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A B S T R A C T   

Background: Alterations in the static and dynamic characteristics of spontaneous brain activity 
have been extensively studied to investigate functional brain changes in migraine without aura 
(MwoA). However, alterations in concordance among the dynamics of spontaneous brain activity 
in MwoA remain largely unknown. This study aimed to determine the possibilities of diagnosis 
based on the concordance indices. 
Methods: Resting-state functional MRI scans were performed on 32 patients with MwoA and 33 
matched healthy controls (HCs) in the first cohort, as well as 36 patients with MwoA and 32 HCs 
in the validation cohort. The dynamic indices including fractional amplitude of low-frequency 
fluctuation, regional homogeneity, voxel-mirrored homotopic connectivity, degree centrality 
and global signal connectivity were analyzed. We calculated the concordance of grey matter 
volume-wise (across voxels) and voxel-wise (across time windows) to quantify the degree of 
integration among different functional levels represented by these dynamic indices. Subsequently, 
the voxel-wise concordance alterations were analyzed as features for multi-voxel pattern analysis 
(MVPA) utilizing the support vector machine. 
Results: Compared with that of HCs, patients with MwoA had lower whole-grey matter volume- 
wise concordance, and the mean value of volume-wise concordance was negatively correlated 
with the frequency of migraine attacks. The MVPA results revealed that the most discriminative 
brain regions were the right thalamus, right cerebellar Crus II, left insula, left precentral gyrus, 
right cuneus, and left inferior occipital gyrus. 
Conclusions: Concordance alterations in the dynamics of spontaneous brain activity in brain re-
gions could be an important feature in the identification of patients with MwoA.  
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1. Introduction 

Migraine is a widespread headache condition distinguished by repetitive occurrences and throbbing head pain, which may arise 
due to various physical or environmental factors [1] and is the second most frequent source of disability [2]. The symptoms include 
moderate to severe headache; nausea; vomiting; and sensitization of the visual, auditory, and olfactory systems [3]. Due to its 
widespread occurrence, economic impact, and impact on daily functioning, migraine has emerged as a significant public health 
concern. Migraine without aura (MwoA) represents the prevailing form of migraine headaches encountered [4]. Current theories on 
migraine pathophysiology are mainly concerned with the activation and sensitization of the trigeminovascular system [5], whereas the 
pathogenesis of migraine is intricate and varied. This complexity of migraine also leads to the poor outcomes and recurrence. 

As migraine is primarily a functional brain disorder, functional MRI (fMRI) techniques can provide a pathway for investigating its 
underlying mechanisms [6,7]. Numerous studies have indicated that the onset of migraines is linked with hyperexcitability in the 
hypothalamus and early reorganisation of ascending pain and central trigeminovascular pathways, including the insula, brainstem, 
limbic system, hypothalamus, thalamus, and certain functional networks. The methodology used in these studies included static and 
dynamic functional connectivity (FC), effective connectivity (EC), graph theory analysis, and local brain activity [8–13]. However, the 
reproducibility of the results of these studies is poor, and a direct comparison of these fMRI indices is lacking. 

In recent years, leveraging advancements in machine learning, researchers have introduced the multivariate pattern analysis 
(MVPA) method. This data-driven approach utilizes pattern recognition principles to decode relationships between neural signals and 
external stimuli or cognitive states by employing multivariate models [14], which have been frequently utilized to analyze spatial 
pattern data for fMRI categorization and prediction [15]. MVPA offers several advantages over conventional univariate analysis. 
Unlike the voxel-centric approach of univariate methods, MVPA analyzes patterns across multiple voxels, revealing subtle variations in 
neural representations. This holistic analysis mitigates limitations imposed by low signal-to-noise ratios and stringent multiple 
comparison corrections. Additionally, MVPA demonstrates greater resilience to sample size constraints, even enabling decoding of 
cognitive states from single trials in some cases. Furthermore, it integrates signals from spatially distinct brain regions, elucidating the 
functional interplay critical for complex cognitive processes [16,17]. MVPA has shown promise in identifying and predicting indi-
vidual patients with Internet gaming disorder [18], depressive disorder [19], essential tremor [20], dispositional worry [21], and 
patients with panic disorder [22]. 

