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Abstract

Review Article

Introduction

‘How many cases should I study for my research?’ is the 
question faced by almost all medical researchers. Sample size 
has two distinct roles depending upon the setup. First, serving 
as a primary determinant of the reliability of the results. Not 
many realize that reliability is different from validity.[1] Biased 
samples, however large, will not produce valid results – in fact, 
a large sample can aggravate bias and give a false sense of 
security. The larger the sample size, the more is the reliability, 
when appropriately chosen, although it has diminishing 
returns. High reliability is required for the replicability of the 
results – repeated studies in similar populations with the same 
methodology should give nearly the same result. A reliable 
result can be biased, giving nearly the same bias every time. 
Second, and more importantly, is the seminal role of sample 
size in detecting an effect of a factor when that effect is present. 
Sample size should be sufficient so that a medically important 
effect is not missed if present. It is not considered missed when 
it is statistically significant.

Statistically, the first setup is called estimation, and the second 
testing of the hypothesis. The sample size formulas are different 
for these two setups. Estimation and testing of hypotheses are 
well‑known statistical inference methods, but we explain them 
in brief in the next section so that the researchers can correctly 
identify the setup and able to choose the right formula.

In the context of medical research, it is easy to understand 
the testing as ‘detecting a medically important effect’ setup 
because that is what it actually is, although the books do not 
explain this setup in this manner. Different books and different 
online resources use different formulas for the same situation. 
This confounds statisticians and medical researchers alike. 
We reviewed several reputed sources and developed relatively 
simple versions of sample size formulas for commonly occurring 
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setups so that they can be easily used without much error. Most 
of the actual formulas are quite complex and this hinders their 
use in practice. The formulas in this communication have nearly 
the same uniform pattern. So many formulas in uniform format 
are not available at any single source – neither a website nor a 
book, nor a software.

Estimation vs. Detecting an Effect

Estimation is generally descriptive and tells us the magnitude of 
the problem or the magnitude of an effect. Finding the mortality 
rate in moderate CoViD cases is an estimation exercise, and so is 
finding the percentage of obese people ending up with at least one 
cardiac event in life. In the case of continuous variables, this could 
be the estimation of the mean of measurements such as the duration 
of hospitalization of bariatric surgery cases or the hemoglobin 
level in women facing the first pregnancy. The required sample 
size in this case depends on the tolerable margin of error in the 
estimate, called precision, and the confidence level we wish to 
ensure in our estimate. To keep our focus, and to keep this article 
within limits, we are not discussing the estimation setup in this 
communication, instead discussing the more commonly occurring 
but more complex setup of detecting a medically important 
effect. As mentioned earlier, this is the same as the testing of the 
hypothesis setup. ‘Detecting’ means getting statistical significance 
at the specified level. If the effect is not statistically significant, the 
study will miss the effect even if present.

In detecting an effect situation, the interest could be to find 
whether any effect is present or not or, mostly, whether the 
effect size reaches a specified threshold – generally called a 
minimum medically important effect or medically significant 
effect. The mean systolic blood pressure  (BP) level in the 
first‑time electrocardiogram (ECG) positive male patients may 
be 141 mmHg and in female patients 144 mmHg, and these 
means may be statistically significantly different, the important 
medical question is whether the difference of 3 mmHg in their 
mean systolic level is enough to prescribe different management 
for the two sexes. In the case of intervention, this is the targeted 
improvement in the outcome for it to be clinically useful. 
Medical significance is different from statistical significance. 
In our example on BP, this is the difference in the mean levels 
between two groups, but the size of the effect could be measured 
in terms of any other parameter. The required sample size is 
large if a small effect is to be detected. This is like finding a 
needle from a haystack that requires much more effort than 
finding a brick. The ability of a study to detect the specified 
effect when present is called the power of the study. In this 
case, the effect size would be statistically significant. Thus, 
power is necessarily related to the effect size to be detected 
and should be stated, for example, as “the sample size has 
been calculated to detect an effect of at least 7% with a power 
of 80%”. The power is hardly ever described in this manner 
in the literature. A power of 80% implies that there is an 80% 
chance that the study will be able to detect the stated medically 
important effect, when present. This would imply that there 
is a 20% chance of missing the required effect when present. 

