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Abstract

Insights into the morphology of nanoclusters would facilitate the design of nano-devices with

improved optical, electrical, and magnetic responses. We have utilized optical gradient

forces for the directed self-assembly of colloidal clusters using high-repetition-rate femto-

second laser pulses to delineate their structure and dynamics. We have ratified our experi-

ments with theoretical models derived from the Langevin equation and defined the valid

ranges of applicability. Our femtosecond optical tweezer-based technique characterizes the

in-situ formation of hierarchical self-assembled clusters of homomers as well as heteromers

by analyzing the back focal plane displacement signal. This technique is able to efficiently

distinguish between nano-particles in heterogeneous clusters and is in accordance with our

theory. Herein, we report results from our technique, and also develop a model to describe

the mechanism of such processes where corner frequency changes. We show how the cor-

ner frequency changes enables us to recognize the structure and dynamics of the coagula-

tion of colloidal homogeneous and heterogeneous clusters in condensed media over a

broad range of nanoparticle sizes. The methods described here are advantageous, as the

backscatter position-sensitive detection probes the in-situ self-assembly process while

other light scattering approaches are leveraged for the characterization of isolated clusters.

Introduction

The study of colloidal clusters at microscale dimensions provides insights into the process of

self-organization for macromolecular agglomeration [1, 2]. These processes are also linked as

well to the early stages of nucleation [3]. Cluster formation dynamics is of significance to the

science of various natural processes, such as blood clotting, disease processes [4], protein crys-

tallography [5], gelation [6], ceramics processing [7], etc. Furthermore, nanofabrication tech-

niques based on the self-assembly dynamics of nanoparticles [8, 9] is important for the

development of nanoscale components, devices, and systems in large quantities at lower costs.
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Thus, understanding the self-assembly process can allow for control over the morphology and

structures of nanoclusters [10]. The optical properties of these diverse nanostructures are

highly sensitive to their geometry; thus, by exerting control over their structure, it is possible

to engineer electric and magnetic responses over a broad range, which dictates the efficiency

of the devices manufactured. Despite tremendous progress in directed assembly and self-

assembly, a truly versatile assembly technique without specific functionalization of the colloi-

dal particles remains elusive. Recently, optical tweezers [11] have inspired new experimental

methodologies to investigate colloidal aggregation [12–15]. Here, we have used femtosecond

optical tweezers to track the directed self-assembly of colloidal clusters due to the strong opti-

cal gradient field and show how it lends itself to novel insights into the existing assembly

techniques.

Additionally, we have ratified our experimental results numerically and have predicted how

monomers and their aggregation differ in terms of their Brownian dynamics by solving the

Langevin equation for many-body systems. Combining experimental and theoretical methods,

we have interpreted clusters size from corner frequency, as deduced by the power spectrum

method [16]. The corner frequency is a characteristic frequency of a trapped particle that dif-

fers at every trapping laser power and is the limit beyond which the particle cannot remain

trapped. Here, we have focused primarily on the development of a method for the enumera-

tion of colloidal particles in hierarchical self-assembly processes via experimental techniques

with theoretical support for a wide range of cluster sizes. Applying our techniques, we have

characterized colloidal clusters by minimizing their mutual interactions. We note that there is

still a small deviation between theoretical and experimental values mostly for particles of

smaller sizes. This result indicates that there is a slight possibility of short-range and long-

range interactions among the trapped particles that is unaccounted for. Although these inter-

actions tend to hold the clusters in their most entropically favored structures [17], the optical

gradient field is the dominant driving force, which dictates the structure of the clusters at the

focal plane.

