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A B S T R A C T   

Scutellarin related drugs have superior therapeutic effects on cerebrovascular and cardiovascular diseases. Here, 
an optimal biosynthetic pathway for scutellarin was constructed in Yarrowia lipolytica platform due to its 
excellent metabolic potential. By integrating multi-copies of core genes from different species, the production of 
scutellarin was increased from 15.11 mg/L to 94.79 mg/L and the ratio of scutellarin to the main by-product was 
improved about 110-fold in flask condition. Finally, the production of scutellarin was improved 23-fold and 
reached to 346 mg/L in fed-batch bioreactor, which was the highest reported titer for de novo production of 
scutellarin in microbes. Our results represent a solid basis for further production of natural products on un-
conventional yeasts and have a potential of industrial implementation.   

1. Introduction 

Scutellarin is the main biosynthetic component of breviscapine 
extracted from Erigeron breviscapus, which has anti-inflammatory, anti-
oxidant [1], antiplatelet aggregation [2], microcirculation improvement 
[3], neuroprotection [4], and antitumor effects [5]. Scutellarin can be 
used for the treatment of diabetic complications, cardio-cerebral 
vascular diseases, stroke, nephropathy, and nonalcoholic fatty liver 
disease (NAFLD) [6–10]. Unfortunately, many of these illnesses are the 
major cause of permanent disability and death in the world [4,11–13]. 
Market analysis shows that the annual demand for scutellarin in China is 

approximately 100 tons, with over 10 million patients using scutellarin 
and related drugs each year [14]. However, extraction from 
E. breviscapus remains the main source of scutellarin, greatly depleting 
the wild resources of this species [15]. Chemical synthesis is over-
shadowed by the use of expensive starting materials and cumbersome 
synthesis procedures [16]. Therefore, using synthetic biology to 
construct cellular factory for scutellarin synthesis is an effective way to 
solve the shortage of E. breviscapus resources. 

Unlike the traditional hosts Saccharomyces cerevisiae and Escherichia 
coli, Y. lipolytica stands out as a non-conventional oleaginous yeast due 
to its excellent metabolic potential [17]. Y. lipolytica is generally 
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regarded as safe (GRAS) by the Food and Drug Administration (FDA). As 
a very specialized aerobic yeast, it is lack of Crabtree effect, which will 
produce ethanol under the condition of high glucose or respiratory re-
striction, and is rich in key respiratory intermediates (acetyl-CoA, 
NADPH, ATP), which could be used as the precursors for natural com-
pounds [18–26]. Furthermore, genetic manipulation tools have been 
developed in Y. lipolytica through engineering DNA double-strand break 
(DSB) repair protein complex Ku70/Ku80 [27,28]. So far, several efforts 
have been made to utilize Y. lipolytica as platform to produce natural 
products (Supplementary Table S1) and the highest yield of resveratrol 
has reached to 12 g/L [29–35]. More importantly, naringenin and 
arbutin have been successfully produced, indicating sufficient precursor 
and abundant glycosylated donor of scutellarin in Y. lipolytica [36,37]. 
Inspired by these results, we considered Y. lipolytica as a potential fac-
tory for scutellarin production. 

Although the biosynthesis of scutellarin was successfully realized in 
S. cerevisiae, the scutellarin fermentation products was not the major 
products (37.5%) accompanied by a large number of apigenin-7-O- 
glucuronide [14]. Here, we screened key enzymes from different spe-
cies to construct cell factory for de novo biosynthesis of scutellarin in 
Y. lipolytica and improved the yield of scutellarin to 346 mg/L through 
increasing the copy number of key enzymes and optimizing the 
fermentative condition in 1.3 L controlled fed-batch bioreactor. 