No study can detect a medically important effect if not present 
except by way of (Type‑I) error of false positive result. Thus, 
the threshold of Type‑I error also needs to be specified – called 
the level of significance (generally fixed at 5%). Eighty percent 
is the conventional power in most medical studies, but one can 
choose 90% power that will increase the required sample size. 
A full 100% power is not possible due to omnipresent medical 
uncertainties. Power is denoted by  (1  – β), where β is the 
probability of Type‑II error of false negative result.

There are many examples where a study was not able to detect 
a medically important effect, though present, because of the 
limited size of the sample. Back in 1978, Freiman et  al.[2] 
re‑examined 71 negative trials and found that 50 of these had 
more than a 10% chance of missing a therapeutic improvement 
because of the inadequate size of the sample. Dimick et al.[3] 
reported similar findings for surgical trials. These are the 
examples of false negative results.

Basic Requirement for Calculating the Sample 
Size

More than 80 formulas for sample size are available with us 
but most of them are derived from nearly 10 basic formulas. 
The choice of the right formula depends on the objectives of 
the study, particularly the primary objectives. These objectives 
must be stated in a measurable format so that the indicator 
measuring the outcome is clear. Thus, in place of saying that 
the objective of a study is to assess which treatment is better, 
specify the outcome of this assessment. This could be mortality, 
duration of hospitalization, the importance of a factor for 
prediction, need for rescue analgesia, pain score, the predictive 
value of a test, or any other. The effect of interest could be 
measured by the mean, proportion, correlation coefficient, 
odds ratio  (OR), relative risk  (RR), hazard ratio  (HR), the 
difference between two groups, or any other such parameter. 
This specification will determine the formula to be used and 
will come from the measurable objectives.

The basic format of the simplified sample size formula for 
detecting an effect is the following for a two‑tailed test. This 
is valid for Gaussian distribution of the estimate of the effect 
size and requires sample random sampling.

(Numerator of the variance of the

 estimator of the effect size)

2
1‑ / 2 1‑z + z

n *
 

α β

δ
 

≥  
 

where zt is the value of the standard normal deviate at cumulative 
probability t. The numerator of the variance  (square of the 
standard error, SE) of the estimator of the effect size changes 
from situation to situation. Thus, this requires some caution. For 
example, for the sample mean, this variance is 2 / nσ  but only 
is used in this formula and can be understood as the variance 
of the original values used to derive the estimator. This article 
follows this pattern uniformly in all the formulas.
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Once the right formula is chosen, the next step is to identify the 
values of the parameters to be plugged into the formula. For 
example, the variance in the target population is required but 
the population values are rarely available. Thus, the reported 
values in the literature or the ones computed from the records 
are generally used and called the anticipated values. This is 
an approximation but is accepted around the world for the 
calculation of sample size. In case no previous study is available, 
a pilot study on a small sample is done and the results of this 
pilot study are used for estimating the values of such parameters. 
Sometimes one’s own clinical experience can be used to make 
a guess. If the objective is to compare the average blood loss 
per patient in two methods of surgery, the information required 
for the calculation of sample size is the variance of blood loss 
reported in a previous document with each method of surgery. 
Variance measures the variation – the larger the variation, the 
more difficult is to spot an effect, and bigger is the requirement of 
the sample size. In case the variance is not known, and the range 
is known, range/4 can be used as an approximate estimate of the 
standard deviation (SD), which is the square root of the variance. 
In case the median and IQR are given, an approximation of SD 
is IQR/1.35, where 1.35 comes from the Gaussian distribution 
covering the middle 50% of the subjects. This though will give 
larger than actual SD and a larger sample size. To err on this 
side is considered tolerable. The sample size calculated from 
the previously reported study or pilot study values should be 
inflated (we advise, at least 10%) to account for variation in the 
reported values from study to study. In the case of two or more 
primary objectives, calculate the sample size for each of them 
and use the largest. In a large‑scale study, this is calculated for 
each primary and secondary objective, and the maximum is 
used. If the objective is composite involving several outcomes 
to be considered together, the level of significance will be split 
accordingly. For example, for four objectives together, the level 
of significance for each will be 1.25% to make a total of 5%.

