-BN-ReLU operations. The number of out-
put channels was doubled after each downsampling layer,
and was halved after each upsampling layer. Further, skip
connections were added with concatenation operations
between corresponding encoder and decoder levels to
reduce resolution loss, and a global addition connection
was appended to improve the training performance by
enabling residual learning.

Our encoder–decoder CNN took T1-weighted (T1w)
MPRAGE images (acquired with sTx) as additional input
because this was shown in our pilot study to result
in better prediction accuracy than using sTx diffusion
images alone as input. The T1w images were acquired
in the same subjects at 0.7-mm isotropic resolutions and
were co-registered with the diffusion images. They were
downsampled using the cubic interpolation and were
0 padded to have the same resolution and size as the
diffusion images. To match the input and output dimen-
sions of the neural network, the input images were 0
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F I G U R E 2 The diagram of model
selection and evaluation. For model
selection, a nested 5-fold (with dataset split
into 3/1/1 for training/validation/testing
and each fold comprising data of a single
subject) cross-validation (CV) was used.
Hyperparameter tuning was conducted in
the inner loop by training the model on the
training data and selecting the
hyperparameter set with the minimum
validation loss. In the outer loop, the model
with tuned hyperparameters was trained
on both training and validation data and
the hyperparameter set with the minimum
testing loss were selected. The
generalization performance of the model
with tuned hyperparameters was evaluated
using a regular 5-fold (with dataset split
into 4/1 for training/testing and each fold
comprising data of a single subject) CV

padded from 173× 207 to 224× 224, and the output images
were cropped from 224× 224 to 173× 207.

Our encoder–decoder CNN was implemented using
the Flux package in Julia,42 and trained on a Linux work-
station using a NVIDIA TITAN RTX GPU with 24GB
memory. The loss function was formulated to measure
the mean-squared-error (MSE) between the output of our
encoder–decoder CNN and the pTx diffusion images. The
minimization was conducted using the Adam algorithm.43

For improved training performance, decaying learning
rates were considered with the learning rate at the i-th
epoch (LRi) being:

LRi = LR0e−DF ⋅ floor
(

i−1
DS

)
, (1)

where LR0 is the initial learning rate, DF the learning
rate decay factor, and DS the learning rate decay step. The
source code is publicly available at https://github.com/
XiaodongMa-MRI/ImageBasedDLForpTX.jl.

2.3 Model selection and evaluation

We conducted cross-validation (CV) (Figure 2) for model
selection and evaluation. In model selection, a nested
5-fold CV (with dataset split into 3/1/1 for training/vali-
dation/testing and each fold comprising data of a single
subject) was performed to tune relevant hyperparame-
ters.44 Six hyperparameters were considered: the number,
N, of encoder or decoder levels, number of output chan-
nels for the first layer, mini-batch size, initial learning

rate, learning rate decay factor, and learning rate decay
step. The hyperparameter tuning was carried out using a
random search,44 in which the optimal hyperparameter set
(consisting of tuned hyperparameters) was chosen from a
pool of 50 candidate hyperparameter sets created by ran-
domly sampling the hyperparameter space (spanned by
the 6 hyperparameters under consideration) (Supporting
Information Table S1). More details about how the nested
5-fold CV was performed are provided in the Supporting
Information.

In model evaluation, a regular 5-fold CV (with dataset
split into 4/1 for training/testing and each fold compris-
ing data of a single subject) was conducted to estimate the
generalization performance of the model with the opti-
mal hyperparameter set. The regular 5-fold CV involved
5 iterations. In each iteration, the model was trained on
the training data and was tested on the testing data. The
test loss averaged across all 5 iterations was calculated to
evaluate the generalization performance.

In both model selection and evaluation, each training
involved in the nested and regular CV used an early-stop
strategy to reduce over fitting.45 With the early-stop strat-
egy, each training was conducted as follows: the model
was trained using a total of 30 epochs; after every epoch
(starting from the 11-th epoch) the trained model as well
as the associated validation loss were recorded; from the
20 candidate epoch-specific trained models, the one with
the lowest validation loss was selected as the final trained
model. The training time was ∼65 min when training on
data of 4 subjects and was ∼35 min when training on data
of 3 subjects. The inference time was∼23 ms for prediction
of a single slice.

https://github.com/XiaodongMa-MRI/ImageBasedDLForpTX.jl
https://github.com/XiaodongMa-MRI/ImageBasedDLForpTX.jl
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2.4 Evaluation of image quality

We further evaluated the quality of the predicted diffu-
sion images by examining how close they would be to
the pTx acquisitions in various brain regions. This was
done by using image results from the regular 5-fold CV.
Specifically, for each subject, the diffusion images pre-
dicted by the model with the best hyperparameter set
(when trained on the other 4 subjects) were used to calcu-
late region-specific metrics for image quality assessment,
including normalized root-mean-square error (nRMSE),
peak signal-to-noise ratio (PSNR), structural similarity
index measure (SSIM),46 and point spread function (PSF),
all in reference to pTx acquisitions. In each case, 10 brain
regions of interests (ROI) were considered, including 9
anatomic regions defined by the Montreal Neurological
Institute (MNI) structural atlas47 plus the whole brain.
Note that the whole-brain ROI was defined as the brain
mask calculated from the reference pTx images, where
cerebrospinal fluid signals were excluded. The details of
how each quality metric was calculated are provided in the
Supporting Information. For comparison, region-specific
nRMSE, PSNR, SSIM values, and PSF were also calculated
using the sTx diffusion images. For each region-specific
quality measure, a paired t test was used to determine
whether there would be a difference between sTx and our
DL method. A significant difference was inferred when the
P value ≤0.05.