Apart from the single-particle force measurements, optical tweezers can be used as an

intrinsic tool to infer the strength of the interactions between entities that form the clusters

[18] by measuring the deviations from ideality. We expect that extensions to the semi-classical

model will make it viable for the efficient profiling of in-situ intra- or inter-macromolecular

interactions [19, 20] during the diffusing process. Optical trapping of multiple particles is

observed in dense media such as dense colloidal suspensions or inside biological cells [21] due

to the optical gradient forces generated by a tightly focused laser beam. Generally, the aggrega-

tion of colloidal particles is an irreversible process [22] but, optical field-directed colloidal clus-

ters [23, 24] are reversible in nature, which we have confirmed through observation in our

experimental results. Therefore, we can describe the different naturally occurring clusters

without affecting the stable suspension state of the system as they transition easily from the

trapped condition to the freely diffusing monomeric forms. Using a TEM00 Gaussian beam, a

harmonic potential is generated. A quadrant photodiode is used to monitor the position of the

optically trapped object in this potential field by measuring the intensity fluctuations in the

back focal plane [25, 26] of the objective that is perpendicular to the propagating beam. This

method is crucial to the investigation of colloidal self-assembly processes and other fields of

the colloidal sciences from self-replication [27] to aggregation-disaggregation transition [28].

During such processes, the local number concentration of colloids increases, which can be

traced to the potential minima of the optical tweezers in order to decode their structural

dynamics. In such a system, Brownian motion [29] is restricted, and corner frequency values

are truncated, as observed in the frequency spectrum obtained from the power spectrum

method.
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We have trapped single beads as well as homodimers of 500 nm, 250 nm and 100 nm mean

radius polystyrene beads to show that the working principle presented holds and extend the

same principle to trimeric clusters consisting of 250 nm size particles within the limits of stan-

dard error. This self-assembly of identical spheres simplifies the analysis of the cluster assembly

process and facilitates the fabrication of highly symmetric structures [10]. We have also

trapped heterodimers of 500 nm, and 250 nm mean radius fluorophore coated polystyrene

beads without surface modifications. The heterodimer formation process allows us to exert

control over the exposed surface area of the nanoparticles and subsequently allows the control

of their surface-active phenomenon [30]. Stable trapping of dimers is indicated by an increase

in two-photon fluorescence in the live-feed video (S1 Video, S2 Video) and is further con-

firmed by the value of the corner frequency. The values of the corner frequency for each cluster

are used to infer the number of particles present in the cluster and continuing the analysis dur-

ing the heterodimer formation process indicates the size of the particles present in the hetero-

dimer. Our method can easily be applied for the characterization of non-fluorescent non-

interacting nanoclusters as well as for macromolecular assembly. Furthermore, we expect that

our method will be applicable in the field of biosensing [31], nanoelectronics [32], surface-

enhanced spectroscopies [33], nonlinear optics [34], etc.

Experimental methods and materials

In our femtosecond optical tweezers (FOT) set up (Fig 1), the laser source was a mode-locked

Ti-Sapphire laser (MIRA-900F pumped by Verdi-V5, Coherent Inc.), which generated femto-

second laser pulses at 13 ns separation centered at 780 nm wavelength. Our experimental mea-

surements were taken at a pulse width of ~ 150 fs. A λ/2 waveplate in union with a polarizing

beam splitter (PBS) controls the power of the input laser, which feeds into the optical tweezers

setup that is fabricated in-house. The λ/2 waveplate is rotated, resulting in a rotation of the

polarization of light. The fixed polarizing beam splitter allows a fraction of the laser power to

pass according to its relative orientation with respect to the local axes. The two lenses, L1 and

L2 work together as a beam-expander to ensure that the back aperture of the trapping objective

is overfilled. The dichroic mirror, placed just after the lens assembly (L1-L2), reflects the 780

nm laser beam in the upward direction to the objective. A commercial oil immersion objective

(UPlanSApo, 100X, 1.4 NA, OLYMPUS Inc. Japan) was used to focus trapping laser; simulta-

neously the forward scattered light from the trapped object was collected using another oil

immersion objective (60x, PlanAapo N, 1.42 NA, OLYMPUS Inc. Japan). A dichroic mirror