An increasing number of studies has taken advantage of the temporal changes in rs-fMRI indices to investigate the mechanism of 
diseases. These indices serve as indicators of spontaneous brain activity include the fractional amplitude of low-frequency fluctuation 
(fALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC), Degree Centrality (DC), and Global Signal 
Connectivity (GSC). Yan et al. conducted an in-depth analysis of the spatial and temporal connections between various resting-state 
brain activity metrics, revealing a high degree of covariance among these metrics. Subsequently, they determined the voxel-wise 
within-subject concordance by calculating Kendall’s W for brain activity metrics across time windows at each voxel. Similarly, 
volume-wise concordance was obtained by calculating Kendall’s W for brain activity metrics across all voxels for each time window, 
analyses of concordance, defined by the co-occurrence of temporal and spatial dynamics across multiple indices of brain activity, 
revealed significant inter-individual differences that were stable over time. Furthermore, a notable correlation emerged between 
concordance and age, suggesting a potential functional link between this co-activation and cognitive processes [23]. Furthermore, an 
increasing number of research have demonstrated that concordance shows stable individual differences in Parkinson’s disease [24], 
Alzheimer’s disease [25], major depressive disorder [26,27], and schizophrenia [28], suggesting that this approach might give a fresh 
insight into the underlying mechanisms of migraine. However, to our knowledge, limited studies using MVPA have provided the 
classification performance of the concordance of alterations on rs-fMRI in patients with MwoA. 

Hence, in the current study, we first utilized MVPA to identify brain regions exhibiting differential concordance profiles within 
spontaneous brain dynamics between patients with MwoA and healthy controls (HCs). Subsequently, the applicability of these MwoA- 
discriminative brain regions was assessed using an independent dataset. We hypothesized that the concordance of spontaneous dy-
namic changes in fALFF, ReHo, VMHC, DC, and GSC would be altered and could identify individuals in patients with MwoA. 

2. Materials and methods 

2.1. Participants 

This study included two cohorts of individuals with MwoA and HCs. The first cohort, which comprised 35 patients with MwoA and 
34 age- and gender-matched HCs, was recruited between 8 April 2018 and 6 October 2019. To confirm the machine learning clas-
sification findings acquired from the first cohort, the second cohort was recruited from 23 February 2021 to 24 February 2022 and 
included 38 MwoA patients and 32 age- and sex-matched HCs. Patients with MwoA were recruited from among the outpatients in the 
acupuncture department of Shuguang Hospital affiliated with the Shanghai University of Traditional Chinese Medicine. MwoA was 
diagnosed according to the ICHD-III criteria of the International Classification of Headache Disorders, 3rd Edition [29]. The inclusion 
criteria were as follows: 1) age 18–65 years and right-handed; 2) experience of a unilateral and/or pulsating headache; 3) occurrence of 
a headache attack at least once a month for the past 3 months; 4) did not undergo physical therapy or used preventive headache 
medication in the past month; and 5) did not ingest psychotropic or vasoactive medications in the past 3 months. The exclusion criteria 
were as follows: 1) existence of other comorbid chronic pain conditions, 2) a history of brain trauma or tumour, 3) suffering from any 
other neurological or psychiatric disorders, 4) a history of drug or alcohol abuse, and 5) any fMRI contraindications. The Ethics 
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Committee of Shuguang Hospital, which is affiliated with Shanghai University of Traditional Chinese Medicine, approved this trial, 
which is documented at www.chictr.org.cn (ChiCTR1900023105). Written informed consent was obtained from all participants. 