2.5 Diffusion analysis

We performed diffusion analysis to investigate how our
DL method would improve DTI in comparison to sTx
acquisitions. For this, the image results of the regular
5-fold CV were used. Specifically, for each subject, the dif-
fusion images predicted by the model with the optimal
hyperparameter set (when trained on the other 4 sub-
jects) were used to fit the DTI model using FSL’s dtifit
routine48 to derive fractional anisotropy (FA), mean diffu-
sivity (MD), and fiber orientation vectors (i.e., the principal
eigenvectors).

For both FA and MD, region-specific nRMSE, PSNR,
SSIM, and PSF were calculated to measure the devia-
tion from or similarity to the reference metric as obtained
by fitting the DTI model to the pTx acquisitions. For
fiber orientation vectors, region-specific angular errors
of the principal eigenvectors were evaluated to quan-
tify the angular difference from the reference princi-
pal eigenvectors derived from the pTx acquisitions. All
region-specific quality measures for FA and MD maps and
the region-specific angular errors of the principal eigen-
vectors were calculated for the same 10 brain ROIs as

in the aforementioned evaluation of image quality. For
comparison, region-specific quality measures for FA and
MD maps as well as the region-specific angular errors
of the principal eigenvectors (all in reference to the pTx
acquisitions) were also calculated based on the diffusion
metrics derived by fitting the DTI model to the sTx dif-
fusion images, and paired t tests were conducted with
a significant difference being inferred when the P value
≤0.05.

2.6 Test on new data from the 7 T HCP
database

The generalizability of our final DL model was further
examined by training the final model on data of all our 5
subjects and using the trained model to predict pTx dif-
fusion images for 5 new subjects (No. 102311, 102816,
221319, 525541, and 927359) randomly selected from the
7 T HCP database.49 The training was performed using a
total of 20 epochs. The training time was ∼80 min, and the
inference time for prediction of an entire image volume
was∼26 s. For each subject, the predicted diffusion images
were compared against the sTx acquisitions. The predicted
diffusion images were also used to fit the DTI model and
the results were compared with those obtained using sTx
acquisitions.

3 RESULTS

3.1 Model selection and evaluation

Per the results from nested CV, our final DL model was
created using the following hyperparameters: the num-
ber of encoder and decoder levels = 4, the number
of output channels for the first layer = 24, mini-batch
size = 24, and learning rate initialization/decay factor/de-
cay steps = 5.87× 10−3/0.28/4. The generalizability of our
model was high, with the mean test loss across folds being
as low as 6.49× 10−5 ± 2.16× 10−5 (mean± SD across 5
subjects or folds).

3.2 Evaluation of image quality

The use of our DL method appeared to substantially
improve the image quality for both b0 and b1000 acqui-
sitions when compared with sTx (Figure 3), effectively
restoring the signal dropout as observed in the lower
brain region such as the temporal pole. The anatomic
structure and image contrast of the restored signals were
comparable with the reference pTx acquisitions, despite
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F I G U R E 3 Comparing single
transmission (sTx) diffusion images against
their parallel transmission version as
predicted by our deep learning (DL) method in
reference to the images acquired using parallel
transmission (pTx). Shown are example b0 and
b1000 diffusion images (1 diffusion direction)
of a representative axial slice in lower brain
from 1 subject, in which case the model with
tuned hyperparameters was trained on data of
the other 4 subjects. Note that the use of our
DL method substantially improved the image
quality by effectively recovering the signal
dropout observed in the lower temporal lobe
(as marked by the yellow arrowheads),
producing images that were comparable to
those obtained with parallel transmission

that slight image blurring was observed (e.g., in the cere-
bellum). Similar results were observed when inspecting
the diffusion-weighted images for each individual subject
(Supporting Information Figure S2).

Further quantitative analyses on quality measures
(Figure 4) revealed that the use of our DL method
decreased both region-specific nRMSE values and mean
FWHM of PSF (averaged across both right–left and
anterior–posterior directions) while increasing both
region-specific PSNR and SSIM values in most brain
regions relative to sTx acquisitions, with the improvement
being significant for all quality measures when consider-
ing the following ROIs: whole brain, frontal lobe, temporal
lobe, and insula. Quantitatively, the percentage changes
of whole-brain nRMSE, PSNR, SSIM, and FWHM values
(calculated as |val_DL− val_sTx|/val_sTx * 100%, where
val_DL is the quality measure of our DL method and
val_sTx the quality measure of sTx, and “| |” denotes the
absolute value) were 28%, 9%, 5%, and 0.8%, respectively.
For the other 3 ROIs with a significant improvement in
all quality measures, the percentage changes of nRMSE,
PSNR, SSIM, and FWHM values ranged from 35% (tem-
poral lobe) to 37% (insula), from 11% (frontal lobe) to
12% (temporal lobe), from 5% (insula) to 10% (tempo-
ral lobe), and from 0.6% (insula) to 1% (temporal lobe),
respectively.

3.3 Diffusion analysis

The use of our DL method improved DTI performances
by substantially decreasing the fitting error, leading

to increased quality and accuracy for both FA and
MD estimations especially in the lower temporal lobe
when compared to the sTx acquisition (Figure 5). The
sum-of-squared fitting error averaged across the whole
brain decreased by as high as 68% (0.17 for the DL method
vs. 0.53 for sTx acquisition) and appeared even lower than
that of the reference pTx acquisition (0.17 for the DL
method vs. 0.40 for pTx acquisition).