DM2 reflects this collimated beam which is focused by the lens L3 (if there is any fluorescence

from the sample in the green region, it is cut off by the green filter, GF) on the quadrant photo-

diode QPD. The forward scattering data from the trapped particles were collected with a quad-

rant photodiode (QPD) (2901, Newport Co. USA) of rise time of 5 μs. This QPD output was

connected to a digital oscilloscope (Waverunner 64Xi, LeCroy USA), which, in turn, interfaces

with a personal computer through a GPIB card (National Instruments, USA). Data acquisition

was done with the LABVIEW program and data analysis was performed with custom code run

on MATLAB software suite. Two-photon fluorescence (TPF) from trapped particles was mon-

itored using CCD camera (350 K pixel, e-Marks Inc. USA). White light is used for bright field

illumination. The trapping laser power was measured with a power meter (FieldMate, Coher-

ent USA) as well as a silicon amplified photodiode (PDA100A-EC, Thorlabs USA) before lens

L1.

Commercially available polystyrene nanosphere solution with concentration 2.7×1010 parti-

cles/ml was diluted in phosphate buffer solution (0.2 M phosphate buffer solution, pH = 7.4)

and well sonicated for immediate use in trapping experiments. We have used 24×50 mm No. 0
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cover glass with an assembled by placing a coverslip 22×22 mm No. 1 separated by spacers of

double-sided sticky tape. The sizes of the particles are confirmed through dynamic light scat-

tering measurements (Fig 2).

Results and discussions

We have used a 780 nm pulse laser to trap a single polystyrene bead and have tracked their

self-assembly in dense media. The low power trapping laser has a nominal heating effect

because of the very low absorption coefficient [35, 36] of the solution used at 780 nm. We have

used oil immersion objective and the refractive index of the oil used is 1.518. The objective

lens has a transmission of ~70% at 780 nm wavelength and a working distance of 100 μm.

Fig 1. Schematic diagram of our experimental femtosecond optical tweezers setup. WP: Half-wave plate; PBS:

Polarizing beam splitter; L1: Concave lens; L2: collimating convex lens; DM: Dichroic mirror; O: Objective lens; SS:

Sample stage; C: Condenser lens; GF: Green filter; L3: Focusing lens; QPD: Quadrant photodiode; SM: Silver mirror;

RF: Red filter; CCD: Camera (Charge-coupled device) PC: personal computer.

https://doi.org/10.1371/journal.pone.0223688.g001

Fig 2. Size distribution of the polystyrene beads measured by Dynamics light scattering.

https://doi.org/10.1371/journal.pone.0223688.g002
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When a micron size particle in a viscous [37] Newtonian fluid exhibits Brownian motion

under the influence of an oscillating harmonic potential well, the equation of motion for such

a particle can be expressed by the following form of the Langevin equation [38, 39] (under the

approximation that the motion of micrometer-sized particles takes place at a small Reynolds

number where viscous drag dominates inertial forces) as seen in Eq 1:

g _xðtÞ þ kxðtÞ ¼ zthermðtÞ ð1Þ

Where x(t) is time dependent position, γ is the viscous drag coefficient as per Stokes’ Law, κ
is spring constant and ztherm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kBTgÞ

p
FðtÞ ¼ g

ffiffiffiffiffiffiffiffiffiffi
ð2DÞ

p
FðtÞ is the time dependent random

thermal force. The diffusion coefficient can be expressed by Einstein equation D ¼ kBT
g

; where

kB is Boltzmann constant and T is experimental room temperature. By solving the above equa-

tion, we can fit our experimental one-sided power spectrum (Px(f)) to a theoretical power spec-

trum [16, 40] given by Eq 2:

Pxðf Þ ¼
1

Tmsr
ðj~xðf Þj2 þ j~xð� f Þj2Þ 0 � f �

Tmsr

2

¼
2

Tmsr
j~xðf Þj2

¼
D

p2ðf 2
c þ f 2Þ

Where; ~xf ðf Þ ¼
R
� Tmsr=

2

Tmsr=2 dt ei2pfk xðtÞ; fk �
k

Tmsr
; k is integer

g ð2Þ

Here, Tmsr is the measurement time, f is the frequency, and ~xf ðf Þ is the Fourier transform

of the time dependent position given by x(t). In a colloidal suspension, multiple particle trap-

ping has been observed as well [12]. For the trapping of two identical colloidal particles, the

time-averaged power spectrum is determined from the following equation:

P2pI
ðf Þ ¼

D
p2ðf 2

c þ f 2Þ
þ

D
p2ðf 2

c þ f 2Þ

¼
2D

p2ðf 2
c þ f 2Þ

¼
D

p2 fc
�
ffiffi
2
p

� �2

þ f
�
ffiffi
2
p

� �2
� � ¼

D

p2 fc
�
ffiffi
2
p

� �2

þ f 2

� � g ð3Þ

Since f is an x axis dummy variable, therefore, on dividing the axis by the square root of

two, it transforms into a new x coordinate, which we denote by the same variable, f. The diffu-

sion coefficient of the cluster is D. A more generalized formula for a cluster of homogenous N
number of particles is thus:

PNI fð Þ ¼
D

p2 fc= ffiffiffiN
p

� �2
þ f= ffiffiffiN

p
� �2

� � ¼
D

p2 fc= ffiffiffiN
p

� �2
þ f 2

� � ð4Þ

We have analyzed the position fluctuation data of the trapped beads collected using QPD

[41] at a 100 kHz sampling rate over the duration of 2.5 seconds. The data acquired from the X

and Y channels are de-correlated by removing the cross-talk [42] between these channels and

the power spectrum is subsequently obtained using MATLAB code.
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Optical tweezers can capture nanospheres using optical forces but lack the capability to per-

form dynamic manipulation [43]. Here, we have reported the reversible assembly of nanopar-

ticles using femtosecond optical tweezers; the optically driven reversible clusters are shown in

Fig 3A and is also shown in the supporting videos (S1 Video, S2 Video) as the sequential trap-

ping events clearly show reversibility of the process. For a better understanding of the trapping

event, we have divided the raw data into different regions (shown as 1–5 inside red circles of

Fig 3). The region denoted by 1 inside the red circle indicates that there is no particle inside

the foal volume. Power spectrum analysis of this region, corresponding to Fig 3B results in the

light null spectrum which has a low-frequency slope with -1.71 V2.Hz-2. The area denoted by 2

is a long spike in QPD signal, which is observed as a consequence of biased diffusion of the

particle into the focal region [44].

The region marked 3 (Fig 3) is when the first particle is stably trapped inside the focus, the

analysis of which yield a corner frequency value of 111 Hz. When a second particle is attracted

by the highly focused laser beam, trapping is observed at around 8 second. This denotes the

starting of region 4 where the dimer forms and is stably trapped. This event can be easily iden-

tified by the sudden increase in voltage output from the QPD. This increase in voltage is due to

the large effective size of the cluster, which scatters light to a greater extent and indicates

greater displacement. The diffusion coefficient is inversely proportional to the effective radius

of the diffusing particle at constant temperature [45, 46]. We verify this experimentally and

observe this trend in the data generated in the analysis of the clusters as well. In this region, the

corner frequency is 70 Hz. According to our theoretical calculations, 111 Hz (fc of the single

particle in this experimental condition) will be reduced to 78.5 Hz (111ffiffi
2
p ¼ 78:5) if another

exactly identical particle gets trapped in the presence of the first particle.

Experimentally, the small deviation in corner frequency may arise due to the fact that the

particle sizes vary within limits given by 500 ± 50 nm and are thus not exactly identical. How-

ever, this effect may be the result of subtle interactions between the trapped particles, though

such interactions are suppressed and negligible over the range of laser powers used. Subse-

quent trapping regions are of great interest as they prove the reversibility of the cluster forma-

tion dynamics due to the optical trapping gradient. Region 5 begins at the 13 second-mark and

denotes where one particle has escaped the trap while the other particle remains stably inside

the trap for a long time. This also supports our assertion that the two particles have almost neg-

ligible interactions inside the laser-mediated cluster and either one of the two particles do not

disturb the other trapped particle while exiting the trap. This region of the trap has a corner

frequency of 107 Hz. We note that it is difficult to determine whether the initially trapped par-

ticle remains up to region 5 or if the second incoming particle is the one which remains in the

trap alone after a particle exits at the end of region 4.