2. Materials and methods 

2.1. Genes and strains 

All metabolically modified Y. lipolytica strains were from the strain 
W29 carrying Cas9 on the KU70 locus, which was kindly provided by Dr. 
Zongjie Dai (Tianjin Institute of Industrial Biotechnology). Genes 
encoding AtPAL2, EbPAL, AtC4H, EbC4H, EbCHS, HaCHS, At4CL1, 
Eb4CL, EbFSII, EbF7GAT, EbF6H, CcF6H, CcarF6H, SbaiCYP82D1, 
SbaiCYP82D4, SbarCYP82D1, SbarCYP82D4, SbarCYP82D5, ATR2, 
ScARO4K229L, ScARO7G141S, SeACSP641L and EbUDPGDH were all 
codon-optimized toward Y. lipolytica by GenScript (Nanjing, China). 
Integration sites, YlARO4K221L, YlARO7G139S, PEX10, TEFin and GPD 
promoters, tlip2 and PEX20 terminators were amplified from 
Y. lipolytica genomic DNA. All primers and genes were listed in 
(Table S2, S3 and S6). 

2.2. Cultivation and medium 

E. coli strains were cultured using 2 YT at 37 ◦C with shaking at 230 
rpm and Y. lipolytica strains were incubated using YNB or YPD at 30 ◦C 
and 230 rpm. Additionally, YPD solid medium with hygromycin B (250 
mg/L) and nourseothricin (400 mg/L) were used to select transformed 
Y. lipolytica strains. After 3 days of cultivation, individual colonies of 
recombinant strains were picked from plates, inoculated into 3 mL YNB 
in 24-well plates with gas permeable sealing membrane (Sigma-Aldrich) 
and grown for 48 h. The cultures were then transferred to a 250 mL 
shake flask containing 30 mL YNB medium and cultivated for 4 days. 
The yeast solution was lined onto antibiotic-free YPD plates for 1 day to 
remove the gRNA plasmid in preparation for the next round of inte-
gration. The composition of the mineral medium (MM), YNB, YPD were 
shown in the supplementary material. All flask fermentation results 
represented the average standard deviation of three independent 
experiments. 

2.3. Construction of plasmids and strains 

All derived strains and plasmids constructed were listed in 
(Tables S4–S5). Amplification of target gene fragments using Phanta 
Max Super-Fidelity DNA polymerase (Vazyme Biotech, Nanjing, China) 
by polymerase chain reaction (PCR). The Zymo Fragment Recovery Kit 
(Zymo Research) was used for purification of PCR product, construction 

of recombinant plasmids by Gibson assembly [38]. The EasyPure® 
Plasmid MiniPrep Kit (Trans Biotech, Beijing, China) was used for 
plasmid isolation. All processes were carried out following the manu-
facturer’s instructions. To construct integrative strains, a single gRNA 
plasmid and a linearized homologous donor plasmid were introduced by 
the CRISPR/Cas9 system. The integrative plasmid was constructed using 
pMD-19 T as the backbone, with different integration sites as described 
in Refs. [39,40], and single gRNA plasmids were graciously provided by 
Dr. Zongjie Dai (Tianjin Institute of Industrial Biotechnology). Using the 
lithium acetate method to construct engineered Y. lipolytica strains and 
specific protocol as described previously [39]. Recombinant was veri-
fied by PCR amplification. The detailed construction process of the 
plasmids could be found in the Supplementary Methods. 

2.4. HPLC and LC-MS analysis 

500 μL of fermented product was mixed with 500 μL of methanol, 
sonicated for 30 min, and centrifuged at 12,000 rpm for 20 min. HPLC 
and LC-MS assays were as before [14]. 

2.5. Fed-batch fermentation 

The yeast cells were scribed on YPD plates and grown for two days. A 
single colony from the plate was transferred to 4 mL of mineral medium 
for 48 h and then transferred to 40 mL of mineral medium for 24 h. Fed- 
batch cultivations were performed in a 1.3 L parallel bioreactor (T&J- 
Mini Box, Shanghai T&J Bio-engineering Co., L TD) and an initial vol-
ume was 400 mL. The initial medium (MM) was prepared in a previous 
study [32]. Temperature was maintained at 30 ◦C during fermentation. 
PH maintained at 5.0 by automatic addition of 10% ammonia. The 
dissolved oxygen (DO) was set at 40% by automatically controlling 
agitation speed (200–1200 rpm), and the initial aeration was set at 0.5 
L/min. Sterile antifoam was added automatically when foaming. The 
glucose in the feed medium was 15-fold and other components were 
5-fold of the initial medium. After all the glucose was exhausted, the 
feed solution was added and the initial replenishment rate was 3 mL/h 
and the glucose concentration was controlled to be below 5 g/L. 
Fermentation was stopped when the glucose concentration in the me-
dium was not depleted and started to rise. Samples of 5 mL culture 
medium were collected every 24 h to analyze cell dry weight, residual 
glucose content and scutellarin accumulation. Error bars represent the 
mean of the three data. 