2.2. Clinical assessment 

Rating scores, including the visual analogue scale (VAS) (0− 10) for pain intensity, frequency of migraine attacks (days/month), 
Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS), and Migraine-Specific Quality of Life Questionnaire scores (MSQ), 
were acquired for each patient with MwoA [12]. 

2.3. MRI data acquisition 

Both cohorts underwent magnetic resonance imaging (MRI) scans using a 3T MRI scanner (United Imaging Medical Systems, 
Shanghai, China) equipped with a 12-channel flexible head coil. The first cohort was scanned on the uMR780 scanner, while the second 
cohort utilized the uMR790 scanner. The sequences and parameters were identical in both the first and second cohorts. The echo- 
planar imaging sequence was employed to record the remaining fMRI images using the following parameters: repetition time (TR) 
= 2 s, echo time (TE) = 30 ms, flip angle = 90◦, matrix size = 64 × 64, 33 slices, slice thickness = 4 mm, superior-inferior field-of-view 
= 256 mm, and 240 volumes. A 3D-T1-weighted fast spoiled gradient echo sequence was used to obtain structural images, and the 
parameters were as follows: TR = 2050 ms, TE = 3.8 ms, flip angle = 9◦, field of view = 220 × 220 mm2, matrix size = 256 × 256, 160 
slices, and slice thickness = 1.0 mm. A cushion was inserted in the coil to decrease movement and stabilize the head. The participants 
were told to shut their eyes and relax, but not sleep, while not thinking about anything. 

2.4. fMRI data preprocessing 

Fig. 1 shows the flow diagram of the analysis technique used in the current study. The Data Processing Assistant for Resting-State 
fMRI software (http://rfmri.org/DPABI) on the MATLAB 2013b (https://www.mathworks.com/) platform was used to preprocess the 
functional resting-state data. The preprocessing steps for each individual’s functional resting-state were as follows. Images from the 
initial ten time points were eliminated, while the remaining 230 time points were utilized for data analysis. To correct head motion, the 
timing and realignment of the slices were carried out, ensuring that no more than 2.0 mm or 2.0◦ were observed in the translation or 
rotation motion of any given data. The co-registered functional images were subjected to spatial normalization in the Montreal 
Neurological Institute’s space and then resampled into 3-mm cubic voxels. To mitigate the impact of low-frequency drifts, we per-
formed a nuisance covariate regression that included the white matter signal, cerebrospinal fluid signal, and 24 head-motion 
parameters. 

2.5. Calculation of rs-fMRI indices of dynamics 

Five rs-fMRI indices were used in the concordance analysis, which were fALFF, ReHo, VMHC, DC, and GSC. 

2.5.1. fALFF 
ALFF was calculated by taking the mean amplitude of a time series in a specific frequency range (0.01–0.1 Hz) following Fourier 

Fig. 1. Flowchart of this study. Abbreviations: ROI, region of interest.  
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transformation [30], while the fALFF value was calculated as the ratio of low-frequency power spectrum (0.01–0.1 Hz) to the total 
power spectrum within the specified frequency range [31]. Due to the robust correlation observed between ALFF and fALFF, we 
selected fALFF for the concordance analysis due to its heightened sensitivity and specificity in identifying spontaneous brain activity 
[32]. 

2.5.2. ReHo 
ReHo was employed to quantify the synchronization of neural activity within a local brain area over a given period, defined as 

Kendall’s W coefficient of concordance between the time series of a particular voxel and those of its immediate neighbors (26 voxels) 
[33]. 

2.5.3. VMHC 
The BOLD signal time-series Pearson correlation coefficient between particular voxels in the symmetrical areas of the left and right 

hemispheres was employed to determine the VMHC [34]. 

2.5.4. DC 
DC is defined by the number of edges connected to a node in binary graphs or the total weight of the edges connected to a node in 

weighted graphs. In functional connectivity studies of the brain, a common method is to calculate the Pearson correlation coefficients 
between BOLD time series of various brain regions (or voxels) to obtain a grey matter functional connectivity matrix. The DC rep-
resents the cumulative count of connections exceeding a correlation coefficient of 0.25 throughout all its associated edges for each 
voxel [35]. 

