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A biological research framework to define Alzheimer’ disease with dichotomized biomarker measurement was proposed by
National Institute on Aging–Alzheimer’s Association (NIA–AA). However, it cannot characterize the hierarchy spreading pattern of
tau pathology. To reflect in vivo tau progression using biomarker, we constructed a refined topographic 18F-AV-1451 tau PET
staging scheme with longitudinal clinical validation. Seven hundred and thirty-four participants with baseline 18F-AV-1451 tau PET
(baseline age 73.9 ± 7.7 years, 375 female) were stratified into five stages by a topographic PET staging scheme. Cognitive
trajectories and clinical progression were compared across stages with or without further dichotomy of amyloid status, using linear
mixed-effect models and Cox proportional hazard models. Significant cognitive decline was first observed in stage 1 when tau
levels only increased in transentorhinal regions. Rates of cognitive decline and clinical progression accelerated from stage 2 to
stage 3 and stage 4. Higher stages were also associated with greater CSF phosphorylated tau and total tau concentrations from
stage 1. Abnormal tau accumulation did not appear with normal β-amyloid in neocortical regions but prompt cognitive decline by
interacting with β-amyloid in temporal regions. Highly accumulated tau in temporal regions independently led to cognitive
deterioration. Topographic PET staging scheme have potentials in early diagnosis, predicting disease progression, and studying
disease mechanism. Characteristic tau spreading pattern in Alzheimer’s disease could be illustrated with biomarker measurement
under NIA–AA framework. Clinical–neuroimaging–neuropathological studies in other cohorts are needed to validate these findings.
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INTRODUCTION
The neuropathological hallmarks of Alzheimer’s disease are the
extracellular β-amyloid deposition and neurofibrillary tangles (NFTs) of
intracellular misfolded phosphorylated tau (p-tau) protein. Unlike the
diffuse distribution of amyloid plaques in the neocortex [1], the
characteristic presence of NFTs indicated a hierarchical spreading
pattern of tau pathology. In a landmark publication, Braak stages of
tau pathology were proposed by Braak H and Braak E to illustrate how
Alzheimer’s disease-related tau began in the transentorhinal cortex,
then extended to the inferior and lateral temporal cortices, to the
posterior cingulate cortex, and widely spread in isocortical cerebral
areas in end-stage disease [2]. Replications of these findings were
achieved in subsequent researches [3, 4], and eventually incorporated
them into Alzheimer’s disease neuropathological criteria [5].
The recent advent of positron-emission tomography (PET) tau

tracers enables tau pathology to be visualized, mapped, quanti-
fied, and examined in relation to cognition. Among the various tau
PET ligands, flortaucipir (FTP; 18F-AV-1451) is the by far most
widely studied one, selectively binding to paired helical filament
tau within NFTs with high affinity [6]. Previously studies have
demonstrated that flortaucipir retention has consistent patterns
with the known neuropathological topology of NFTs [7] and that

FTP signal is significantly related to cognition in both cognitively
unimpaired and cognitively impaired individuals [8, 9].
The wide application of PET tracers and other cerebrospinal

fluid (CSF) or plasma biomarkers in research has promoted the
establishment of a classification framework of Alzheimer’s disease
[10, 11]. In 2018, the National Institute on Aging–Alzheimer’s
Association (NIA–AA) updated a research framework completely
using objective biomarker measurement to define Alzheimer’s
disease without clinical symptoms. This framework contributes to
reflecting the biological nature of the disease, in which the status
of β-amyloid plaque (labeled as A), of paired helical filament tau
(labeled as T), and of neurodegeneration or neuronal injury
(labeled as N) are dichotomized as normal or abnormal to
determine the biomarker profiles [12]. However, the dichotomiza-
tion of the tau biomarker failed to characterize the hierarchical
spreading features of tau pathology. A more desirable approach
would be establishing image staging schemes by examining both
the quantity and locations of tau tracer retention in PET. This also
offered practice in the definition of tau abnormality for identifying
Alzheimer’s disease, for Alzheimer’s disease-related tau patterns
could be summarized and separated from normal controls. To
date, a few studies have been dedicated to developing such
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schemes to stage participants with tau PET, of which the common
limitation is the lack of longitudinal clinical outcomes for various
stages [13–15]. Unlike cross-sectional data focusing on measure-
ment at a time, longitudinal data provide a more accurate method
revealing differences by discovering different rates of clinical
deterioration in long-term observation. Hence evaluating clinical
trajectories in relation to tau stages using PET is critical for
validating the clinical relevance of the staging scheme.
In this study, we first used one topographic staging scheme

with flortaucipir PET to assign individuals into five stages. The
primary goal was to describe and compare cognitive changes,
clinical progressions, and biomarker profiles across stages. The
longitudinally validated scheme may improve the precision of AD
definition using A/T/N biomarkers and show the feasibility of
predicting various disease progressions with in vivo tau imaging.