The third requirement for the calculation of sample size for the 
setup we are discussing in this communication is the minimum 
medically important effect proposed to be detected if present. This 
is denoted by δ. A large sample, even if exceedingly large, cannot 
detect a predetermined medically important effect if that kind of 
effect is not present, except by way of error. Note that the medically 
important effect a researcher wishes to detect with sufficient power 
is not the same as the effect reported in a previous document. Most 
textbooks, software, and online sample size calculators make this 
error. For example, G*Power[4] calculates δ from the previously 
reported mean and SD of the two groups (which they call the effect 
size) whereas this should be the other way around. The δ should be 
specified first based on clinical considerations and then the mean of 
the second group obtained as ±δ from the mean of the first group 
depending upon the second group is anticipated to have a lower 
or higher mean. The first mean is for the baseline with which the 
comparison is planned. For example, this may be a placebo or the 
existing treatment regimen.

We have already mentioned the power and the level of 
significance as a prerequisite for calculating the sample 

size. The level of significance will require you to decide the 
parameter of interest that the situation (alternative hypothesis to 
statisticians) is one‑tailed or two‑tailed. If you are not familiar 
with these concepts, consult any elementary statistics book, 
such as by Indrayan and Malhotra.[1]

In summary, the sample size calculations for detecting an 
effect can be done only when  (i) the objectives are stated 
in a measurable format –  this will decide the parameter of 
interest and the right formula,  (ii) anticipated values of the 
parameters in the sample size formula from a relevant previous 
document (or a pilot study) are available, (iii) the minimum 
medically important effect size proposed to be detected by the 
study and the associated power are specified, (iv) and the level 
of significance is stated, including one‑ or two‑tailed. If you 
intend to consult a biostatistician, have all this information 
ready. Note that the confidence level is needed for estimation 
and not for testing a hypothesis. Similarly, the level of 
significance is needed for testing of hypothesis and not for 
estimation. There are some other statistical requirements if 
somebody wishes to be more accurate. These are mentioned 
under the Limitations section of this article.

Sample Size Formulas for Detecting a Specified 
Effect

The minimum medically important effect, δ, defines the 
alternative hypothesis. For example, a clinician may say that a 
new treatment regimen must be at least 3% more effective than 
the previous (established) regimen for discarding the old and 
adopting the new. Then, δ = 3% and a difference of less than 3% 
is clinically immaterial. The sample size formulas for various 
situations for detecting δ are as follows. As explained earlier, 
detecting in this case means getting statistical significance at 
a specified level. If the effect is less than δ, this will be missed 
as non‑significant by the sample size calculated from these 
formulas. These formulas have been chosen after a review of 
several reliable sources[5–16] and, more importantly, modified 
as needed to make them simple, on uniform pattern, and easily 
adaptable. These are approximations and subject to the limitations 
mentioned later but work well. Actual formulas in most cases are 
quite complex. The commonly used notations in the formulas are 
explained in Table 1. These formulas are given for a two‑tailed 
setup. For a one‑tailed situation, replace z1‑α/2 with z1‑α.

Comparison of two independent groups – Test for equality
This is the setup in most studies including clinical trials and 
case‑control observational studies. These studies will have two 
parallel groups and the objective is to find whether one group 
has a clinically important different outcome from the other. 
The null hypothesis under test is that they are equal.

1.	 For the difference between means:
The actual formula is given in the Supplementary Material. The 
simplified formula for nA = knB (such as k controls per case) is
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2

 
2

1‑ / 2 1‑ 2 A
B B

z + z
n +

k
α β σ

σ
δ

  
≥   
   

This is the minimum for the smaller group. In most situations, 
σA

2= σB
2 and k = 1. These imply that the variance in group A is 

the same as in group B and the number of subjects in group A 
is proposed the same as in group B. The common variance σ2 

can be the pooled estimate. Under these conditions, the formula 
further simplifies to

( )
2

1‑ / 2 1‑ 2z + z
n  2         α β σ

δ
 

≥  
 

per group.