2.5.5. GSC 
The mean time series of all voxels within the group-level mask was first calculated by employing the GSC as the global signal. 

Subsequently, the Pearson correlation coefficient between the time series of each voxel within the group-level mask and the global 
signal was determined. The GSCorr value used in the subsequent calculations was the standardised score obtained after Fisher-Z 
transformation [36]. 

After these five types of rs-fMRI measures were completed, the Temporal Dynamic Analysis (TDA) toolkit, based on DPABI V6.0, 
was employed to examine the dynamics of these rs-fMRI indices [37]. A Hamming window with a window size of 50 TR and window 
stride of 1 TR was applied to segment the functional images of each participant, and a series of BOLD signal windows were obtained. 
Subsequently, these rs-fMRI metrics for each window were computed. To quantitatively characterise the temporal dynamic features of 
each index, the standard deviation (SD) of each index was calculated for each voxel over time in the whole brain. The SD maps were 
subjected to Z-score normalization using a group mask for statistical analysis. Finally, the normalized SD maps of each dynamic rs-fMRI 
index were smoothed using a Gaussian kernel with a 4 × 4 × 4 mm3 full-width at half maximum (FWHM) in order to improve the 
signal-to-noise ratio. 

2.6. Volume-wise and voxel-wise concordance 

Kendall’s W method was used to assess volume- and voxel-wise concordance. This non-parametric statistic does not make any 
assumptions regarding the distribution and remains unaffected by the magnitude of disparities among the five dynamic rs-fMRI indices 
(including ALFF, ReHo, DC, VMHC, and GSC) [23]. Two types of concordance indices were calculated: 1) Volume-wise concordance 
index: first, for each window, the Kendall W value was computed for the five indices spanning across voxels. The average value of the 
volume-wise concordance for each participant was then calculated for all time windows and used as the basis for the results. 2) 
Voxel-wise concordance index: the voxel-wise concordance between the time windows for each participant was calculated. To 
facilitate subsequent analyses, a Gaussian kernel with an FWHM of 4 mm was used to smooth the voxel-wise concordance maps [38]. 

2.7. Multivoxel pattern analysis 

We utilized the Pattern Recognition for Neuroimaging Toolbox (PRoNTo v2.0; http://www.mlnl.cs.ucl.ac.uk/pronto/) within the 
MATLAB environment to identify brain regions exhibiting the greatest discriminatory power in differentiating patients with MwoA 
from HCs. For a detailed description of the MVPA technique, refer to Schrouff et al. [39]. Briefly, the main steps included the following. 
(a) Data and design: the voxel-wise concordance maps of patients with MwoA and HCs was loaded. (b) Prepare the future set: 3D 
images derived from voxel-wise concordance maps were transformed into feature vectors. This process involved vectorizing each 
image, where each element in the resulting vector corresponded to the intensity of its corresponding voxel in the original 3D image. 
Thus, voxel-wise concordance values were considered features, and the average DARTEL GM mask was utilized to exclude features of 
no interest. (c) Specify and run the model: the participants were split into training and testing sets. Given the limited number of 
participants in this study, leave-one-subject-out-cross-validation (LOSOCV) was adopted to assess the generalisability of the classifi-
cation model. Specifically, one sample (based on a voxel-wise concordance map) was extracted from the dataset as the testing data, 
whereas the remaining dataset was used to train the classification model. This process was repeated for each participant to obtain a 
relatively unbiased estimate of the generalisation rates. The PRoNTo software automatically handled the aforementioned process and 
generated the PRoNTo (PRT) maps. (d) Compute weights: the weights of various brain regions were calculated using the Anatomical 
Automatic Labelling template. (e) Display results: to assess the classification models’ performance following PRT diagram loading, 
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sensitivity, specificity, accuracy, and receiver operating characteristic curves were generated. Each classification was iterated 1000 
times, and corrected p-values were employed to determine the statistical significance. (f) Display weights: following the weight 
calculation, the PRT diagram was loaded, and the weights of each region of interest, according to the atlas definition, were displayed. 
The contributions of the regions to the classification models were sorted and listed in descending order. We computed the vector 
weights and listed the top 10 % [40] of regions with a cluster size of >100 voxels to investigate their classification abilities [41]. In this 
study, the validation of machine learning results derived from the first cohort was conducted using the second cohort. We first applied 
MVPA to classify patients in the first cohort, identifying the top 10 % weighted regions, which were then used as features in an SVM 
analysis on patients in the second cohort to assess the robustness of these regions. 