Furthermore, to validate the generality of the Eq 4 for different trapping powers, we have

performed a power dependent study of the cluster formation of 500 nm radius microspheres.

This shows that at low powers (5 mW to 25 mW average laser powers) the particles can be con-

sidered to be non-interacting and the theoretical equation derived previously, Eq 4 holds.

However, at higher power (30–35 mW), deviations are observed, and at even higher powers

stable trapping is not observed for even single particles. We have also calculated the trap stiff-

ness (κ) for monomer and dimers (Table 1) and observed that dimers have higher stiffness val-

ues compared to monomers, as expected.

Thus, we have reported here the domain determined by low laser power limits where our

assumptions for the inter-particle negligible interactions hold (Fig 4 and Table 1). The power

dependent corner frequency of a singly trapped microsphere has a slope of (dfC/dP)1P = 6.5

Hz/mW, whereas the doubly trapped microsphere has a slope of (dfC/dP)2P = 4.1 Hz/mW (Fig

Elucidating optical field directed hierarchical self-assembly of nanoclusters by femtosecond optical tweezers
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4G). The ratio of single and double particle corner frequencies is theoretically predicted, to be
ffiffiffi
2
p
¼ 1:414. However, our experimentally observed ratio is 1.585. As said previously the

nearly 8% error may be coming due to the fact that each particle is not identical in size as well

as there might be little inter-particle interaction within the clusters inside the trap.

We have also shown that our equation (Eq 8) holds true even on varying the particle size in

the range of 500 nm to 250 nm, and also to 100 nm range. This supports the generality of the

equation and its insensitivity to the particle size.

Fig 3. Typical raw data (at 17.5 mW average laser power) and its corresponding fitted data for a reversible dimer formation event in the sequence. (a)

Experimentally measured trapped bead displacement raw data showing different regions of trapping event. (b) Light null spectrum: Power spectrum when no

microsphere is trapped but trapping light imposing onto QPD. (c) Power spectrum of the region 3 from the raw data (green square) and its Lorentzian fitting (orange

line) gives fC = 111 Hz for a single trapped particle. (d) The power spectrum of region 4 of the raw data (olive square) and its Lorentzian fitting (blue line) gives fC = 70

Hz corresponding to the dimer. (e) Power spectrum of mark 5 of the raw data (green square) and its Lorentzian fitting (orange line) gives fC = 107 Hz. (f) Power

spectrum showing the power spectrum of region 3, 4 and 5 altogether for comparison purpose.

https://doi.org/10.1371/journal.pone.0223688.g003

Table 1. Corner frequency and trap stiffness of the monomers and dimers, under the optically tweezed condition, for 500 nm radius polystyrene beads in water.

Trapping laser

power

(mW)

Corner frequency of single

microsphere (Hz)

Corner frequency of double

microsphere

(Hz)

Trap stiffness of single

microsphere

(fN/nm)

Trap stiffness of double

microsphere

(fN/nm)

5 26 16 1.37 1.68

10 69 41 3.63 4.32

15 99 61 5.21 6.42

17.5 109 70 5.74 7.37

20 129 84 6.80 8.85

25 164 105 8.64 11.06

https://doi.org/10.1371/journal.pone.0223688.t001
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We have performed a power dependent study for 250 nm radius beads. We have analyzed

their corner frequency when trapped as a monomer, dimer and trimer (Fig 5A). We have

deduced a slope of 12.8 Hz/mW for the monomer. The slope observed for a doubly trapped

bead is 8.7 Hz/mW (Fig 5B). The ratio of these corner frequencies is 1.471 (which is slightly

higher than the theoretical prediction of
ffiffiffi
2
p

). Thus, we note that the theoretically predicted

dimer is 9.1 Hz/mW, which is higher than the experimentally observed value, but is in keeping

with the observed ratio. The power dependent fitted lines of monomers, dimers and trimers