Further quantitative analyses on quality measures
(Figure 6) showed that overall the results were in agree-
ment with those of image quality evaluation. For both
FA and MD, the use of our DL method decreased both
region-specific nRMSE values and mean FWHM of PSF
while increasing both region-specific PSNR and SSIM val-
ues in most brain regions relative to sTx acquisitions. For
FA, the use of our method led to a significant improve-
ment in all quality measures except for FWHM when
considering the whole-brain ROI. The percentage changes
of whole-brain nRMSE, PSNR, SSIM, and FWHM values
were 10%, 5%, 2%, and 0.3%, respectively. The use of our
method also significantly decreased nRMSE and signif-
icantly increased PSNR in the temporal lobe, with the
percentage changes of nRMSE and PSNR being 23% and
14%, respectively. It also significantly increased SSIM and
significantly decreased FWHM in 3 brain ROIs including
caudate, cerebellum, and thalamus, with the percentage
change of SSIM and FWHM ranging from 2% (cerebel-
lum) to 5% (thalamus), and from 0.4% (cerebellum) to
0.7% (caudate), respectively. For MD, although decreas-
ing the nRMSE value for most brain regions (7 of 10
ROIs), the use of our DL method did not bring a signif-
icant improvement to this quality measure in any brain
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F I G U R E 4 Comparing single transmission (sTx) and our deep neural network in terms of image quality. In each case, the image
quality was evaluated using 4 quality measures: normalized root-mean-square error (nRMSE), peak signal-to-noise-ratio (PSNR), structural
similarity index measure (SSIM), and FWHM of point spread function (PSF), all in reference to the acquisition with parallel transmission.
Shown are mean and standard deviation (across 5 subjects) of the differences in region-specific nRMSE, PSNR, SSIM, and FWHM of PSF
between sTx and our DL method (with the difference being the quality measure of the DL method minus that of sTx). For both sTx and the
deep learning (DL) method, region-specific values of each quality measure were evaluated by considering a total of 10 brain regions of
interest (including 9 brain regions as defined by the MNI152 standard-space structural atlas plus the whole brain). The numbers reported are
the P values obtained from a paired t test, with significance being denoted by “*.” Note that the use of our DL method significantly decreased
nRMSE values and FWHM of PSF, while increasing both PSNR and SSIM values in most brain regions including the whole brain

ROI. For those ROIs with an improvement, the percent-
age change of nRMSE ranged from 3% (insula) to 12%
(temporal lobe). The use of our DL method also increased
PSNR in all brain ROIs except for cerebellum and insula.
For those 8 ROIs with an improvement, the improvement
was found significant only in the parietal and temporal
lobes, with the percentage change being 1% in both. How-
ever, the use of our method increased SSIM and decreased
mean FWHM of PSF in all brain ROIs, with the improve-
ment being significant in most brain ROIs including the

whole-brain ROI. For the ROIs with a significant improve-
ment, the percentage change of SSIM and FWHM ranged
from 2% (cerebellum) to 6% (temporal lobe) and from
0.2% (thalamus) to 2.3% (occipital lobe), respectively. For
the whole-brain ROI, the percentage changes of nRMSE,
PSNR, SSIM, and FWHM were 7%, 1%, 4%, and 1.2%,
respectively.

Moreover, the use of our DL method improved the per-
formances for the principal eigenvector estimation relative
to sTx acquisition (Figure 7), producing better delineated
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F I G U R E 5 Comparing single transmission (sTx) against our
deep learning (DL) method in reference to acquisition with parallel
transmission (pTx) in terms of DTI performances. Shown are
example fractional anisotropy (FA) and mean diffusivity (MD) maps
of a representative coronal slice from 1 subject, in which case the
neural network with tuned hyperparameters was trained on data of
the other 4 subjects. Corresponding sum of squared fitting error
maps are also shown, with numbers reported being the whole brain
average sum-of-squared fitting error values. Note that the use of the
DL method improved DTI performances by substantially decreasing
the fitting error, leading to increased quality and accuracy for both
FA and MD estimations especially in the lower temporal lobe (as
indicated by arrowheads) when compared to sTx acquisition

fiber orientations that more closely resembled what was
attainable with the pTx acquisition. This improvement
was further verified by quantitative comparison of angu-
lar errors in reference to pTx acquisition (Figure 8)—the
angular errors were significantly lower for our DL method
than for sTx acquisition across all brain ROIs. The per-
centage change of angular errors ranged from 4% (occipital
lobe) to 9% (caudate and thalamus), with its value being
6% for the whole-brain ROI. The percentage changes of
all quality measures for raw images, FA, and MD, as well
as of angular errors in each ROI are listed in Supporting
Information Table S2.

3.4 Test on new data from the HCP
database

When used to test on unseen diffusion data of 5 new
subjects from the 7 T HCP database, the final model

substantially enhanced the image quality for every subject
by effectively restoring the signal dropout observed in the
lower brain regions (including the cerebellum and the
temporal pole), producing color-coded FA maps that pre-
sented largely reduced noise levels in those challenging
regions (Figure 9).

