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Abstract: Benzofuran derivatives are synthetic compounds that are finding an increasing interest in
the scientific community not only as building blocks for the realization of new materials, but also as
potential drugs thanks to their ability to interact with nucleic acids, interfere with the amyloid peptide
aggregation and cancer cell cycle. However, their ability to interact with proteins is a theme still in
need of investigation for the therapeutic importance that benzofurans could have in the modulation
of protein-driven processes and for the possibility of making use of serum albumins as benzofurans
delivery systems. To this scope, we investigated the protein binding ability of two 4-nitrophenyl-
functionalized benzofurans previously synthesized in our laboratory and herein indicated as BF1 and
BDF1, which differed for the number of furan rings (a single moiety in BF1, two in BDF1), using
bovine serum albumin (BSA) as a model protein. By circular dichroism (CD) spectroscopy we
demonstrated the ability of the two heteroaromatic compounds to alter the secondary structure of the
serum albumin leading to different consequences in terms of BSA thermal stability with respect to
the unbound protein (∆Tm > 3 ◦C for BF1, −0.8 ◦C for BDF1 with respect to unbound BSA, in PBS
buffer, pH 7.5) as revealed in our CD melting studies. Moreover, a molecular docking study allowed
us to compare the possible ligand binding modes of the mono and difuranic derivatives showing
that while BF1 is preferentially housed in the interior of protein structure, BDF1 is predicted to bind
the albumin surface with a lower affinity than BF1. Interestingly, the different affinity for the protein
target predicted computationally was confirmed also experimentally by fluorescence spectroscopy
(kD = 142.4 ± 64.6 nM for BDF1 vs. 28.4 ± 10.1 nM for BF1). Overall, the above findings suggest
the ability of benzofurans to bind serum albumins that could act as their carriers in drug delivery
applications.

Keywords: serum albumin; benzofuran ligands; circular dichroism; fluorescence titration; molecular
docking; protein–ligand interactions

1. Introduction

Albumins are proteins with high peptide sequences homology, with bovine and human
albumins sharing 76% identity [1], abundant in the circulatory system of mammals where
they contribute significantly to the osmotic blood pressure [2]. Albumins, and primarily
BSA, are typically used as protein models and their binding with molecules proposed
for biotechnological applications is investigated very extensively in both academic and
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industrial research areas [2–9]. Structurally, albumins present two domains with at least
two high-affinity binding sites, as well as other various low-affinity ones [10].

The major physiological function of albumins is the transport of many classes of
ligands, including cations, fatty acids, steroids, and amino acids present in the bloodstream
to their target organs [1,11]. Interestingly, this binding has also driven the pharmaceutical
use of albumins as drug carriers [12–14].

Albumins are quite soluble, but frequent encounters between their molecules lead to
their aggregation, as ascertained for example with BSA [15] leading to dimers and higher
aggregates [16,17], a major factor in protein function [18] and stability [19,20]. More in
detail, electrophoretic analysis in nondenaturing gels revealed that the monomer/dimer
ratio of BSA is higher than 80% [21], but the albumin oligomerization state can be influenced
by the interactions with ligands that, as observed in the case of myristic acid, when ligated
to the dimers make them less stable and more prone to dissociate into monomers [22].
Interestingly, albumin oligomerization leads to substantial amounts of β-sheet structures
which are directly correlated with aggregation [22,23], as well as a thermal stabilization (by
more than 3 ◦C) of the serum albumin in the dimeric form with respect to the monomer [24].

Oxygen-containing heterocycles are an important class of molecules that exhibit inter-
esting biological and therapeutic activities and share structural similarity with several nat-
ural bioactive compounds [25–27]. Among these, benzofurans have gained a considerable
interest being endowed with a wide range of biological activities such as antibiotic [28–30],
anti-inflammatory [31], anti-parasitic [32], anticancer [33–35], neuroprotective and anal-
gesic [36] effects. As for the molecular basis of the anticancer activity of benzofurans, the
nucleic acid binding [37], as well as the inhibition of particular serine/threonine kinases
involved in tumour development, and cancer cell cycle modifications are some of the
proposed mechanisms [34,38].