METHODS
The data used in this study were download from the online repository of
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu/).
The ADNI was launched in 2003 as a public–private partnership with the
primary goal of testing whether serial magnetic resonance imaging, PET, and
various clinical, biologic, and neuropsychological markers can be combined
to measure the progression of mild cognitive impairment and early AD
dementia. Each ADNI study site received approval from its institutional
reviewed board. Written informed consent was obtained from all research
participants. As flortaucipir scan was not performed in ADNI before 2015, the
visit point of the initial flortaucipir scan was defined as the baseline.

Participants
Individuals who underwent a flortaucipir scan with a contemporary clinical
diagnosis of cognitive normal (CN), mild cognitive impairment (MCI), or
dementia were included in our study. As a result, 734 participants were
included in our study. Details of inclusion information are presented in
Supplementary Fig. 1. Participants diagnosed with MCI were further
classified into “Early MCI (EMCI)” and “Late MCI(LMCI)” based on the
Wechsler Memory Scale-Revised (WMS-R) Logical Memory II story A score
according to the ADNI criteria [16].

PET imaging
Tau and amyloid PET imaging in the ADNI was performed using flortaucipir
and florbetapir (18F-AV-45) separately. The imaging data downloaded from
the ADNI dataset had been fully preprocessed using a standardized pipeline
[17]. In brief, magnetic resonance imaging (MRI) T1-weighted magnetization
prepared rapid acquisition gradient echo(MPRAGE) image obtained from
each participant was first segmented and parcellated with Freesurfer (version
5.3.0) to establish a set of regions of interest (ROIs) in native space. Next,
using SPM (version 5), the PET imaging was co-registered to the MPRAGE
image which was collected at the same visit point, and the mean tracer
uptake was calculated within each ROI. Intensity normalized standard uptake
value ratio (SUVr) was generated by dividing regional tracer means by
reference regions which were defined with inferior cerebellum gray matter
for tau PET and whole cerebellum for amyloid PET. Composite SUVr of meta-
ROI was calculated in a volume-weighted approach. Specifically, three
composite SUVr of ROIs (Braak I/II ROI, Braak III/IV ROI, and Braak V/VI ROI) was
generated which approximated the anatomical definitions of Braak stages I/II
(transentorhinal stages), Braak stages III/IV (limbic stages), and Braak stages V/
VI (neocortical stages) [18]. FreeSurfer regions that made up each Braak
composite can be found in Supplementary Table 1. Values from four cortical
gray matter regions (frontal, anterior cingulate, precuneus, and parietal
cortex) were averaged to estimate the global florbetapir SUVr and a cutoff of
1.11 was used to determine amyloid abnormal (A+ ) and normal (A−) [19].
Considering that each individual may have multiple florbetapir scans, only
individuals with all scans showing under-cutoff global SUVrs are classified as
amyloid normal. To reduce the contamination from regions where the off-
target binding was frequently observed, flortaucipir data only with partial
volume correction (PVC) were included in the analysis.

Tau staging
We assigned participants into five stages based on the composite SUVrs of
Braak ROIs at the first flortaucipir scan (Supplementary Fig. 2). In brief,

participants with Braak V/VI ROI SUVr >1.873 were firstly assigned to the
highest stage (stage 4). Second, the remaining participants with Braak III/VI
ROI SUVr >1.523 were classified into stage 3. Next, participants with Braak
III/VI ROI SUVr >1.307 fell into the intermediate (stage 2) and then Braak I/II
ROI SUVr > 1.129 into stage 1. Lastly, those who remained were included in
stage 0 as their Braak I/II ROI SUVr ≤ 1.129.
This staging strategy and its thresholds mainly referred to a four-level