4 DISCUSSION

Here, we proposed and demonstrated a novel DL method
that can be used in healthy subjects to create 7 T HCP-style
diffusion images with reduced B1

+ artifacts directly from
images obtained using the sTx mode (which usually
present strong B1

+ artifacts). Essential to the efficacy of our
method is the implementation of a deep encoder–decoder
CNN with tuned hyperparameters (e.g., the number of
encoder and decoder levels) and with facilitating struc-
tures (e.g., skip connections added between corresponding
encoder and decoder levels to reduce resolution loss). The
effectiveness of our method was demonstrated using 7 T
HCP-style dMRI at ∼1-mm isotropic resolutions obtained
in 5 healthy human subjects. The generalizability of
our deep-learning model was estimated using 5-fold CV
(i.e., training the deep encoder–decoder CNN with tuned
hyperparameters on data of 4 subjects while testing the
trained CNN on another subject), which shows that our
method can be used to substantially improve the image
quality relative to sTx acquisitions (Figures 3 and 4) and
such improvement can translate into improved estimation
of diffusion metrics (Figures 5-8) in the downstream dif-
fusion analysis. The generalizability of our method was
also examined by training the deep encoder–decoder CNN
with tuned hyperparameters on data of all 5 subjects and
testing the trained CNN on unseen data of 5 new subjects
randomly chosen from the 7 T HCP database. The results
(Figure 9) suggest that our method can enhance the image
quality for 7 T HCP-style diffusion acquisition in healthy
subjects by effectively restoring signal dropout present in
the sTx images.

For the purpose of proving the principle, we con-
ducted 7 T DTI to demonstrate the effectiveness of our
method in improving the image quality for sTx acqui-
sitions. The database that we acquired before following
the 7 T HCP protocol actually has diffusion data obtained
using a double-shell q-space sampling with b1000 and
b2000. Here, we only used the diffusion images with b1000
and b0 images for DTI. Part of our future study is to
include b2000 diffusion images and investigate how our
method can be used to improve the quality for double-shell
diffusion images.

The proposed DL method is based on the assumption
that the transformation from sTx to pTx images can be
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F I G U R E 7 Comparing single
transmission (sTx) against our deep learning
(DL) method in reference to the acquisition
with parallel transmission (pTx) in terms of
performances for principal eigenvector
estimation. Shown are example color-coded
fractional anisotropy (FA) maps (middle row)
of a representative coronal slice from 1 subject
(in which case the neural network with tuned
hyperparameters was trained on data of the
other 4 subjects), along with 2 zoomed-in
maps of principal eigenvector orientations
overlaid on the respective FA maps: one in the
putamen (top row) and the other in the
temporal lobe (bottom row). Note that the use
of our DL method improved principal
eigenvector estimation performances by
producing better delineated fiber orientations
that more closely resembled what was
attainable with the pTx acquisition

interpreted by a neural network (e.g., CNN). Intuitively,
this is viable because the difference between sTx and pTx
images mostly occurs in some local regions such as lower
temporal lobe and cerebellum, and this local difference
could be represented by a convolution operation with a rel-
atively small kernel. Here, we choose the encoder–decoder
CNN as the neural network, which has been proven
effective in various image mapping applications includ-
ing reconstruction and post-processing for MRI images.
Our results show that the trained encoder–decoder CNN
is able to restore signal dropouts in sTx images caused by
B1

+ inhomogeneity, while preserving local structure and
overall image contrast.

Critical to the efficacy of our method is the imple-
mentation of a nested CV to tune relevant hyperparam-
eters associated with the network structure and train-
ing configuration for our network. Here, 6 hyperparam-
eters are tuned: (1) the number of encoder and decoder
levels, (2) the number of output channels for the first
layer, (3) mini-batch size, (4) learning rate initialization,
(5) learning rate step size, and (6) learning rate decay
factor. The first 2 hyperparameters determine the depth
and width of the encoder–decoder CNN, thereby allow-
ing for control over the model capacity and fitting errors.
The other 4 hyperparameters determine how the neu-
ral network is trained and are commonly considered
for tuning when training a deep learning model with
the stochastic gradient descent optimization43 to achieve
improved training performances. Our results suggest that

tuning of these 6 hyperparameters is effective for opti-
mizing our encoder–decoder CNN and can help produce
a deep-learning model with high generalization perfor-
mances.

In its current implementation, our method takes the
T1w images as an additional input. We found in our pilot
study that this can help improve the prediction perfor-
mance (mostly with sharp edges preserved) as compared
to when using sTx images alone as input. This may be
explained by the fact that the T1w images bring in more
features (e.g., tissue structures) for the neural network to
learn and use. We note that this strategy has also been
adopted in other studies aimed at diffusion image process-
ing using DL with CNN.41,50 Part of our future work is to
explore whether similar prediction performances can be
achieved without using T1w images by refining the neural
network.

Consistent with the visual inspection of the raw images
(Figure 3), the quantitative comparison of quality mea-
sures on raw images for our method versus sTx (Figure 4)
shows that the images obtained from our method pre-
sented a large quality improvement in the temporal lobe,
with the improvement being significant for all quality mea-
sures considered (i.e., nRMSE, PSNR, SSIM, and FWHM
of PSF). Although the improvement in image quality over-
all translated into an improvement in DTI performances
(Figure 5), quantitative comparison (Figure 6) shows that
the improvements in FA and MD estimations in the tem-
poral lobe were not significant for all quality measures,
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F I G U R E 8 Comparing single transmission (sTx) and our
deep learning (DL) method in terms of angular errors of principal
eigenvector estimations. Shown are mean and standard deviations
(across 5 subjects) of the differences in angular errors between sTx
and our DL method (with the difference being the angular error of
sTx minus that of the DL method). For both sTx and our DL
method, region-specific angular errors were evaluated in reference
to the acquisition with parallel transmission and by considering a
total of 10 brain regions of interest (including 9 brain regions as
defined by the MNI152 standard-space structural atlas plus the
whole brain). The numbers reported are the P values obtained from
a paired t test, with significance being denoted by “*.” Note that the
use of our DL method substantially improved the performances for
principal eigenvector estimations, significantly decreasing the
angular errors across all the selected brain regions