2.6. Detection of the biomass and sugar 

500 μL of fermentation broth was washed twice to remove all 
remaining material in the medium prior to lyophilization, and cell dry 
weight (DCW) was measured by freeze-drying the cells by weighing. The 
residual glucose concentration was measured with an SBA-40D 
biosensor (Shandong Academy of Sciences, China). Erythritol was 
quantified by HPLC equipped with a refractive index detector and an 
Aminex HPX-87H column using 5 mM H2SO4 as the mobile phase at a 
flow rate of 0.6 mL/min and a temperature of 40 ◦C. 

3. Results 

3.1. Modularization of scutellarin biosynthetic pathway in Y. lipolytica 

The biosynthetic pathway of scutellarin from L-phenylalanine to 
scutellarin has been well characterized (Fig. 1), which comprised eight 
consecutive steps, catalyzed by PAL, C4H, 4CL, CHS, CHI, FSII, F6H, 
F7GAT. Simultaneously, apigenin was hydroxylated by F6H at C6 po-
sition to produce the main precursor and also glycosylated by F7GAT at 
C7 position to yield the major by-product apigenin-7-O-glucuronide. In 
order to optimize the whole pathway stepwise, we divided it into three 
modules, p-coumaric acid production module (Module I), naringenin 
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production module (Module II), and scutellarin production module 
(Module III). The naringenin production module catalyzed by 4CL and 
CHS, is the pivotal bridge between Module I and Module III and de-
termines the realization of the whole synthesis pathway. Hence, we 
optimized the naringenin production module as a starting point and then 
engineered the other two modules with further optimization. 

3.2. Optimization of the naringenin production module 

In this study, we selected 4CL from Arabidopsis thaliana or 
E. breviscapus and CHS from Hypericum androsaemum or E. breviscapus as 
the candidate genes to catalyze the p-coumaric acid into naringenin [14, 
41]. They were overexpressed in the p1 plasmid under the control of the 
strong constitutive promoters TEFin and GPD [39,42]. Then, the line-
arized p1-CHS-4CL was transformed into the Ku80 site of Y. lipolytica 
W29. YNB medium with 1 mM p-coumaric acid was used for cultivation. 
Under HPLC characterization, the fermentation of engineered yeast YL4 
had a characteristic retention time of 17.159 min, which was the same as 
the naringenin standard (Fig. 2a). We observed four strains YL1-YL4 
yielded ranging from 71.36 to 131.59 mg/L for the synthesis of 

naringenin from p-coumaric acid (Fig. 2b), and we found that the 
engineered strains could also produce the phloretin. Consistent with 
previously reported literature that HaCHS was the most efficient CHS for 
phloretin production [39]. The peak area of phloretin in YL3 which 
integrated the HaCHS was twice as large as that of YL4. Taking the above 
phenomena into account, we selected YL4 for further modification 
which integrated the EbCHS (Fig. S1). 

We next sought to produce scutellarin from the optimized strain YL4. 
As follows, five enzymes were further integrated into the strain. Similar 
to p1, FSII was constructed in the p2 vector, F6H and ATR2 were con-
structed in the p3 vector, F7GAT and UDPGDH were constructed in the 
p4 vector. These linearized plasmids were integrated into strain YL4 
sequentially to generate the strain YL5. Under HPLC characterization, 
the fermentation of engineered yeast YL5 had a characteristic retention 
time of 4.536 min, which was the same with the standard of scutellarin 
(Fig. 2c). Meanwhile the peak at 6.379 min was coincident with 
apigenin-7-O-glucuronide standard (Fig. 2c). LC-MS analysis results 
were presented in (Fig. S2). The titer of scutellarin was 15.11 mg/L, and 
apigenin-7-O-glucuronide was 53.63 mg/L (Fig. S3). 