Braak ROI-based staging approach proposed by Schöll et al. and Maass
et al. [13, 18]. In the original work, a conditional inference tree was
employed to classify subjects with regard to their clinical diagnosis (i.e.,
young controls, older cognitively normal controls, Alzheimer’s disease).
An SUVr threshold in Braak V/VI ROI was first derived with the whole
sample entering the model. The participants above this threshold were
classified as the highest stage. After the removal of those participants,
the staging and threshold-deriving procedure continued with the next
Braak ROI (III/IV). Continuing this approach, three thresholds could be
obtained and those reaching no threshold were defined as the lowest
stage. More details in the generation of the thresholds could be found in
their work.
We initially applied the thresholds (Braak V/VI ROI SUVr >1.873, Braak III/VI

ROI SUVr >1.307, Braak I/II ROI SUVr > 1.129) in our data to classify participants
into four groups. However, the result showed a predominantly large sample
size in the group of Braak V/VI ROI SUVr≤1.873 and Braak III/VI ROI SUVr
>1.304 (Supplementary Fig. 3). We suspected intergroup heterogeneity and
thus further stratified the individuals with an additional threshold (Braak III/VI
ROI SUVr >1.523) generated by the mixture modeling method [20]. This also
creates more balanced sample sizes across stages for subsequent analyses.

Measurement of CSF biomarkers and plasma NFL
CSF was collected from Lumbar punctures (LPs) in a standardized
procedure as described in the ADNI procedures manual (http://adni.loni.
usc.edu/). Samples were properly centrifuged, aliquoted to 500 μL in
polypropylene tubes, frozen within 1 h after collection, shipped overnight
on dry ice to the ADNI Biomarker Core laboratory, and stored at −80 °C.
Aβ42, t-tau, and p-tau were measured with the corresponding Elecsys
immunoassays on the Elecsys cobas e 601 analyzer as previously described
[21]. A cutoff of 1098 pg/ml for CSF Aβ42 [22] was used to define amyloid
positivity if the florbetapir scan was not available for the individual. Blood
samples were also collected, processed, aliquoted, and frozen at −80 °C
according to standardized procedures. Plasma neurofilament light chains
(NFL) were analyzed using the ultrasensitive Single Molecule Array (Simoa)
technique as previously described [23]. The measuring results within 2-year
interval were included in the analysis at baseline.

Measurement of cognition
Mini-mental state examination (MMSE) was used to evaluate global
cognition while composite measures developed by ADNI were also used to
reflect the memory (ADNI-MEM) and executive function (ADNI-EF) [24, 25].
The composite measure was generated with a part of RAVLT, ADAS-Cog,
Logical Memory, and MMSE for ADNI-MEM and a part of Category Fluency,
Trails A and B, Digit span backward, WAIS-R Digit Symbol Substitution, and
5 Clock Drawing items for ADNI-EF. Cognitive data acquired before and
after the first flortaucipir scan were both included in longitudinal analyses.

Statistical analyses
Baseline differences between stages were assessed using tests appropriate
for the distribution of each variable and included ANOVA, Kruskal–Wallis, chi-
square, or Fisher’s exact test. A test for linear trend across stages was
conducted for variables that did not show significant results between stages.
Linear mixed-effects models were used to assess how cognition change

over time across different tau stages. Rates of cognition change were
estimated via the interaction between time and predefined group. In the
first model, only the tau stage interacting with time was included in the
model. In addition, in a second model, an interaction between tau stage,
β-amyloid status, and time was included to investigate how the effect of
the tau stage was potentially affected by the β-amyloid status. All the
linear mixed-effects models in analyses included participant-specific
random intercepts and slopes. We also included as covariates age at
baseline, gender, years of education, and APOE ε4 counts in all models.
MMSE was log-transformed so that estimated change could be interpreted
on an annual percentage scale. Estimates and 95% CIs (confidence
intervals) were based on 10,000-iteration parametric bootstrapping of the
fitted models.
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To assess the risk of clinical progression in the CN group and in the MCI
group, unadjusted Kaplan–Meier plots were separately constructed.
Clinical Dementia Rate–Global Score (CDR-GS) of 0.5 or greater was
determined as endpoint event for the CN participants. The endpoint event
for the MCI group was progressive cognitive deterioration [26], defined as
the diagnosis of dementia, MMSE ≤ 24 at last visit or difference of MMSE ≥
4 between the baseline and the last visit. In addition, we ran multivariate
Cox proportional hazards models adjusted for age, gender, years of
education, and APOE ε4 to compare the progression rates between stages.
All statistical analyses were performed using the R statistical software

(version 3.5.1). Two-sided P values less than 0.05 were considered
statistically significant.