with the improvement in SSIM on FA, the improve-
ment in nRMSE on MD, and the improvement in FWHM
on both FA and MD, all being found insignificant. Fur-
ther, the improvements in both nRMSE and PSNR in the
whole-brain ROI were not significant for MD estimation,
whereas they were significant for raw images. We also
found that for both FA and MD estimations, the per-
centage changes (relative to sTx) of the quality measures
overall were lower than those for the raw images. These
discrepancies can be explained by the fact that the ratio
of b0 and b1000 images is used in the DTI model fitting,
thereby flattening the improvement with our method. The
comparison of angular errors for principal eigenvectors
(Figure 8), however, strongly suggests that our method
can improve the delineation of fiber orientations, and the
improvement is significant in all brain ROIs including
the whole-brain ROI. This indicates that our method can
improve the image quality while preserving signal varia-
tions among different diffusion directions, which in turn
leads to more accurate fiber orientation depiction than the
sTx acquisition.

The test of our final model on 5 new subjects from
the 7 T HCP database (Figure 9) suggests that our method
can improve the quality of diffusion images obtained using
conventional sTx methods, restoring signal dropouts and
enhancing the quality of FA maps with higher SNR and
clearer fiber orientation representation. This is encourag-
ing as it shows that the neural network trained on data
of only 5 subjects is already well generalizable and can be
used to create diffusion images with mitigated B1

+ artifacts
given data of a new subject.

Our results (Figures 4 and 6) suggest that our
deep-learning method yields little blurring (if any) in the
raw images and FA and MD maps in terms of FWHM of
PSF. A closer look at the PSF profiles (Supporting Informa-
tion Figure S3) indeed revealed that the use of our method
barely changed the shape of PSF profile relative to sTx
acquisition. However, we notice that subtle blurring effects
can be perceived especially in FA and MD maps, smooth-
ing the image details in some local brain regions. To further
investigate this blurring effect, we quantified the edges for
raw images and FA and MD maps. The results (Support-
ing Information Figure S4) were compared to those of sTx
acquisition showing that although enhancing the edges
on raw images in all brain ROIs, the use of our method
appeared to degrade the edges on both FA and MD maps
especially in regions with strong B1

+ artifacts (e.g., lower
temporal lobe). Part of our future work is to investigate
how best to reduce such blurring effects. A potential solu-
tion is to modify the loss function by introducing extra
terms that can promote image edges (e.g., a term associ-
ated with image gradients),51 but likely at the cost of image
fidelity in terms of nRMSE.

To investigate how our DL model would perform at
different levels of signal dropout, we conducted a simula-
tion study. A representative single-direction b1000 image
slice obtained with sTx was chosen from 1 subject to
show typical signal dropout in the temporal pole, and the
region of signal dropout was manually defined as an ROI.
The signal within the ROI was modulated by multiply-
ing with 6 scaling factors (ranging from 0 to 1 in steps
of 0.2) to generate 6 input images mimicking sTx acqui-
sitions with different levels of signal dropout. Each of
these input images was fed into our DL model to produce
a predicted image. Our results (Supporting Information
Figure S5) show that our DL model appeared capable of
recovering the signal to some extent even for complete sig-
nal void; the prediction performances, however, decreased
with increasing levels of signal dropout, with the improve-
ment in nRMSE (evaluated within the ROI in reference
to pTx acquisition) decreasing from ∼39% (for the scal-
ing factor of 1 corresponding to original signal dropout) to
∼15% (for the scaling factor of 0 corresponding to complete
signal void).
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F I G U R E 9 Testing of our final deep learning model on unseen data of 5 new subjects randomly chosen from the 7 T Human
Connectome Project database. For each case, shown are mean diffusion-weighted images (with b1000) averaged across all diffusion
directions (first and second rows) and color-coded fractional anisotropy (FA) maps (third and fourth rows), all in a representative sagittal
slice with the insert showing a representative coronal slice. The final model with tuned hyperparameters was trained on our entire dataset of
5 subjects. Note that the use of our final model substantially enhanced the image quality by effectively restoring the signal dropout observed
in the lower brain regions (as marked by yellow arrowheads), producing color-coded FA maps that presented largely reduced noise levels in
those challenging regions

There are several aspects we can work on to improve
our DL method. First, we can collect more data for
improved training and prediction performance. Second,
we may improve the prediction performance by explor-
ing the use of other machine-learning frameworks. For
example, we may consider the Generative Adversarial Net-
works (GANs),52 which has been shown effective in recov-
ering lost signal in BOLD fMRI.53 Moreover, it is valuable
to investigate how our method would work in clinical
applications where images have pathology.

5 CONCLUSIONS

We have introduced and demonstrated a DL approach
that can create 7 T HCP-style diffusion images free of B1

+

artifacts for healthy subjects given images acquired with
sTx. Our results show that our approach can substantially
improve image quality by effectively restoring the signal
dropout present in sTx images, thereby improving the

downstream diffusion analysis. As such, our approach has
great potential to minimize transmit-B1-related artifacts
even when pTx resources (including pTx expertise, pTx
software or pTx hardware) are inaccessible on the user
side.