Example: A study is planned to compare the reduction in 
BMI in obese subjects by regular exercise (such as sports) 
and Yoga in adolescents, and it is considered that Yoga can 
be recommended when the average reduction in BMI by 
Yoga is at least 1.5  kg/m2 more than by regular exercise 
after 6 months. Thus, δ =1.5. If a previous study indicates 
that the variance of reduction in BMI by regular exercise is 
σA

2 = 1.29 and σB
2 = 2.61 by Yoga, the minimum sample size 

required to detect a difference of at least 1.5 kg/m2 with a 
power 80% at significance level 5% is 30 per group by the 
first formula for the equal number of subjects in Yoga and 
regular exercise groups  (k  = 1). This sample size is 80% 
likely to not miss a difference of at least 1.5 kg/m2 in the 
mean BMI if present but may miss if the difference is less. 
‘Not missing’ means that statistical significance will be 
obtained with P < 0.05.

Note: To keep this communication simple, we provide subsequent 
formulas for equal variances (continuous variable) and equal group 
sizes. Where the variances are not equal and/or the intention is to 
recruit k controls for each case (as in some case‑control setups), 

the variance of the larger group is divided by k as mentioned for 
the first formula stated above. A similar change is required in all 
the following formulas from 2 to 7 whenever k ≠ 1.

2.	 For difference between proportions:
The actual formula is complex and is given in the Supplementary 
Material.

For k = 1, and further simplification gives

( ) ( )
2

1‑ / 2 1‑
A A B B

z + z
n 1‑ + 1‑α β π π π π

δ
 

≥     
 

per group.

Note that B A= ±  π π δ  so that A B‑ = π π δ . Thus, only 
 and  Aπ δ  are required and Bπ  comes from these two, where 

δ is the minimum medically important effect proposed to be 
detected. This correct method of sample size calculation rarely 
appears in the literature.

3.	 For difference between risks (attributable risk or absolute 
risk):

Since this is the difference between the risk in the exposed and 
the risk in the unexposed group, the formula is the same as for 
proportions mentioned above because risk also is a proportion.

4.	 For difference between sensitivities and specificities:
Each of these is also a proportion and hence the formulas are 
the same as for proportions.[13]

5.	 For difference between (Pearsonian) correlations:
2

1‑ / 2 1‑

A B

z + z
n 2 +3 

 c ‑ c
α β 

≥  
 

	 per group,

where

cA  =  Fisher z‑transformation of the anticipated correlation 
coefficient of group A

Table 1: Notations for sample size formulas

Notations Explanation
α The maximum tolerable probability of Type‑I error (also called the level of significance in testing of hypothesis setup)
z1‑α/2 Standard Gaussian (normal distribution) value with α/2 probability in the right tail (1.96 for 5% level of significance – two‑tail)
z1‑α 1.645 for 5% level of significance – one‑tail
β Probability of Type–II error (1 – β is the power)
z1‑β 0.84 for 80% power and 1.28 for 90% power (from the Gaussian distribution)
z1‑β/2 1.28 for 80% power
σ2 Anticipated variance of a continuous variable (from a previous document)
π Anticipated proportion of persons with the condition (disease or exposure) under consideration (from a previous document)
k Number of controls per case – generally group sizes are equal and k=1
K Number of times a subject is repeatedly assessed such as on day 0, day 7, day 30 and day 60 (K=4 in this case) – K is required only for 

repeated measure (follow‑up) studies. (Note the difference between upper K and lower k.)
τ Number of pairwise comparisons in case of 3 or more groups in ANOVA setup – for 4 groups, the number of pairwise comparisons is τ=6 

(A vs. B, A vs. C, A vs. D, B vs. C, B vs. D, and C vs. D)
r Anticipated correlation coefficient (from a previous document)
θ Anticipated hazard rate or ratio (from a previous document)
δ Minimum medically important effect to be detected (determined by clinical considerations) – could be the difference in means, difference 

in proportions, odds ratio, correlation coefficient, or any other effect of interest (or testing margin in the case of equivalence or superiority/
non‑inferiority trials)