2.8. Statistical analysis 

SPSS software (version 25.0; SPSS Inc., Chicago, IL, USA) was used to assess the demographic attributes of the MwoA and HCs 
groups. A two-sample t-test was employed to examine the disparity in age between the two cohorts, while the χ2 test was utilized to 
assess the disparity in sex between the two groups. Intergroup differences in volume-wise concordance were analyzed using a two- 
sample t-test, with age, sex, and head motion as covariates. Statistical significance was set at P value < 0.05. Partial correlations 
were examined to investigate the association between the volumetric concordance of patients with MwoA exhibiting notable inter-
group disparities and clinical parameters (e.g., disease duration, migraine attack frequency, VAS, SAS, SDS, and MSQ scores) while 
adjusting for covariates like age, gender, and head motion. Bonferroni correction was applied for multiple comparisons, with the 
significance level set at p < 0.05/6. 

3. Results 

3.1. Demographics and clinical characteristics 

Six subjects were removed after head motion control (three patients with MwoA and one HC in cohort 1 and two patients with 
MwoA in cohort 2). Ultimately, this study enrolled 32 participants with MwoA and 33 HCs in cohort 1, as well as 36 participants with 
MwoA and 32 HCs in cohort 2. Table 1 displays the demographic and clinical profiles of the participants. No statistically significant 
differences were observed between the two patient groups concerning age, gender, educational level, height, and weight. 

3.2. Volume-wise concordance alterations in patients with MwoA 

Patients with MwoA exhibited a significantly decreased mean value of volume-wise concordance compared to that of HCs (t =
9.949, P < 0.001) (Fig. 2A). Additionally, we observed a significant negative association between the mean value of volume-wise 
concordance and frequency of migraine attack (r = − 0.472, P = 0.006) (Fig. 2B). There were no statistically significant correla-
tions found among the other clinical variables, including VAS score, SAS score, SDS score, MSQ score, and disease duration. 

3.3. Classification performances for the voxel-wise concordance alterations 

In the first cohort, voxel-wise concordance exhibited comparable spatial distributions in both HCs and patients with MwoAs, 
characterised by extensive grey matter regions that displayed significant temporal concordance (Fig. 3). The MVPA classifier might be 
employed to differentiate between patients with MwoA and HCs, as evidenced by its 0.83 AUC, 81.54 % accuracy (permutation P <
0.001), 90.63 % sensitivity, and 72.73 % specificity, which were determined through voxel-wise concordance spatial distributions 
(Fig. 4A–C). The most informative regions for classifying patients with MwoA and HCs were the right thalamus (Thalamus_R), right 

Table 1 
The demographic and clinical characteristics of all participants.  