ACKNOWLEDGMENTS
We thank John Strupp, Brian Hanna, and Jerahmie Radder
for their assistance in setting up computation resources.
This work was supported in part by National Institutes of
Health (NIH) grants U01 EB025144, P41 EB015894, and
P30 NS076408.

ORCID
Xiaodong Ma https://orcid.org/0000-0001-7158-8073
Xiaoping Wu https://orcid.org/0000-0001-6021-9088

REFERENCES
1. Ugurbil K. Imaging at ultrahigh magnetic fields: history, chal-

lenges, and solutions. Neuroimage. 2018;168:7-32.

https://orcid.org/0000-0001-7158-8073
https://orcid.org/0000-0001-7158-8073
https://orcid.org/0000-0001-6021-9088
https://orcid.org/0000-0001-6021-9088


MA et al. 739

2. Ugurbil K, Xu JQ, Auerbach EJ, et al. Pushing spatial and tem-
poral resolution for functional and diffusion MRI in the human
Connectome project. Neuroimage. 2013;80:80-104.

3. Vu AT, Auerbach E, Lenglet C, et al. High resolution whole brain
diffusion imaging at 7 T for the human connectome project.
Neuroimage. 2015;122:318-331.

4. Vu AT, Jamison K, Glasser MF, et al. Tradeoffs in pushing the
spatial resolution of fMRI for the 7T human connectome project.
Neuroimage. 2017;154:23-32.

5. Van De Moortele PF, Akgun C, Adriany G, et al. B-1 destruc-
tive interferences and spatial phase patterns at 7 T with
a head transceiver array coil. Magn Reson Med. 2005;54(6):
1503-1518.

6. Vaughan JT, Garwood M, Collins CM, et al. 7T vs. 4T: RF power,
homogeneity, and signal-to-noise comparison in head images.
Magn Reson Med. 2001;46:24-30.

7. Katscher U, Bornert P, Leussler C, van den Brink JS. Transmit
SENSE. Magn Reson Med. 2003;49:144-150.

8. Adriany G, Van de Moortele PF, Wiesinger F, et al. Transmit
and receive transmission line arrays for 7 Tesla parallel imaging.
Magn Reson Med. 2005;53:434-445.

9. Zelinski AC, Wald LL, Setsompop K, et al. Fast slice-selective
radio-frequency excitation pulses for mitigating B+1 inhomo-
geneity in the human brain at 7 Tesla. Magn Reson Med.
2008;59:1355-1364.

10. Cloos MA, Boulant N, Luong M, et al. kT-points: short
three-dimensional tailored RF pulses for flip-angle homogeniza-
tion over an extended volume. Magn Reson Med. 2012;67:72-80.

11. Zhu Y. Parallel excitation with an array of transmit coils. Magn
Reson Med. 2004;51:775-784.

12. Grissom W, Yip CY, Zhang Z, Stenger VA, Fessler JA, Noll
DC. Spatial domain method for the design of RF pulses
in multicoil parallel excitation. Magn Reson Med. 2006;56:
620-629.

13. Setsompop K, Alagappan V, Gagoski B, et al. Slice-selective RF
pulses for in vivo B(1)(+) inhomogeneity mitigation at 7 Tesla
using parallel RF excitation with a 16-element coil. Magn Reson
Med. 2008;60:1422-1432.

14. Padormo F, Beqiri A, Hajnal JV, Malik SJ. Parallel trans-
mission for ultrahigh-field imaging. NMR Biomed. 2016;29:
1145-1161.

15. Hoyos-Idrobo A, Weiss P, Massire A, Amadon A, Boulant N. On
variant strategies to solve the magnitude least squares optimiza-
tion problem in parallel transmission pulse design and under
strict SAR and power constraints. IEEE Trans Med Imaging.
2014;33:739-748.

16. Guerin B, Gebhardt M, Cauley S, Adalsteinsson E, Wald LL.
Local specific absorption rate (SAR), global SAR, transmit-
ter power, and excitation accuracy trade-offs in low flip-angle
parallel transmit pulse design. Magn Reson Med. 2014;71:
1446-1457.

17. Cloos MA, Boulant N, Luong M, et al. Parallel-transmission-
enabled magnetization-prepared rapid gradient-echo
T1-weighted imaging of the human brain at 7 T. Neuroimage.
2012;62:2140-2150.

18. Massire A, Vignaud A, Robert B, Le Bihan D, Boulant N,
Amadon A. Parallel-transmission-enabled three-dimensional
T2 -weighted imaging of the human brain at 7 Tesla. Magn Reson
Med. 2015;73:2195-2203.

19. Malik SJ, Padormo F, Price AN, Hajnal JV. Spatially resolved
extended phase graphs: modeling and design of multipulse
sequences with parallel transmission. Magn Reson Med.
2012;68:1481-1494.

20. Tse DHY, Wiggins CJ, Poser BA. High-resolution
gradient-recalled echo imaging at 9.4T using 16-channel par-
allel transmit simultaneous multislice spokes excitations with
slice-by-slice flip angle homogenization. Magn Reson Med.
2017;78:1050-1058.

21. Schmitter S, DelaBarre L, Wu XP, et al. Cardiac imag-
ing at 7 Tesla: single- and two-spoke radiofrequency pulse
design with 16-channel parallel excitation. Magn Reson Med.
2013;70:1210-1219.