Subscripts A and B have been used to identify the groups
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A
A

A

1+ r1c = ln
2 1‑ r

 
 
 

cB  =  Fisher z‑transformation of the anticipated correlation 
coefficient of group B

B
B

B

1+ r1c = ln
2 1‑ r

 
 
 

Calculate cB for rB, which has the minimum medically 
important difference with rA. (rB = rA + δ or rA – δ as needed, 
where δ is the minimum medically important difference 
between the correlations in the two groups).

Example: Consider living donor liver transplant cases, some of 
whom require tracheostomy and others do not. The objective 
is to find whether the correlation between donor age and length 
of ICU stay is the same or different in the tracheostomy group 
than in the non‑tracheostomy group. A previous article reported 
that the correlation in the non‑tracheostomy group is rA = 0.65. 
This is the anticipated correlation. Clinicians decide that the 
correlation in the tracheostomy group should be higher (one‑tail) 
by at least 0.10 (rB = 0.75) for it to be clinically different from 
the correlation in the non‑tracheostomy group. The possibility of 
a lower correlation in this group is ruled out. Thus, in this case,

A
1 1+0.65c = ln = 0.775
2 1‑ 0.65

 and B
1 1+0.75c = ln = 0.973.
2 1‑ 0.75

To not miss a difference of 0.10 (if present) with a power of 80% 
(z1‑β = 0.84) at significance level 5% (z1‑α = 1.645‑ one‑tail), 
we get

2

= 2×157.52 + 3 = 311.645 + 0.842 + 3
0.775 - 0.97

.
3

8.04n   ≥   

Inflate it by 10%, for possible variation in the correlation 
from study to study that we have taken 0.65 in this example 
from a previous study. Thus, a sample of size 350 is required 
to not miss a difference of 0.10 in the correlation between the 
two groups.

6.	 For difference between hazard rates (survival studies):
2

1‑ / 2 1‑

A B A B

z + z 1n    
ln ‑ ln p p

α β

θ θ π
 

≥  
 

  per group,

where,

pA = proportion of subjects in group A (generally pA = pB = 1
2

, 
i.e., equal groups)

pB = proportion of subjects in group B

θA and θB are the anticipated hazard rates over time in groups A 
and B, respectively  1( )A Bln = ln + θ θ δ , where δl corresponds to 
the minimum medically important effect after taking logarithm.

π = anticipated overall probability of event occurring during 
the study period

Example: Patients in cardiac rehabilitation with ejection 
fraction (EF) <55% and EF ≥55% were advised to walk at least 
7500 steps a day. The hazard rate of cardiac hospitalization in a 
previous study in such cases was 1.43 per year in patients with 
EF ≥55%. Thus, θA = 1.43. For different management of patients 
with EF <55%, the clinicians decide that the hazard rate in them 
should be at least 3.00 (θB = 3.00). Thus, the clinically important 
difference is δ =3.00 - 1.43 = 1.57. The experience suggests 
that cardiac hospitalization occurs in about 10% (π =0.10) of 
the patients in cardiac rehabilitation. It is expected that one 
out of every four such patients on average has EF <55%. This 
gives pA = 0.75 and pB = 0.25. Substitution of these values in the 
formula just mentioned gives n ≥763. Of these, one‑fourth are 
expected to have EF <55%. A study on at least 763 patients is 
required for getting statistically significance of the difference of 
1.57% in the hazard rate between the two groups. This should be 
inflated by 10% for random errors in the estimates we are using 
for calculation of the sample size. Note how many parameters 
are needed to calculate the sample size in this case.