Characteristics Cohort 1 P Cohort 2 P 

MWoA (n = 32) HCs (n = 33) MWoA (n = 36) HCs (n = 32) 

Age (yr) 37.44 ± 10.17 33.26 ± 5.76 0.337 34.57 ± 11.48 31.23 ± 10.88 0.478 
Gender (male/female) 5/27 7/26 0.751 9/27 7/25 0.783 
Education (years) 15.49 ± 3.03 15.76 ± 1.76 0.341 15.36 ± 2.67 16.11 ± 2.84 0.324 
Height (cm) 162.16 ± 6.21 165.12 ± 8.11 0.432 163.46 ± 5.97 164.87 ± 9.12 0.612 
Weight (kg) 52.14 ± 6.44 53.89 ± 7.79 0.315 51.23 ± 6.22 54.15 ± 6.32 0.267 
Disease duration (years) 15.45 ± 11.48 NA – 16.05 ± 11.28 NA – 
Frequency of migraine attack (days/month) 4.25 ± 1.95 NA – 4.98 ± 1.24 NA – 
VAS 6.65 ± 1.26 NA – 7.14 ± 1.84 NA – 
SAS 45.23 ± 7.14 NA – 47.21 ± 8.08 NA – 
SDS 49.35 ± 8.39 NA – 50.31 ± 8.67 NA – 
MSQ scores 62.11 ± 17.55 NA – 62.35 ± 18.66 NA – 

Abbreviations: MWoA, migraine without aura; HCs, healthy controls; VAS, Visual Analogue Scale; SAS, Self-Rating Anxiety Scale; SDS, Self-Rating 
Depression Scale; MSQ, Migraine-Specific Quality of Life Questionnaire. 
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cerebellar Crus II, left insula (Insula_L), left precentral gyrus (Precentral_L), right cuneus (Cuneus_R), and left inferior occipital gyrus 
(Occipital_Inf_L) (Table 2). The classification models trained on voxel-wise concordance in the first cohort were applied immediately to 
the second cohort, which reported 0.77 AUC of the classifier, 76.47 % accuracy (permutation P < 0.001), 83.33 % sensitivity, and 
68.75 % specificity (Fig. S1), demonstrating strong generalisability in an independent cohort. 

4. Discussion 

In this study, we investigated the aberrant concordance of intrinsic brain activity in patients with MwoA using a dynamic analysis of 
rs-fMRI data. Specifically, the major findings were as follows. (i) Patients with MwoA showed a decrease in volume-wise concordance 
compared to that of HCs, which was negatively correlated with migraine attack frequency. This indicated a significant decline in 
functional integration ability in patients with MwoA. (ii) The image-based MVPA technique using voxel-wise concordance maps can 
differentiate between patients with MwoA and HCs in another independent patient cohort. These results indicate that spatial and 
temporal decoupling of multiple rs fMRI indicators could contribute to the understanding of the underlying neuropathological 
mechanisms in MwoA. 

Previous rs-fMRI studies using ALFF, fALFF, and ReHo as features have shown that patients with MwoA exhibit widespread 
spontaneous brain activity alterations in multiple brain regions compared to those of HCs [42–49]. These brain regions include the 
middle temporal gyrus, frontal cortex, and cerebellum. However, most studies on migraine have concentrated on utilizing a single 
rs-fMRI measure, and the abnormal brain regions identified in these studies were significantly different. Multiple factors have 
contributed to these inconsistent results. Heterogeneity may be introduced objectively using different analytical techniques with 
different theoretical assumptions. These analyses, with different sensitivities and specificities, made it difficult to reach a consensus on 
the brain regions affected by migraines. Various rs-fMRI indicators reveal distinct facets of spontaneous brain activity. The consistency 
among these metrics demonstrates the degree of integration at various functional levels [23]. The concordance of rs-fMRI metrics 
provides a quantitative method to describe the consistency among a set of basic indicators, which might help characterise spontaneous 
neural activity from multiple complementary perspectives. Our results showed that patients with MwoAs had significantly lower mean 
volume-wise concordance than that of HCs, indicating the presence of decreased coherence and synchronization in these patients. The 
results of this study are in agreement with previous research indicating a decreased synchronization of spontaneous neural activity 
between the default mode, salience, and sensory-motor networks in MwoA [50]. Additionally, we observed a negative correlation 
between the mean value of volume-wise concordance and the frequency of migraine attacks. Therefore, a decreased concordance may 

Fig. 2. Volume-wise concordance changes in patients with MwoA. (A) Comparison of mean volume-wise concordance indices between patients with 
MwoA and HCs. (B) Correlation between volume-wise concordance and frequency of migraine attack in patients with MwoA. 