RESULTS
We included 734 participants in our study (see the flow chart of
study participants in Supplementary Fig. 1). The mean (SD,
standard deviation) age of all the participants was 73.9 (7.69)
years; 51.1% were women; 98.8% had more than 12 years of
education; 37.2% had at least one APOE ε4 allele.
The demographic, clinical, imaging, and CSF biomarkers

characteristics of the included participants by tau stage are
shown in Table 1, by amyloid status and tau stage in
Supplementary Table 2. Of the 734 participants included, 48
(6.5%) participants were classified as stage 4, 134 (18.3%) as stage
3, 396 (54.0%) as stage 2, 81 (11.0%) as stage 1, and 75 (10.2%) as
stage 0 (see staging flow chart in Supplementary Fig. 3). In
general, tau burden increased significantly across various regions
from stage 0 to stage 4 (Table 1 and Fig. 1).

Distribution of stages in four clinical diagnostic groups
The proportion of stage 2 (62.6%) was highest in the CN group
compared with those of other stages. Stage 2 (57.3%) or stage 3
(23.7%) accounted for the most part of the EMCI group. Most
participants with LMCI were seen in stage 2 (42.3%) or stage 3
(32.7%), while most diagnosed with dementia were classified in
stage 3 (40.3%) or stage 4 (36.4%). There was a decreasing pattern
among stage 0, stage 1, and stage 2 and an increasing pattern
among stage 3 and stage 4 when the clinical diagnosis became
more severe (Fig. 2).

Demographic, clinical, and PET imaging characteristics at
baseline
All stages had comparable gender ratios but differed by age, years
of education, and APOE ε4 counts. Dementia, MCI, and CN were
predominant in stage 4, stage 3, and stage 0, 1, or 2, respectively.
The diagnostic profile across stages among participants with
abnormal amyloid was similar to the whole sample. Most MCI
participants with abnormal amyloid were seen in stage 3
(Supplementary Table 2).
Overall, stage 0, 1, and 2 had similar cognitive levels at baseline (P

> 0.05 for all pairwise comparisons for these three stages in terms of
MMSE and memory composite), which were significantly better
compared with stage 3 and stage 4. Participants in stage 4 had the
worst performance on all three cognition measurements. Meanwhile,
stage 4 also had the highest florbetapir SUVr, followed by stage 3
and stage 2, 1, or 0. Intriguingly, all the participants in stage 4 were
amyloid positive. In total, 84.1% of the participant in stage 3 with
positive amyloid status were observed, which was significantly
different from the proportions observed in stages 0, 1, or 2.

Biomarkers in CSF and plasma
Individuals in stage 3 and stage 4 respectively had significantly
higher CSF p-tau levels than individuals in stage 0, 1, or 2, while no
significant difference was found between stage 3 and stage 4 (Fig.
3A). CSF p-tau level in stage 2 was also significantly higher
compared with stage 1. These results were the same across stages
for CSF t-tau (Fig. 3B). In terms of CSF Aβ42 levels, stage 3 and
stage 4 were significantly lower when compared with stage 0, 1, or

2, and stage 4 marginally differed from stage 3 (P= 0.057) (Fig.
3C). As we do not detect significant change among stages for
plasma NFL (Table 1, P= 0.095), a dose-response trend was
examined and a significant result was identified with higher
plasma NFL levels for higher stages (P for trend= 0.008) (Fig. 3D).

Longitudinal cognition in each tau stage
Potential cognitive changes and cognitive trajectory differences
between stages were investigated by linear mixed-effects models
(Fig. 4) and by plotting composites versus age stratified by stage (Fig.
5). The numbers of participants included in linear mixed-effects
models for different cognitive measures are shown in Supplementary
Table 3. Across five stages in all participants, significant declines were
observed in stages 1, 2, 3, and 4 for memory composite (P ≤ 0.001 for
all four stages), in stages 2, 3, and 4 for EF composite (P= 0.006 for
stage 2 and P< 0.001 for stage 3 and stage 4), and in stage 3 and
stage 4 for MMSE score (both P< 0.001). Compared with other
stages, stage 4 always showed accelerated deterioration for all three
cognitive measures (all P< 10−7). Participants assigned in stage 3 also
showed faster rates of cognitive decline than those in stage 2 (P
values ranging from 2.96 × 10−5 to 1.00 × 10−3) and in stage 0 (P
values ranging from 1.00 × 10−3 to 0.02). While rates of MMSE
change differed between stage 3 and stage 1 (P= 3.04 × 10−3), both
stages have comparable rates of memory (P= 0.22) and EF (P= 0.17)
decline. No significant differences were found in rates of cognitive
change between stages 0, 1, and 2 (all P values of group-wise
difference >0.05).
These results similarly applied to the participants with abnormal