Fig 4. Experiments, fits and comparisons (a-e) The experimentally measured one-sided power spectrum (blue sold circle for single microsphere and orange sold circle

for double microsphere) and the respective Lorentzian fit to data (brown line for single microsphere and green line for double microsphere) for 500 nm radius

fluorophore coated polystyrene bead at increasing laser powers. (f) The experimentally measured all fitted one-sided power spectrum of 500 nm radius polystyrene

beads merged in a same plot (g) The comparison between single and double polystyrene microsphere.

https://doi.org/10.1371/journal.pone.0223688.g004

Fig 5. Power spectrum and corner frequency: (a) The experimentally measured fitted one-sided power spectrum of 250 nm radius polystyrene

beads under varying gradient fields, and (b) power dependent corner frequency of monomer, dimer and trimer of 250 nm radius trapped bed.

https://doi.org/10.1371/journal.pone.0223688.g005
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considered are given in Table 2. Our results validate the high sensitivity of our measurement

techniques.

We have also trapped cluster of three particles, each of radius 250 nm, and these follow the

expected trend (fC/N1/2), but within a shorter power range. This is because of the fact that, at very

low powers, the potential inside the trap is unable to hold more than two particles simultaneously.

As a result, the third particle does not get trapped. Again, at higher power, the particles interact

non-negligibly and are expected to collide with each other, thus overcoming the trapping position

and allowing for escape from the trap. We note that the sample preparation was complicated by

competing considerations for convergence with our theoretical model. The colloidal solution

must be dilute enough to ensure negligible inter-particle interaction in the solution. At the same

time, the particle density should be high enough such that the probability of trapping the third

particle is not unfeasible. Hence there is a competitive trade-off between these two factors. For

the smallest (100 nm) particle, we have used a 20% aqueous glycerin solution which has a higher

viscosity [47, 48] so as to make the trap stable over a longer time period as the power-spectrum

method works better over longer trapping times [49] for the minimization of errors. Similarly,

100 nm radius beads show a ratio of 1.31 between the power dependent fitted lines of singly and

doubly trapped particles (Fig 6). The corresponding data have been reported in Table 3.

For further confirmation of our methods, we have verified our results for systems consisting

of a mixture of 500 nm and 250 nm mean radius particles (Fig 7A) and observed their power

dependent behavior (Fig 7B).

Table 2. Corner frequency of the monomer, dimer and trimer, under the optically tweezed condition, for 250 nm particle at different laser powers.

Trapping laser

power

(mW)

Corner frequency of single microsphere

(Hz)

Corner frequency of double microsphere

(Hz)

Corner frequency of triply trapped microsphere

(Hz)

10 123 87

15 185 121

17.5 215 152 124

20 267 180 140

22.5 303 200

25 343 238 207

https://doi.org/10.1371/journal.pone.0223688.t002

Fig 6. The experimentally measured data depicting (a) the fitted one-sided power spectrum of 100 nm radius polystyrene beads under

different gradient field and (b) power dependent corner frequency of monomer and dimer of 100 nm radius trapped bed.

https://doi.org/10.1371/journal.pone.0223688.g006
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We have also solved the Langevin equation for two non-identical and non-interacting

trapped particles, and the power spectral density can be represented by the following equation:

P2pNI
fð Þ ¼

D1

p2ðf 2
c1
þ f 2Þ

þ
D2

p2ðf 2
c2
þ f 2Þ

P2pNI
fð Þ ¼

ðD1f 2
c2
þ D1f 2 þ D2f 2

c1
þ D2f 2Þ

p2ðf 2
c1
þ f 2Þðf 2

c2
þ f 2Þ

¼ D12

ðA2 þ 2f 2Þ

p2ðf 2
c1
þ f 2Þðf 2

c2
þ f 2Þ

ð5Þ

Where, A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
c1
þ f 2

c2

q
and the above equation is valid under the approximation:

D1 and D2 �
ðD1þD2Þ

2
¼ D12. This is due to the fact that the overall diffusion coefficient is seen

as the cluster forms and the mass of trapped particles increases. Using Eq 5 we have fitted the

fluctuations of the heterodimer data at different powers. We have observed optically induced

gradient fields, which match our theoretically predicted value through Eq 5. At high peak pow-

ers, smaller size particles exhibit non-linear phenomena [50] and consequently the experimen-

tal and theoretical values deviate. The fitted data or the heterodimers are given in Table 4.