Fig. 1. Metabolic pathway for scutellarin synthe-
sis from glucose in Yarrowia lipolytica. Abbrevia-
tions: PAL, phenylalanine ammonia-lyase; C4H, 
cinnamate-4-hydroxylase; 4CL, 4-coumaroyl-CoA 
ligase; CHS, chalcone synthase; CHI, chalcone isom-
erase; FSII, flavone synthase II; F6H, flavone-6- 
hydroxylase; ATR2, cytochrome P450 reductase; 
F7GAT, flavonoid-7-O-glucuronosyltransferase; 
UDPGDH, UDP-glucose dehydrogenase. Multiple ar-
rows represent multiple enzymatic steps, red genes 
describe the introduced artificial pathway. In this 
study, PAL and C4H from A. thaliana or E. breviscapus, 
4CL from A. thaliana or E. breviscapus, CHS from 
H. androsaemum or E. breviscapus, ATR2 from 
A. thaliana, F6H from E. breviscapus, Scutellaria bai-
calensis Georgi, Scutellaria barbata D. Don, 
C. canadensis and C. cardunculus.   

Fig. 2. Naringenin, apigenin-7-O-glucuronide and 
scutellarin produced in engineered Y. lipolytica 
strains. Error bars represent standard deviation of at 
least three biological replicates. The “-” and “+” 
symbols indicate lack or existence of the corre-
sponding genetic modification, respectively. A. HPLC 
analysis of YL4 fermentation samples and naringenin 
standard. B. Naringenin production in different 
combinations of CHS and 4CL in shake-flask fermen-
tation. C. HPLC analysis of the scutellarin standard, 
apigenin-7-O-glucuronide standard and YL5 samples. 
D. Scutellarin and apigenin-7-O-glucuronide produc-
tion with different combinations of PAL and C4H in 
shake-flask fermentation.   
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3.3. Bottlenecks exploration of the p-coumaric acid production module 

As successful biosynthesis of scutellarin in strain YL5 from p-cou-
maric acid, we proposed to explore the bottleneck from phenylalanine to 
p-coumaric acid production module. In p-coumaric acid production 
module, C4H belongs to the P450 enzyme family and is usually 
considered to be the rate-limiting step in the biosynthesis of coumaric 
acid-derived compounds [43,44]. PAL and C4H were screened to 
determine the optimal gene combination for the highest production of 
scutellarin. We chose PAL and C4H from A. thaliana or E. breviscapus. 
Previous reports have proven that they could be functionally expressed 
in S. cerevisiae [41,45]. PAL and C4H were constructed in a p5 vector 
integrated into strain YL5 to obtain strain YL6-YL9 (Fig. 2d). The titer of 
scutellarin was 15.05 mg/L to 21.60 mg/L, and 
apigenin-7-O-glucuronide was 59.87 mg/L to 85.44 mg/L (Fig. 2d). 

Several studies have demonstrated that boosting the supply of aro-
matic amino acid and malonyl-CoA precursors could effectively increase 
the production of flavonoids, whether in S. cerevisiae or in Y. lipolytica 
[32,36,46–49]. Overexpression of mutants of DAHP synthase ARO4 and 
chorismate mutase ARO7 could avoid feedback inhibition of aromatic 
amino acids and thereby increase the yield of flavonoid and stilbene 
products [50]. However, the production did not show improvement by 
expressing ScARO4K229L and ScARO7G141S or YlARO4K221L and YlAR-
O7G139S in strain YL9, respectively (Fig. S4). We also detected a decrease 
in OD600, presumably due to a toxic effect of p-coumaric acid accumu-
lation in cells. In addition, we also did not observe higher scutellarin 
production either by overexpressing SeACSP641L [35,51] and PEX10 
[49], which could increase the malonyl-CoA pool (Fig. S4). Our results 
suggested that the precursors (p-coumaric acid and malonyl-CoA) were 
not a limiting step in this background strain. 