amyloid status only except for the memory composite where
stage 2 and stage 1 became significantly different from stage 0.
Significant differences were remarkably less seen among indivi-
duals with normal amyloid status. Only stage 3 showed significant
changes in MMSE score and memory composite. The significant
group-wise difference was only seen between stage 2 and stage 3
for memory composite. Participants with abnormal amyloid in
stage 3 showed a significantly slower memory decline than those
with normal amyloid (Supplementary Table 4).

Clinical progression for each tau stage
A Kaplan–Meier analysis and the corresponding log-rank test are
exhibited in Fig. 6. As no event occurred in stage 0 or stage 1 for
both diagnostic groups, they were not included in analyses. The
results of multivariate Cox regression analyses were shown in
Table 2. We found that individuals in stage 3 (HR (95% CI)= 3.29
(1.09, 9.97), P= 3.53 × 10−2) and stage 4 (HR (95% CI)= 18.7 (3.46,
100.9), P= 6.64 × 10−4) had an increased risk of conversion to
CDR-GS of 0.5 or greater compared with individuals in stage 2. CN
individuals in stage 4 (HR (95% CI)= 4.99 (0.96, 25.8), P= 5.53 ×
10−2) had a marginally increased risk of conversion to GDR-GS ≥
0.5 compared with stage 3.
In MCI patients, compared with stage 2, participants in stage 3

(4.23 (1.68, 10.6), P= 2.20 × 10−3) or stage 4 (HR (95% CI)= 8.99
(2.77, 29.1), P= 2.54 × 10−4) also had an elevated risk of
progressive cognitive deterioration under Cox proportional
hazards models. However, we did not detect differences in
conversion risk among MCI individuals between stage 3 and stage
4 (HR (95% CI)= 1.92 (0.79, 4.68), P= 0.15).

DISCUSSION
In this study, we demonstrated a topographic PET staging scheme
with longitudinal validation. Cognitive decline and clinical
progression were distinct across stages and generally showing
monotonically decreasing patterns from stage 0 to stage 4. The
findings are congruent with the proposed temporal evolution of
tau in Alzheimer’s disease and showed potential in early diagnosis
of Alzheimer’s disease and discriminating different disease
progressions.
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The earliest cognitive decline was detected by memory
composite in stage 1. More importantly, when participants with
abnormal amyloid status were isolated from the full population,
this became significantly different from stage 0 in which no
significant longitudinal change of cognition was observed.
Previous longitudinal and cross-sectional studies using continuous
measures of tau pathology have shown that there was a
relationship between flortaucipir binding in the media temporal
lobe and episodic memory performance, even in CN individuals
[27]. Since memory decline is regarded as a harbinger of future
global cognitive deterioration in Alzheimer’s disease [28], this
means that early increased tau deposit in regions of Braak I/II
stages with abnormal amyloid status already can identify the
individuals whose cognition starts to deteriorate. Thus, the SUVr
threshold in Braak I/II ROI classifying stage 0 and stage 1 might be

considered as the cutoff of tau biomarker to define Alzheimer’s
disease. This point was further supported by more positive results
from stage 2 when tau levels were elevated in extra-medial
temporal regions. Both memory and EF composite exhibited
significant change at this stage. Although stage 2 did not have a
significantly faster rate of memory decline than stage 1, it was
confirmed that the memory cognitive trajectory significantly
distinguished from that of stage 0. The discrepancy was also
ascertained in time-to-event analyses where no endpoint event
occurred in stage 1 and stage 0. Compared with memory
composite, the cognitive measure change and the group-wise
difference became significant later in higher stages for MMSE and
EF composite likely because the affection of other cognitive
domains required tau pathology involvement in wider brain
regions [8, 29]. Evidence from stage 1 and stage 2 was reinforced
by the cross-sectional findings from high stages at baseline, where
MMSE, memory, and EF composite all had significantly degraded
performance, in addition to the high proportions of MCI and
dementia. Worse clinical and cognitive profiles in stage 3 and
stage 4 suggested that cognitive and clinical deterioration might
have already begun in stage 2 or earlier. Incidentally, the mean
CSF p-tau levels of stage 1 or stage 2 were approximate to or even
lower than the known cutoff defining tau abnormality [30, 31].
Taken together, we supposed that the SUVr threshold in Braak I/II
ROI classifying stage 0 and stage 1 could serve as a sensitive cutoff
of tau biomarker in the definition of Alzheimer’s disease.
The topographic PET staging scheme is also valuable in