Fig. 3. Spatial distribution maps of voxel-wise concordance. The voxel-wise concordance maps are averaged across subjects in patients with MwoA 
and HCs, respectively. Abbreviations: HC, healthy controls; PT, Patient; L, left; R, right. 

Y. Chen et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e30008

7

be associated with increased disease severity. The observed negative correlation between the mean value of volume-wise concordance 
and the frequency of migraine attacks supported the theory that recurrent migraines contributed to cumulative neurological damage 
[51,52]. It was worth noting that the volume-wise concordance method allowed for a global description of multiple functional in-
dicators, but lacked regional specificity, which might limit its ability to identify functional abnormalities in specific brain regions. 

In this study, we investigated the differences in voxel-wise concordance between patients with MwoA and HCs and developed a 
machine learning-based automatic classification method to improve the diagnostic efficiency of MwoA. Using fMRI and an automated 
data analysis pipeline, we compared the neuronal activity patterns of patients with MwoA and HCs in various brain regions at rest and 
found significant differences in some important areas, although the voxel-wise concordance was similar. Based on these differences, we 
trained an MVPA classifier that could effectively distinguish between patients with MwoA and HCs and demonstrated good gener-
alisation performance in an independent test group. These results offer fresh perspectives on the neurobiological mechanisms of 
MwoA, aid in early diagnosis, and provide treatment strategies for this disease. Specifically, this study revealed differences in neuronal 
activity patterns in certain brain regions, including the thalamus, cerebellar Crus II, insula, precentral gyrus, cuneus, and inferior 
occipital gyrus. These brain regions play crucial roles in the neurobiological mechanisms of MwoA and have been confirmed in 
previous studies. For instance, changes in thalamic function during migraines can be understood by considering the essential role of the 
thalamus as a key sensorial hub [53]. The insula may serve as a crucial node in the pathophysiology of migraines and play a role in pain 
processing [54]. The cuneus and the inferior occipital gyrus are parts of the visual network. Heightened reactivity of the advanced 
visual processing network to painful trigeminal nerve stimulation in migraines has been previously reported [55]. The cerebellar Crus 
II may be the hub of the cerebellar system [56–58]; nevertheless, there is limited literature on the association between cerebellar 
function and MwoA. This study highlights the significant involvement of cerebellar Crus II in the central processing of pain perception 
in MwoA, as evidenced by local brain activity analysis. Furthermore, the MVPA classifier used in this study achieved significant results, 
with an AUC of 0.83 and an accuracy of 81.54 % for the automatic classification of MwoA patients and HCs. Compared with traditional 
methods, the MVPA classifier leveraged information from multiple brain regions and used data-driven feature selection algorithms to 
identify the most discriminative brain regions. It also allowed for automatic updating of feature selection and classifier settings based 
on changes in data to achieve robustness. Finally, the classifier’s generalisation performance was validated on an independent test 
group, showing that it maintained good performance with an AUC of 0.77 and an accuracy of 76.47 %. This demonstrated the potential 
clinical applications and robust generalisation capabilities of the classifier. Our findings contributed to the growing body of literature 
and supported the use of imaging techniques, such as fMRI to better understand the neurobiological mechanisms of migraine. 
Moreover, these results added to the evidence that support the use of machine learning algorithms for the classification of neurological 
disorders based on imaging data [22,47,59–61]. With the increasing availability of large-scale datasets, machine learning-based 
methods have become important tools for the diagnosis and treatment of neurological disorders. In summary, this study opened 
new perspectives on the neurobiological mechanisms of MwoAs and demonstrated the potential of machine learning-based techniques 
for improved diagnostic accuracy. Further research is warranted to confirm these findings and explore their clinical applications. 