7.	 For difference between area under the ROC curve when 
obtained by two methods on the same group of patients[14] 
(simplified)

( ) ( ) ( )
2

1‑ / 2 1‑

A B

z + z
n V AUC +V AUC       α β

δ

 
  ≥    

per group,

where

(AUC) A = anticipated area under ROC curve with method A

(AUC) B =  anticipated area under ROC curve with method 
B = (AUC) A + δ or (AUC) A – δ

δ = minimum medically important difference in AUCs between 
the two groups

V (AUC)A = anticipated variance of (AUC)A

V (AUC)B = anticipated variance of (AUC)B

In case any of the V (AUC) s is not available, use the following 
method:

( ) ;‑1a = AUC * 1.414ϕ  where -1ϕ  is  the cumulat ive 
probability in the standard normal distribution, and 

2‑ / 2 2V(AUC)= (0.0099* e )* (6 +16)α α

8.	 Each group with K repeated measures – Difference in 
means in two groups:

In many medical studies, each subject is followed up and 
assessed for the condition at several points in time such as at the 
time of admission, time of discharge, 3 months after discharge, 
at 6, 9, and 12 months. The sample size calculation in this case 
is complex and is based on variances of the repeated measures 
and correlation pattern.[16] We are providing a simplified 
approximate formula. If K is the number of equally spaced 
time points each subject is measured, the sample size required 
per group is obtained as
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( )
2

1‑ / 2 1‑ 2z + z 1+(K ‑ 1)  
K

α β ρσ
δ

 
 
 

where ρ is the anticipated correlation coefficient between values 
obtained in different repetitions and when the variance at baseline 
is the same as at the endpoint. In this case, δ is the minimum 
medically important difference between group means at the 
endpoint as the mean difference at baseline between them is 
expected to be zero because both the groups are supposed to have 
started with the same baseline. The value of ρ would be rarely 
available in previous documents and may have to be your best 
guess based on the clinical experience. Note in this case that σ2 is 
the common variance of the repeated measures. This is estimated 
by the mean error sum of squares (MSE) in the ANOVA table.

The aforesaid procedure requires that the levels of within‑subjects 
factors are same in the two groups under comparison and is 
valid when the correlation is the same between measurements 
at time1 and time2 as between time1 and time3, or between 
any pair of time points (known as sphericity). Thus, ρ is the 
common correlation coefficient. Experience suggests that the 
correlation coefficient between measurements at different points 
in time remains nearly the same because the measurements at 
different time points are likely to differ by almost a constant 
margin. It is also seen that this correlation is high because the 
repeated measurements belong to the same subjects.

Historical controls
In the case of historical controls, only one group is studied. 
The total sample requirement for investigations becomes half 
of what is needed for a parallel group setup because the other 
half is available in records. Such studies have less reliability 
because historical controls are rarely comparable to the current 
group under study due to the improvement in the diagnostic, 
assessment, and treatment approaches. The formulas remain 
the same despite only one group under study. In this case, the 
second group in the formula refers to the historical controls. The 
variance, the proportion, or any other value, as required for these 
formulas, should be available for the historical controls as well.

Comparison of one group (including paired values) with 
a pre‑fixed value
This arises in at least three situations:
(i)	 Paired observations  (e.g.,  before–after) where the 

difference indicates an effect, such as fasting blood 
glucose level before and after a treatment. In this case, the 
null hypothesis generally is that the mean difference = 0 
and δ is the average medically significant difference we 
wish to detect.

(ii)	 Comparison of a new regimen with a predefined standard, 
such as efficacy of a vaccine is at least pre‑fixed 70%. The 
value of δ in this case will be the difference we wish to 
detect from the pre‑fixed value.

(iii)	Comparison of a correlation coefficient with a pre‑fixed 
value such as to find whether the correlation is at least 0.6 
or not.

The requirement of the total sample in all these situations is 
drastically less than required for two groups setup because 
now only one group is studied (although such studies have 
much less validity due to the role of the uncontrolled factors), 
and a fixed value is used in place of the value in the other 
group.

The sample size formulas for these situations are given in the 
Supplementary Material. Of special interest are the difference 
of odds ratio and relative risk from the null value of OR = 1 
and RR = 1, respectively, or any other fixed value. For these 
parameters, two groups (cases and controls) are required but 
generally the comparison is with a pre‑fixed value of OR or RR. 
Thus, they also come in the one‑group setup for the purpose 
of calculation of sample size.