3.4. Optimizing the scutellarin production module 

According to the national standard in China, there is more than 90% 
scutellarin in breviscapine oral drugs and 98% in injection drugs [52, 
53]. However, in our original version of engineered strains, the pro-
duction of by-product apigenin-7-O-glucuronide was much higher than 
that of scutellarin. The glucuronosyltransferase could be competed with 
the P450 enzyme F6H against the substrate apigenin. It was possible to 

improve the yield ratio of scutellarin by employing a F6H with higher 
catalytic efficiency (Fig. 3a). Seven enzymes from different species 
(Scutellaria baicalensis Georgi, Scutellaria barbata D. Don, C. canadensis 
and C. cardunculus) were used in this study [54,55]. To determine 
whether these enzymes could alter the product ratio, we expressed them 
in YL9 to generate strains YL14-YL20. The results showed that CYP82D4 
from S. baicalensis (YL17) presented the best catalytic activity to produce 
scutellarin both in terms of yield and proportion (Fig. 3b). In comparison 
with strain YL9, the titer of scutellarin was improved to 37.8 mg/L, the 
percentage of scutellarin was increased from 20.18% to 96.54% and the 
percentage of apigenin-7-O-glucuronide was decreased from 79.81% to 
3.46% (Fig. 3b and Fig. S5), which meant that the ratio of scutellarin to 
the apigenin-7-O-glucuronide was improved about 110-fold in flask 
condition and the specific calculations could be found in the supple-
mentary materials. These results suggested that the screening of iso-
zymes was an efficacious tactic to improve the productivity of 
heterologous pathways in specific host [56–58]. 

In order to further increase the titer of scutellarin, we subsequently 
increased the copy number of key enzymes in the engineered strain 
YL17. Since accumulation of p-coumaric acid as well as naringenin was 
observed in YL17 (Fig. S6), we combined EbCHS and EbFSII, Sbai-
CYP82D4 and ATR2, F7GAT and UDPGDH respectively with additional 
copies in the strains YL17 to generate YL21-YL25 (Fig. 3c). Our results 
showed that the addition of copy numbers of EbCHS, EbFSII, Sbai-
CYP82D4 and ATR2 indeed significantly increased the yield of scu-
tellarin. Therefore, combining all four genes led the strain YL24 to 
produce 62.66 mg/L of scutellarin (Fig. 3c). Besides, overexpression of 
genes F7GAT and UDPGDH did not result in a significant increase in 
scutellarin production (Fig. 3c). However, in strain YL24, we still 
observed p-coumaric acid and naringenin (Fig. S7), and pushing the 
accumulation of intermediates downwards might further increase the 
yield of scutellarin. Since increasing the copy number of CHS in strain 
YL21 could not effectively solved this problem. We speculated that the 
bottleneck might be 4CL instead of CHS, so we added one copy of 4CL to 
YL24. For the accumulation of naringenin, we added another copy of 
FSII to obtain the final strain YL25, which produced 94.79 mg/L of 
scutellarin (Fig. 3c), indicating that multiple copies of downstream 
genes were vital for directing carbon flux toward scutellarin synthesis. 

Fig. 3. Metabolic engineering to improve the ratio 
and yield of scutellarin. 
A. Schematic illustration of the biosynthetic path-
ways leading to the production of scutellarin and the 
byproduct apigenin-7-O-glucuronide. B. Scutellarin 
and apigenin-7-O-glucuronide production in different 
species of F6H in shake-flask fermentation. C. Eval-
uation of scutellarin and apigenin-7-O-glucuronide 
produced by yeast strains YL17, YL21, YL22, YL23, 
YL24 and YL25 in shake flask.   

Y. Wang et al.                                                                                                                                                                                                                                   



Synthetic and Systems Biotechnology 7 (2022) 958–964

962

3.5. Optimization of the fermentation process 

In order to further improve the production of scutellarin, we con-
ducted a fed-batch fermentation culture of the best engineered strain 
YL25 using mineral medium (Fig. 4a). Since glucose concentration 
played a decisive role during the fermentation process, the amount of 
residual sugar was measured every 6 h (Fig. 4b). When the glucose 
exhausted in the initial medium, we started fed-batch fermentation at an 
initial rate of 3 mL/h at 20 h, which then was dynamically regulated to 
maintain the PH at 5. During the whole fermentation process, glucose 
was added in a continuous flow and ensured that the amount of glucose 
was less than 5 g/L, which did not cause high osmotic pressure and no 
erythritol was detected (Fig. S8). After 12 h of lag phase, the cells 
entered the logarithmic growth phase, and the DCW finally reached to 
66.8 g/L at 118 h (Fig. 4b). 