At powers less than 5 mW, multi-particle optical trapping was not observed. This may be

attributed to the fact that the potentials generated at such low laser powers are not sufficient to

trap more than one particle. At an average power higher than 30 mW, the experimental corner

frequency values tend to deviate from the given theory, which may be due to the increased

interaction among the trapped particles within the small focal volume and needs further

investigation.

We believe from our experimental results that our proposed equation we have derived (Eq

5) can be used to characterize the heterogeneous clusters without further modification of the

colloid spheres. This, in turn, is able to quantify the structure and function of globular systems

like micelles, vesicles, plasmids etc. Our methods are accurate up to third decimal point as

demonstrated in our analysis and can be applied for sensitive biosensing [51]. Furthermore,

we believe that this technique can also be utilized for controlled hetero-aggregation [52].

Conclusions

The anomalous behavior of single particle and aggregate cluster diffusion has been investigated

experimentally, and a theoretical model for the same has been developed. Our method, based

on the corner frequency analysis of power spectrum data, is able to probe the Brownian

motion of identical and non-identical colloidal hierarchical self-assembly in a mixture of dif-

ferent nano-particles. The experimental results obtained from our femtosecond optical tweezer

technique have also been ratified theoretically. Our theory and experiments account for the

fact that the inter-particle interactions must be minimized while the trapping probability

Table 3. Corner frequency of the monomers and dimers, under the optically tweezed condition, for 100 nm nano-

sphere at different laser powers.

Trapping laser

power

(mW)

Corner frequency of single microsphere

(Hz)

Corner frequency of double microsphere

(Hz)

10 45 33

15 74 56

17.5 92 73

20 105 77

22.5 122 88

https://doi.org/10.1371/journal.pone.0223688.t003
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should be favorable. This method can be further utilized for the characterization of cluster size

and is able to track the size of particles coming into the cluster during the sequential trapping

phenomena. We have also shown that the clusters formed under the influence of optical gradi-

ents are reversible. Our theoretical model investigation works well for the cluster, which

remain within the focal volume or when the size is nearly the same size as the focal volume.

We have investigated the effect of agglomeration on the Brownian motion of the system and

found that higher mass leads to a decrease in the corner frequency due to the restricted Brown-

ian motion. The theory is shown to be valid for the range of experimental data within the

power range of our study and our methodology is applicable to a wider range of studies per-

taining to hetero-aggregation and other aspects of rheology. Our methodology is thus viable

for sensitive biosensing diverse applications from tracking microrheological changes inside

single cells to detecting aging of crowding due to fibrillation inside living cells.

Supporting information

S1 Video. 100 nm radius multi-particle trapping process.

(AVI)

Fig 7. The experimentally measured one-sided power spectrum of monomers and heterodimers of (a) 500 nm and 250 nm radius polystyrene

beads under different gradient fields (b) power dependent corner frequency of monomer and dimer of 250 nm and 500 nm radius heterodimer trapped

bead.

https://doi.org/10.1371/journal.pone.0223688.g007

Table 4. Corner frequency of heterodimers formed from 100 nm and 250 nm nanospheres, at different laser pow-

ers and under the optically tweezed condition, at different laser powers.

Trapping laser

power

(mW)

Corner frequency of single microsphere

(Hz)

Corner frequency of double microsphere

(Hz)

10 68 147

15 109 190

20 130 267

22.5 164 285

25 180 303

https://doi.org/10.1371/journal.pone.0223688.t004
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S2 Video. 500 nm radius multi-particle trapping process.

(AVI)
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