predicting distinct clinical progression of the disease. A post-
mortem neuropathological study conducted by Qian et al.
discovered that rates of the clinical and cognitive scores change
varied depending on the Braak stage such that high Braak stage
versus low Braak stage had additional cognition decrease per year
[32]. Our analysis paralleled their results, showing that all the
cognitive measures differed significantly between stage 2 and
stage 3 and between stage 3 and stage 4. Furthermore, our Cox
proportional hazard models also exhibited significantly faster
progression rates of stage 4 and stage 3 than that of stage 2. The
comparable progression rates between stage 3 and stage 4 likely
resulted from a relatively short prospective visiting period. Unlike
the longitudinal cognitive analyses, time-to-event analyses have a
higher demand for the long prospective visiting period to detect a
group-wise difference in advanced stages, for it did not include
the individuals with dementia. From a clinical-neuroimaging view,
our results add to the evidence validating in vivo PET staging with
flortaucipir as a surrogate for the postmortem Braak stage.

Fig. 2 Distribution of different tau stages across clinical diagnostic groups. Under the horizontal axis are numbers of included participants
in four diagnostic groups. Proportions of low stages and intermediate stages (stage 0, 1, 2) decreased with clinical deterioration, while
proportions of high stages (stage 3, 4) increased. CN cognitively normal, EMCI early mild cognitive impairment, LMCI late mild cognitive
impairment.

Fig. 1 Parametric 18F-AV-1451 images across stages. In general,
18F-AV-1451 SUVr increased throughout the cortex and subcortex
from stage 0 to stage 4 (numerical values shown in Table 1).
Participants in stage 0 had tau levels corresponding to those of
normal young adults. A dominating tau elevation in medial
temporal regions (Braak I/II ROIs) was shown in stage 1. While stage
2 presented increased SUVrs in extra-medial temporal regions, stage
3 showed greater SUVrs increase in Braak III/IV ROIs including
inferior and lateral temporal lobes. Stage 4 had significantly elevated
18F-AV-1451 SUVr extending into the neocortex. ROI region of
interest, SUVr standard uptake value ratio.
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Together with our findings on early diagnosis, the topographic
PET staging scheme for tau pathology presents huge implications
for clinical trials of Alzheimer’s disease. Participants with abnormal
amyloid and stage 1 or higher could be listed as one of the
inclusion criteria to start anti-tau agent, particularly for those trials
aiming at early intervention. Moreover, participants could be
stratified into more homogeneous groups, which is critical to
improve the power of the trial and reduce the required sample
size [32]. Besides, considering the close association between tau
and neurodegeneration in Alzheimer’s disease [12], heterogeneity
in cognitive trajectories and clinical progressions across tau stages
also indicates that a single dichotomous classification of the
neurodegeneration dimension is an oversimplification. Two levels
(N+ or N−) certainly cannot reflect diverse disease severity as the
NIA–AA framework recommended [12]. Future studies with
multilevel staging schemes may also be demanded characterizing
neurodegeneration profiles under the A/T/N framework.
Staging tau pathology with topographic PET image also

provides insights into tau pathology per se and its relationship
with amyloid pathology. Albeit cross-sectional, nearly a quarter of
CN individuals in stage 0 or stage 1 with positive amyloid status
(Supplementary Table 2) in our study gave support that abnormal

amyloid precedes even early stages (i.e., Braak I/II) of PET
detectable tangle formation [33]. It is also worth noting that only
amyloid abnormal participants were included in stage 4 which
indicated that, for Alzheimer’s disease, wide presence of tau in the
neocortex might be trigged by amyloid pathology [34]. This was
the same with the findings in Schöll’s work which applied the
same staging scheme with different thresholds to another cohort
sample of smaller size [13]. Among participants without amyloid
abnormality, the intermediate stage showing elevated tau levels in
Braak III/IV regions was mostly seen in cognitively unimpaired
participants. This profile supported the recent findings on normal
aging with tau involvement in Braak I–IV regions [35], which may
be designated as primary aging-related tauopathy (PART) [36].
Previous research suggested that mere presence of tau was not

sufficient to cause cognitive changes [37]. However, in our
analysis, a significant memory change was captured in normal
amyloid participants of stage 3 after adjustment for age, which
was significantly different from the stable memory condition in
stage 2. Thus, we gave evidence that highly elevated tau
pathology in Braak III/IV regions could independently result in
cognitive decline in absence of amyloid pathology. In our analysis
with model 2, we detected an amyloid-tau interaction signal on