Considering that there were three P450 enzymes in the scutellarin 
synthesis pathway and that the improvement of oxygen supply could 
help to increase the activity of the key P450 enzymes [59], the DO was 
maintained at 40% by adjusting the speed and aeration. When the cells 
entered to the logarithmic phase, scutellarin began to accumulate. 
However, a small amount of by-product apigenin-7-O-glucuronide was 
accompanied with the production of scutellarin after 36 h. Finally, the 
yield of scutellarin reached to 346 mg/L at 118 h (Fig. 4b), which was 
the highest reported so far in microbes. The titer of 
apigenin-7-O-glucuronide also was improved and reached to 75.14 
mg/L, accounting for 18% of the final products, which was higher than 
that in flask condition. The yield of scutellarin could be further opti-
mized by the regulation of fermentation conditions in the future. 

4. Discussion 

It is known that the precursor limitation is one of the major obstacles 
to produce natural compounds in microbial cell factories [60–62]. 
However, our results indicated that precursor supply was not the major 
bottleneck at the initial engineering stage due to the excellent primary 
metabolic level of Y. lipolytica. The optimization of downstream heter-
ogenous pathways appeared to be more important. The inherent low 
catalytic efficiency of enzymes for the biosynthesis of natural product is 
a challenge for flavonoid production, especially P450 enzymes [63,64]. 
The P450 enzyme F6H is regarded as the key rate-limiting enzyme in the 
scutellarin biosynthetic pathway. We compared F6H from seven species 

and found that CYP82D4 from S. baicalensis successfully enhanced the 
yield of scutellarin and significantly reduced the yield of the by-product 
apigenin-7-O-glucuronide, implying that the catalytic activity of en-
zymes from different sources has a significant effect on the product. In 
addition, the copy numbers of key downstream genes were optimized 
and the final flask production of scutellarin increased 4.28-fold to 94.79 
mg/L. This result further confirmed that the yield of many natural 
products could be improved by integrating multiple copies of key en-
zymes in Y. lipolytica [32,35,65]. 

Our de novo biosynthesis system provided a concise fermentation 
process and achieved in a cheap mineral medium. The fed-batch 
fermentation of scutellarin in YL25 finally reached to 346 mg/L, 
which was 3.2-fold higher than that produced in S. cerevisiae [14]. 
Although the titers in shake flasks and fermenters for E. coli system were 
similar with our results, there were many expensive inducers and pre-
cursors used in E. coli production system, such as IPTG, tyrosine, and 
sodium malonate [66,67]. In addition, we also noticed that the per-
centage of apigenin-7-O-glucuronide increased from 3.46% in flask to 
18% in the fermenter. A reasonable speculation was that the supply of 
oxygen in the fermenter could affect the expression of P450 enzymes and 
the fermentation process needed to be controlled more accurately. 

The productivity of scutellarin in our study was only 1.83 mg/g 
glucose. One of important reasons could be that there were large 
amounts of precipitated products accumulating inside the fermenter 
during our fermentation process. HPLC result showed that the major 
constitute part of this precipitate was naringenin (Figs. S9 and S10). 
Naringenin is the first step in the formation of flavonoids and also an 
intermediate of scutellarin. The precipitating of intermediate product 
became an obstacle for further effective biotransformation. The copy 
number of FSII needed to be further increased to enhance the down-
stream biotransformation of naringenin and improve the productivity of 
the downstream compounds. 

Our study also presented a robust work for further genetic engi-
neering of the Y. lipolytica chassis. In this study, the producing of scu-
tellarin was achieved through a modular expression, which divided of 
the biosynthetic pathway into three modules. A large panel of synthetic 
genes were recruited and the expression cassettes were integrated into 
specific locus using a CRISPR/Cas9 kit without markers remained. 
Collectively, our work shows that Y. lipolytica has great potential for the 
production of scutellarin and even other flavonoids. 

Fig. 4. Fed-batch fermentation of the engineering strain YL25 in 1.3 L bioreactor. A. Schematic diagram of scutellarin biosynthesis process in YL25 strain. The 
number after the gene represents the number of copies of the gene. B. Production of scutellarin and apigenin-7-O-glucuronide by strain YL25 in fed-batch 
fermentation. 
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