22. Wu X, Schmitter S, Auerbach EJ, Ugurbil K, Van de Moortele PF.
Mitigating transmit B 1 inhomogeneity in the liver at 7T using
multi-spoke parallel transmit RF pulse design. Quant Imaging
Med Surg. 2014;4:4-10.

23. Metzger GJ, Snyder C, Akgun C, Vaughan T, Ugurbil K, Van de
Moortele PF. Local B-1(+) shimming for prostate imaging with
transceiver arrays at 7T based on subject-dependent transmit
phase measurements. Magn Reson Med. 2008;59:396-409.

24. Wu XP, Auerbach EJ, Vu AT, et al. Human Connec-
tome project-style resting-state functional MRI at 7 Tesla
using radiofrequency parallel transmission. Neuroimage.
2019;184:396-408.

25. Gras V, Poser BA, Wu X, Tomi-Tricot R, Boulant N. Optimiz-
ing BOLD sensitivity in the 7T human Connectome project
resting-state fMRI protocol using plug-and-play parallel trans-
mission. Neuroimage. 2019;195:1-10.

26. Wu XP, Auerbach EJ, Vu AT, et al. High-resolution whole-brain
diffusion MRI at 7T using radiofrequency parallel transmission.
Magn Reson Med. 2018;80:1857-1870.

27. Setsompop K, Wald LL, Alagappan V, Gagoski BA, Adalsteins-
son E. Magnitude least squares optimization for parallel radio
frequency excitation design demonstrated at 7 Tesla with eight
channels. Magn Reson Med. 2008;59:908-915.

28. Xu D, King KF, Zhu Y, McKinnon GC, Liang ZP. Design-
ing multichannel, multidimensional, arbitrary flip angle RF
pulses using an optimal control approach. Magn Reson Med.
2008;59:547-560.

29. Gras V, Vignaud A, Amadon A, Le Bihan D, Boulant N. Univer-
sal pulses: a new concept for calibration-free parallel transmis-
sion. Magn Reson Med. 2017;77:635-643.

30. Gras V, Mauconduit F, Vignaud A, et al. Design of universal
parallel-transmit refocusing kT -point pulses and application to
3D T2 -weighted imaging at 7T. Magn Reson Med. 2018;80:53-65.

31. Aigner CS, Dietrich S, Schaeffter T, Schmitter S. Calibration-free
pTx of the human heart at 7T via 3D universal pulses. Magn
Reson Med. 2022;87:70-84.

32. Tomi-Tricot R, Gras V, Thirion B, et al. SmartPulse, a machine
learning approach for calibration-free dynamic RF shimming:
preliminary study in a clinical environment. Magn Reson Med.
2019;82:2016-2031.

33. Ianni JD, Cao Z, Grissom WA. Machine learning RF shimming:
prediction by iteratively projected ridge regression. Magn Reson
Med. 2018;80:1871-1881.

34. Glasser MF, Sotiropoulos SN, Wilson JA, et al. The minimal
preprocessing pipelines for the human connectome project.
Neuroimage. 2013;80:105-124.



740 MA et al.

35. Ronneberger O, Fischer P, Brox T. U-Net: convolutional net-
works for biomedical image segmentation. Lect Notes Comput
Sci. 2015;9351:234-241.

36. Ye JC, Sung WK. Understanding geometry of encoder-decoder
CNNs. PMLR. 2019;7064-7073.

37. Gong E, Zaharchuk G, Pauly J. Improving the PI+ CS recon-
struction for highly undersampled multi-contrast MRI using
local deep network. 2017. p 5663.

38. Lee D, Yoo J, Ye JC. Deep artifact learning for compressed
sensing and parallel MRI. arXiv preprint arXiv:170301120 2017.

39. Zbontar J, Knoll F, Sriram A, et al. fastMRI: an open
dataset and benchmarks for accelerated MRI. arXiv preprint
arXiv:181108839 2018.

40. Tripathi PC, Bag S. CNN-DMRI: a convolutional neural network
for denoising of magnetic resonance images. Pattern Recogn Lett.
2020;135:57-63.

41. Hu Z, Wang Y, Zhang Z, et al. Distortion correction of single-shot
EPI enabled by deep-learning. Neuroimage. 2020;221:117170.

42. Innes M. Flux: elegant machine learning with Julia. J Open
Source Softw. 2018;3:602.

43. Kingma DP, Ba J. Adam: a method for stochastic optimization.
arXiv preprint arXiv:14126980 2014.

44. Cawley GC, Talbot NLC. On over-fitting in model selection and
subsequent selection bias in performance evaluation. J Mach
Learn Res. 2010;11:2079-2107.

45. Goodfellow I, Bengio Y, Courville A. Deep learning. Adapt Com-
put Mach Le. 2016;1-775.

46. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality
assessment: from error visibility to structural similarity. IEEE
Trans Image Process. 2004;13:600-612.

47. Mazziotta J, Toga A, Evans A, et al. A probabilistic atlas and ref-
erence system for the human brain: international consortium
for brain mapping (ICBM). Philos Trans R Soc Lond B Biol Sci.
2001;356:1293-1322.

48. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith
SM. FSL. Neuroimage. 2012;62:782-790.

49. Van Essen DC, Smith SM, Barch DM, et al. The WU-Minn
human connectome project: an overview. Neuroimage.
2013;80:62-79.

50. Tian Q, Bilgic B, Fan Q, et al. DeepDTI: high-fidelity
six-direction diffusion tensor imaging using deep learning.
Neuroimage. 2020;219:117017.