Fig. 3 Baseline CSF biomarkers and plasma NFL profiles across tau stages. A CSF p-tau across stages. B CSF t-tau across stages: CSF p-tau/t-
tau levels were significantly higher for stage 3 and stage 4 respectively compared with stages 0, 1, or 2. Stage 2 significantly differed from
stage 1. C CSFAβ levels across stages: CSFAβ levels were significantly lower for stage 3 and stage 4 respectively compared with stage 0, 1, or 2.
Stage 4 marginally differed from stage 3 (P= 0.057). D Plasma NFL levels across stages: No significant difference was detected among stages
for plasma NFL(P= 0.095). Under the horizontal axes are numbers of included participants in comparison. CN cognitively normal, MCI mild
cognitive impairment, NFL neurofilament light chain, p-tau phosphorylated tau, t-tau total tau. *P < 0.1; **P < 0.05; ***P < 0.005.

S.-D. Chen et al.

6

Translational Psychiatry          (2021) 11:483 



memory decline and then found the differed rates between
normal amyloid and abnormal amyloid in stage 2. This implies that
memory decline could be accelerated by β-amyloid interacting
with tau and presents evidence to the point that Braak III/IV stages
were a transition phase of evolving Alzheimer’s disease [18].
Through cognitive evaluation, Alzheimer’s disease might be
distinguished from PART in stage 2 or even higher, for their
cognitive trajectories separated at this point. Failure of discovering
the interaction effect on cognition in previous tau studies [13, 38]
and in our study when MMSE or EF composite used conveys the
message that large sample size in each subgroup, longitudinal
design and composite measures sensitive to early cognition

change are required to show the weak interacting effect. Thus, for
further analysis, a larger sample size is needed to detect the
difference between A+ and A− in stage 3. Intriguingly, a newly
publicized longitudinal study by Betthauser et al. also found an
interaction effect between the two pathologies using eight-year
PACC (preclinical Alzheimer’s cognitive composite) data, yet with a
relatively small sample size [39]. It may attribute to the
classification strategy in their work by which A and T profiles
were divided to assign participants into four groups (A−T−, A−T
+, A+T−, A+T+). All the abnormal tau individuals were grouped
as a whole with no further staging, which was a remarkable
difference from our study. The outcome difference would likely be

Fig. 4 Cognitive changes and comparisons across stages based on linear mixed-effects models. Analyses of cognitive change were
adjusted for age, gender, education years and ApoE ε4 counts. In both models, rates of cognitive changes with group-wise comparisons are
expressed as % per year for MMSE and 10−1 per year for Memory or EF composite with 95%CI. The numbers of participants included and
comparisons between the A+ and A− within the same stage are shown in Supplementary Table 3 and Supplementary Table 4 for each
analysis. A+ abnormal β-amyloid, A− normal β-amyloid, CI confidence interval, EF executive function, MMSE mini-mental state examination.

S.-D. Chen et al.

7

Translational Psychiatry          (2021) 11:483 



exaggerated when comparing A−T+ and A+T+, for there was no
tau pathology in stage 4 for A−T+ but for A+T+. It is an
implication for future work examining amyloid effect on tau that
the two comparing groups should be placed in the same tau
conditions to produce a precise conclusion.
While the relation between amyloid and tau is under

discussion, the relation between CSF p-tau and PET tau is
either not firmly established at present. In our study, levels of
CSF p-tau increased with ascending PET tau stage generally,
which was consistent with a recent publication in which good
linear association was shown between CSF p-tau and
predefined-meta-ROI flortaucipir-PET uptake [40]. However,
the correlation was not perfect. We did not observe a significant
difference between the high stages (stage 3 and stage 4). A
potential interpretation is that while tau continues

accumulation reflected by PET tau, CSF p-tau seems to reach
a plateau later in the disease [12, 41]. Meanwhile, we did not
either observe a significant difference between the lowest
stages (stage 0 and stage 1), which seemed to conflict with the
current view that abnormal CSF p-tau preceded the abnormal
PET tracer uptake. There was a fact discovered by Mattson et al.
that >50% of the full population and 100% of the preclinical
Alzheimer’s disease population had elevated flortaucipir uptake
in Braak I/II ROI while CSF p-tau was still normal [42]. A high
proportion of CSF-/PET+ discordant participants in stage 1
might explain this result. Another reason, we think, was likely
the pre-analytical bias. Contamination by target-off binding
near the hippocampus could not be adequately corrected by
PVC, which was stated by ADNI in February 2020 (http://adni.
loni.usc.edu/). This might lead to high SUVr in Braak I/II ROI,