Equivalence, superiority, and non‑inferiority studies
These studies require that a margin is set for assessing 
equivalence, superiority, or non‑inferiority, as the case may 
be. Call it testing margin and denote it by δ. Whereas the 
equivalence is tested by two one‑sided tests, the superiority 
and non‑inferiority are one‑sided tests. The sample size for 
these setups requires the following two changes:
(i)	 Switch α with β and β with α since, in these setups, the null 

hypothesis becomes the alternative, and the alternative 
becomes the null hypothesis. Thus, z1‑α/2 becomes z1‑β/2 
for equivalence but remains z1‑β for superiority and 
non‑inferiority and z1‑β becomes z1‑α for all the 3 setups.

(ii)	 The denominator, in place of δ, becomes the (observed 
effect in a previous study  –  δ), where δ is the testing 
margin.

The sample size formulas thus obtained are in the Supplementary 
Material for some parameters.

Comparison of three or more groups
The setup of three or more groups requires analysis of 
variance (ANOVA) for comparison of means and chi‑square 
for comparison of proportions. Both these yield complex 
formulas for sample size. Instead, a generally accepted simple 
procedure is to count the number of pairwise comparisons. If 
there are K groups, the number of pairwise comparisons is τ = 
K (K – 1)/2. With this, the only change required in the sample 
size formulas for the two groups is to replace z1‑α/2 by z1‑α/(2τ), 
where τ is the number of pairwise comparisons. Everything else 
remains the same as for two groups, but now pooled estimate 
of the variance σ2 is used (ANOVA in any case requires equal 
variances in the groups under comparison) in the case of means, 
and pooled estimate in the case of proportions. This method 
is applicable only when the number of subjects in each group 
is the same (k = 1). In case δ is different for different pairs, 
the sample size is calculated for each pairwise difference with 
specified δ and the required sample size will be the largest n 
per group.

Logistic and Linear (Multivariable) Regression
1.	 For logistic with one binary predictor[15] (equal number 

of cases and controls):
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( )
( )

2
1‑ / 2 1‑z + z 1‑

n   
B 1‑ B

α β π π
π

  
≥   

    
   per group,

where

π1  =  anticipated event rate at x  =  0, where x is the binary 
predictor (such as death rate in cases with no hypertension (no 
HTN))

π2  =  anticipated event rate at x  =  1, where x is the binary 
predictor (such as death rate in cases with hypertension (HTN))

B  =  proportion of subjects with x  =  1  (prevalence of the 
event) (such as percent of subjects with HTN)

π = B*π2+ (1 – B)*π1 (overall event rate)

δ = minimum medically important difference between the 
hypothesized and the anticipated logistic coefficient to 
be detected  (mostly, the hypothesis is logistic coefficient 
β = 0 – this β is different from β used in z1‑β)

2.	 For logistic with multiple predictors  (equal number of 
cases and controls):

A simulation study indicated that 10 events (outcomes) per 
predictor may be adequate for testing significance of the 
logistic coefficient in a multivariable setup.[17] This will have 
several βs (logistic coefficients). To test any one β =0, where 
β = ln (OR),

2
1‑ / 2 1‑

2

z + z (1‑ )n      
B (1‑ B)(1‑ R )

α β π π
δ

   
≥    

  
per group,

where all the notations are the same as in the preceding formula

R2 is the square of the anticipated multiple correlation 
coefficient, such as Nagelkerke R2.  (1  –  R2) is called the 
variance inflation factor.

3.	 For logistic with one continuous predictor[15]  (equal 
number of cases and controls):

( )

2
1‑ / 2 1‑z + z 1n       

1‑
α β

δ π π
  

≥   
    

per group,

where

π = event rate at mean of x, where x is the continuous predictor

δ = the value of the logistic coefficient β to be detected for this 
predictor (the null is β = 0).