51. Zhao H, Gallo O, Frosio I, Kautz J. Loss functions for
image restoration with neural networks. IEEE T Comput Imag.
2017;3:47-57.

52. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adver-
sarial networks. Commun Acm. 2020;63:139-144.

53. Yan YX, Dahmani L, Ren JX, et al. Reconstructing lost BOLD
signal in individual participants using deep machine learning.
Nat Commun. 2020;11:5046.

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1 Transmit B1 (B1
+) inhomogeneity at the subject

level when using the single transmission (sTx) setup. The
commercial Nova sTx head coil was used in combination

with dielectric padding. Shown are magnitude B1
+ maps

in arbitrary units in 5 gapped representative axial slices,
with the number reported being the coefficient of vari-
ation (i.e., SD/mean) of the B1

+ maps across the whole
brain. These B1

+ maps were obtained using the actual flip
angle imaging method and were co-registered to the MNI
standard volume space. The brain mask resulting from the
HCP structural preprocessing pipelines was used to mask
the B1

+ map for each subject. Note that strong B1
+ inho-

mogeneity was present at 7 T using the sTx setup, with the
coefficient of variation on average being as high as ∼27%.
Figure S2 Comparing single transmission (sTx) diffu-
sion images against those predicted by our deep learning
method (DL) in reference to the acquired parallel trans-
mission (pTx) images. Shown are mean diffusion-weighted
images with b1000 (averaged across all diffusion direc-
tions) of 1 representative coronal slice for each subject, in
which case the model with tuned hyperparameters was
trained on data of the other 4 subjects. Note that the use of
DL substantially improved the image quality by effectively
recovering the signal dropout observed in the lower tempo-
ral lobe (as marked by the yellow arrowheads), producing
images that were more comparable to those obtained with
pTx.
Figure S3 Comparing the point spread functions (PSFs)
of single transmission (sTx) versus our deep learning (DL)
method. Shown are mean (solid line) and range across 5
subjects (shaded area) of the center line of whole-brain
PSFs in the anterior–posterior (AP) and (right–left) RL
directions, for diffusion images (with b1000), fractional
anisotropy (FA) and mean diffusivity (MD). In each case,
the PSFs were estimated by comparing the sTx and DL
results against those obtained with parallel transmission
(serving as the reference). For both AP and RL directions,
also reported are the mean and standard deviation (across
subjects) of the FWHM of the PSFs in units of the num-
ber of pixels. Note that the use of our DL method brought
little change to PSF in comparison to sTx, with the mean
FWHM of the PSF (averaged over both RL and AP direc-
tions) found comparable to that of the sTx acquisition (∼1%
difference).
Figure S4 Comparing the image edges of single transmis-
sion (sTx) versus our deep learning (DL) method. Shown in
the left panel are diffusion images (b1k image), fractional
anisotropy (FA), and mean diffusivity (MD), along with
their respective edge images, all in a representative sagittal
slice from a single subject; also shown for reference are the
results obtained with parallel transmission. In each case,
the edge images were estimated by applying a rotation-
ally symmetric Laplacian of Gaussian filter (size, 15× 15
pixels; SD, 1.5 pixels) to the corresponding images (with
cerebrospinal fluid masked out to reduce the biases that it
would otherwise induce in edge estimation because of its
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extremely high or low signal intensity). Shown in the right
panel are quantitative comparison showing region-specific
mean and standard deviation values of the differences in
edges between sTx and our DL method, along with the
respective P values obtained from a paired t test (with
significance being denoted by “*”). Note that although
enhancing the edges of original diffusion weighted images,
our DL method appeared to degrade the edges of both
FA and MD maps, especially in the regions with strong
transmit B1 artifacts such as the lower temporal lobe (as
indicated by red arrows), leading to a decrease in the
region-specific edge values across the whole brain.
Figure S5 Testing the prediction performances of our deep
learning (DL) model at different levels of signal dropout. A
representative single-direction b1000 image slice obtained
with single transmission (sTx) was chosen from 1 subject
to show the typical signal dropout in the temporal pole.
A region of interest (ROI) was manually drawn to define
the region of signal dropout (red dashed contour). Differ-
ent levels of signal dropout were simulated by decreasing
the signal within the ROI by using various scaling factors
ranging from 0 to 1 in steps of 0.2. Shown in the first 2
rows are the simulated sTx images with different levels of
signal dropout (used as input to our DL model), and the
predicted images (i.e., the output of our DL model), along
with the images obtained using the parallel transmission
(pTx) serving as the reference. The numbers reported are
the normalized root mean squared errors within the ROI

in reference to pTx. Shown in the last 2 rows are the cor-
responding difference images between sTx and pTx and
between DL and pTx at different levels of signal dropout.
Note that our DL model appeared capable of recovering
the signal to some extent even for complete signal dropout
(i.e. no signal at all in the ROI in the input image) although
the prediction performances were found to decrease with
increasing levels of signal dropout.
Table S1 The hyperparameter space expanded by the 6
hyperparameters chosen in the current study for model
selection. During the model selection, random search was
carried out to tune the hyperparameters, for which a pool
of 50 candidate hyperparameter sets was created by ran-
domly sampling the space based on a uniform distribution.
Table S2 The percentage changes of quality measures
between deep learning (DL) and single transmission (sTx)
in each brain region. In each case, the percentage change
was calculated as |val_DL – val_sTx|/val_sTx * 100% where
val_DL and val_sTx are quality measures for DL and sTx,
respectively; “| |” denotes the absolute value.
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