Fig. 4. Discriminant results from the classification based on spatial distributions of the voxel-wise concordance. (A) Scatterplots show the 
discrimination between the two groups. (B) Histograms of the function values show the discrimination between the two groups. (C) ROC curve 
shows the performance of classifier. 

Table 2 
Represent 10 % of the total weights for the classification between patients with MwoA with and HCs according to normalized weights 
per region.  

Brain regions Peak MNI (mm) Voxels % NW 

X Y Z 

Thalamus_R 12.0 − 18.0 − 6.0 315 2.286 
Right cerebellar Crus II 30.0 − 75.0 − 39.0 235 2.132 
Insula_L − 36.0 9.0 3.0 297 1.846 
Precentral_L − 39.0 − 3.0 51.0 200 1.775 
Cuneus_R 12.0 − 78.0 27.0 263 1.565 
Occipital_Inf_L − 39.0 − 78.0 − 6.0 216 1.264 

Abbreviations: Thalamus_R, right thalamus; Insula_L, left insula; Precentral_L, left precentral gyrus; Cuneus_R, right cuneus; Occipi-
tal_Inf_L, left inferior occipital gyrus; % NW: Percentage of the total normalized weights that each anatomical region explains. 
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5. Limitation 

There were several limitations to this study. Firstly, the size of the sample was limited, restricting the generalisability of our 
conclusions. Hence, a study employing the identical approach with an expanded sample size is essential to verify the current outcomes. 
Secondly, using MVPA, we identified the brain regions that are most discriminative. However, future studies should consider the 
valuable information that may be found in the excluded brain regions. Thirdly, this study had a cross-sectional design and thus could 
not establish causal relationships. A longitudinal investigation of volumetric changes in patients with MwoA will provide evidence of 
the progression of disease-related brain changes and identify possible targets for preventive treatment strategies; future studies could 
include this missing aspect. Finally, we selected only five commonly used rs-fMRI indices for concordance analysis without performing 
seed-based functional connectivity or independent component analysis. Future research endeavors should prioritize the inclusion of 
additional fMRI indices for a comprehensive analysis. 

6. Conclusion 

This study utilized a dynamic analysis approach to investigate the variability and concordance of rs-fMRI indices in patients with 
MwoA. The spatial and temporal coupling relationships among these indicators were disrupted. We found that MVPA, based on voxel- 
wise concordance alterations, could stably detect the abnormal functional changes in patients with MwoA at the individual level. These 
findings offer new perspectives on the neuropathological mechanisms underlying MwoA. 
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Abbreviations 

MwoA migraine without aura 
HCs healthy controls 
MVPA multi-voxel pattern analysis 
SVM support vector machine 
fMRI functional MRI 
BOLD blood-oxygen-level dependent 
FC functional connectivity 
EC effective connectivity 
ALFF Amplitude of low-frequency fluctuation 
ReHo Regional homogeneity 
VAS visual analogue scale 
SAS Self-Rating Anxiety Scale 
SDS Self-Rating Depression Scale 
MSQ Migraine-Specific Quality of Life Questionnaire scores 
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MNI Montreal Neurological Institute 
fALFF Fractional amplitude of low-frequency fluctuation 
VMHC Voxel-mirrored homotopic connectivity 
DC Degree centrality 
GSC Global signal connectivity 
TDA Temporal Dynamic Analysis 
ROI region of interest 
SD standard deviation 
FWHM full-width at half maximum 
LOSOCV leave-one-subject-out-cross-validation 
MSE mean squared error 
Thalamus_R right thalamus 
Insula_L left insula 
Precentral_L left precentral gyrus 
Cuneus_R right cuneus 
Occipital_Inf_L left inferior occipital gyrus 
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