Fig. 6 Kaplan–Meier curves showing the cumulative probability of clinical progression. Clinical progression was shown for each tau stage
in CN (A) and MCI (B) group. Progressive cognitive deterioration defined as (1) diagnosis of dementia or (2) MMSE ≤24 at last visit or (3)
difference of MMSE ≥4 between the first visit and the last visit. Results of the log-rank test showed a significant difference between stages.
Stage 0 and stage 1 were not included in analyses for no events occurred in follow-up. CN cognitively normal, MCI mild cognitive impairment,
CDR clinical dementia rating.

Fig. 5 Trajectories of memory and executive function versus age by tau stage. Each line represents one participant’s trajectory, with the dot
indicating the baseline, the thinner part of the line indicating the measures before the baseline, and the thicker part of the line indicating
measures after the baseline. Participants showed a perceivable decline in stage 1, 2, 3, or 4 for memory composite and in stage 2, 3, or 4 for EF
composite. The differences in rates of cognitive decline between stages were characterized using linear mixed-effects models (results shown
in Fig. 4). For the panel of stage 2, a random subset of 20% of the data is shown to reduce overlap in the lines. EF executive function.
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causing more participants originally in stage 0 assigned to stage
1. The concordance between the CSF p-tau and PET tau,
especially in the early stage of the disease, needs further
demonstration using the next generation tau tracers with less
off-target binding [6] and with CSF p-tau of other kinds
different from the 181p-tau we used herein.
Apart from the large sample size, long-period data, different

cognitive evaluation measures, this work showed the advantage of
strong clinical relevance at the beginning. As expected, an increasing
proportion of high tau stage was seen in individuals with more
severe clinical diagnoses. This distribution of stage profiles in four
diagnostic categories was consistent with clinical-pathological
findings [2] and with other tau staging studies using different
algorithms [14]. Compared to the original staging scheme developed
by Schöll M and his team, we made an improvement based on their
work by further stratifying participants with elevated tau levels in
Braak III/IV regions into stage 2 and stage 3. The widely detected
differences between these two stages confirmed heterogeneity in
the original group of Braak V/VI ROI SUVr≤1.873 and Braak III/VI ROI
SUVr >1.304 and illustrated that extra-medial temporal regions
played a critical role in the development of Alzheimer’s disease.
Different levels of tau pathology in these regions determined
different fates of clinical progression, which should be fully
recognized in disease tracking.
Despite these advantages, this study has several limitations. First,

as tau PET was introduced in 2015 and long-term follow-up was not
available for participants who have undergone flortaucipir-PET
imaging, this length of the period from the first flortaucipir scan was
not long enough to investigate the prospective clinical progression,
especially for those in low stage or with normal amyloid status. For
the same reason, we included retrospective data in the analysis of
cognitive trajectories (Supplementary Table 5). Second, contamina-
tion by target-off binding that could not be adequately corrected by
PVC in ADNI might lead to inaccurate SUVr estimation in Braak ROIs
and biased staging. Third, this study is specific for the particular tau
tracer used and it is not yet known whether these results will be
replicated with tau tracers of other types. Fourth, ADNI has a
relatively pure Alzheimer’s disease population by mainly including
amnestic patients with high-level homogeneity in race and
education. Thus, the sample is not representative of the population
in the real world, and reproducibility of findings with different
phenotypes of Alzheimer’s disease and different participants from
other cohorts would be beneficial for the refinement of this staging
scheme. Fifth, as we require only one amyloid PET scan out of
multiple to be amyloid positive, it might be biased toward amyloid
positive. Clinical–neuroimaging–neuropathological studies are also
needed to further validate these findings.

In conclusion, we describe a topographic tau PET staging
scheme that shows potentials in early diagnosis, predicting clinical
progression, and studying disease mechanisms. Characteristic tau
spreading pattern in Alzheimer’s disease could be demonstrated
with biomarker measurement under the NIA–AA framework.
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