4.	 For linear regression with one predictor:
Same as for single correlation (Supplementary Material).

5.	 For linear regression with multiple predictors:
Several βs but to test any one β = 0,

2
1‑ / 2 1‑

2

z + z
 +3

c
n

(1‑ R )

α β
  
  
   ≥

where

R = expected multiple correlation coefficient (the denominator 
(1 – R2) is the variance inflation factor)

c = Fisher z‑transformation of the correlation coefficient (r) 
to be detected for the variable under consideration, i.e., 

1 1+ r c = ln
2 1‑ r

 
  

Other Situations
See Supplementary Material for many other formulas. Despite 
more than 30 formulas, including those in Supplementary 
Material, the list in this communication is not exhaustive. 
For two‑stage and adaptive designs, the sample size requires 
adjustment as given by Indrayan and Holt.[18] For a simple 
comparison of more than two groups, each with repeated 
measures, we could not locate any simple sample size formula. 
Separate formulas are available for bioequivalence and 
dose‑response studies[9] and multilevel data.[5]

Limitations
Exact formulas for sample size are complex. The formulas 
in this communication are approximations and valid for 
large samples so that the Gaussian  (Normal) distribution 
can be used. They apply to only those small‑sample studies 
where the distribution is Gaussian. But these are generally 
proposed formulas and seem to work fairly well. The second 
important requirement is that the subjects are selected by 
simple random sampling. The same formulas can be used for 
systematic random sampling also and for random allocation 
in the case of clinical trials. In case stratified, cluster, or any 
other method of sampling is used, an adjustment would be 
required. For example, in the case of stratified sampling, 
such as for separate results for males and females, a separate 
sample size calculation is required for each stratum. For cluster 
sampling, the adjustment is the multiplication of each variance 
by the design effect, ( ) = 1 + * – 1 , ID m ρ    where ρI is the 
anticipated intra‑cluster correlation coefficient and m is the 
average cluster size.

As mentioned earlier, all sample sizes arrived at by these 
formulas should be inflated by at least 10% to account for 
variation in the values reported in the literature, which are used 
as an approximation for values in the target population. Second, 
further inflation is required in case a non‑response is expected. 
If the nonresponse is a%, the new n is (calculated n)/(1 – a/100). 
This adjustment is widely recommended to account for the 
attrition in the follow‑up studies. Ignoring this adjustment can 
be a threat to the reliability of the findings.

How to Reduce the Sample Size Requirement

Sample size formulas invariably have variance component in 
the numerator. Thus, an easy method to reduce the requirement 
of samples is to control the variation and reduce the variance. 
In a laboratory study on animals or on biological specimens, 
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the standardized conditions minimize variability and a small 
sample of 5 may be enough to provide sufficient evidence. 
In this case, any effect seen in the subjects can be safely 
ascribed to the intervention because almost no other factor is 
operating. In clinical trials, an attempt is made to make the 
two groups under study as identical as possible at baseline by 
strict inclusion‑exclusion criteria, randomization/matching, 
blinding, and concealment of allocation. However, even with 
such strategies, it is seldom possible to choose subjects of the 
same heredity, same diet, same physiology, same anatomy, 
and same behavior. Thus, the variance can rarely be so small 
to give a small size of the sample. When all such factors are 
under control, such as in a laboratory study on animals, a trial 
can indeed be done on small size and that would provide equally 
reliable results. However, this can affect the generalizability 
because the results would be valid only for the type of cases 
included in the study.

The other way to reduce the sample size is to relax the size of 
medically important effect. As mentioned earlier, a bigger effect, 
if present, is easier to detect with a smaller sample size than a 
smaller effect. If the minimum medically important effect is 20% 
improvement in place of 10%, the sample size requirement will 
steeply decline but any improvement of less than 20% can be 
missed by this sample size and can give a false negative result. 
All the resources spent in the study would be wasted. Many 
researchers do not realize this limitation of small samples.

A large sample is required to control the effect of various 
aleatory and epistemic uncertainties that affect most medical 
research. However, if the objective is just to disprove an 
existing hypothesis, a single contradictory event is enough 
to demonstrate the possibility. Many breakthroughs occurred 
in medicine with n  =  1 such as by Alexander Fleming for 
penicillin and by Barry Marshall for Helicobacter pylori. For 
important discoveries with small n, see Indrayan and Mishra.[19]
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