Some of us have recently investigated the biological properties of compounds contain-
ing 4-nitrophenyl-functionalized benzofuran (BF) and benzodifuran (BDF) moieties, finding
that both classes were endowed with antiproliferative activity on prostatic tumour cells
(PC-3) in direct correlation with the lipophilicity of the heterocycles, with the compounds
denominated BDF1 and especially BF1 (Figure 1) being the most active candidates [38].
As a prosecution of that previous work, we decided to investigate the ability of both
4-nitrophenyl-functionalized benzofuran and benzodifuran derivatives to interact with
proteins, using as a model bovine serum albumin (BSA), for a better comprehension of
the analogies and differences that the heteroaromatic derivatives display with respect to
the binding with this fundamental family of biomacromolecules involved in numerous
therapeutically relevant pathways.
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Figure 1. Chemical structures for the compounds studied as protein ligands in the current work.
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2. Materials and Methods
2.1. Synthesis of Benzofuran Derivatives BF1 and BDF1

The benzodifurans used in this work were synthesized according to a procedure
described in the literature based on the Craven reaction [38]. All the intermediates used in
the synthetic procedures have been purchased by Sigma Aldrich and Acros Organics, and
used without further purification. The purity of BF1, and BDF1 was ≥95%.

2.2. CD Binding Studies

Circular dichroism (CD) spectra were registered on a Jasco J-715 spectropolarimeter
equipped with a Peltier PTC-423S/15 in a Hellma quartz cell with a light path of 0.1 cm
according to other previous literature experiments [39–43]. All the spectra were averaged
over 3 scans. All experiments were performed on solutions buffered at pH 7.4. The
concentration of BSA (Sigma) was 0.12 µM, while the benzofuran stock solutions were
80 mM in DMSO.

2.3. CD Denaturation Studies

CD denaturation experiments on BSA/benzofuran complexes were realized recording
the ellipticity at 222 nm with a temperature scan rate of 1 ◦C/min in the range 50–90 ◦C. All
curve data were normalised and smoothed within the given range and the first derivatives
of the melting curves were calculated. Therefore, Tm value was determined in each case
as the first derivative maximum of the CD denaturation curves. All the melting and
first derivative (dCD222/dT vs. T) curves were averaged over 3 scans. Error bars are
means ± SD of 3 independent experiments.

2.4. CD Spectra Deconvolution

For the deconvolution of the circular dichroism spectra, CD (mdeg) and wavelength
(nm) data were given as input to the software CD3 (http://lucianoabriata.altervista.org/
jsinscience/cd/cd3.html, accessed on 14 December 2021) [44,45]. Only data corresponding
to positive coefficient values were selected for the protein structure analysis choosing the
following option: ‘Fit alpha beta coil’.

2.5. Fluorescence Studies

Fluorescence spectra were recorded using a spectrofluorometer FluoroMax-4 (Horiba
Scientific) at 25 ◦C. BSA samples were prepared in 1X PBS buffer (137 mM NaCl, 2.7 mM KCl,
10 mM Na2HPO4, and 1.8 mM KH2PO4, pH = 7.4) at a concentration of 120 nM and were
excited at λ = 280 nm (λem = 295–470 nm). Subsequently, different aliquots of BDF1 and
BF1 (Conc. of the stock solution = 24 µM in DMSO) were added to BSA in order to explore
a range of concentrations from 30 to 480 nM. The same titration was repeated adding the
same volume of solvent (DMSO). The slit widths were set to 5 nm for both excitation and
emission. All the spectra were recorded in duplicate.

2.6. Molecular Docking and in Silico Protein–Protein and Protein–Ligand Interaction Analysis

Molecular docking analysis, a methodology widely employed in drug discovery [46–50],
in the specific case of the interaction of BF1 and BDF1 with BSA was performed using
PatchDock, a docking program based on ligand–receptor geometric shape complemen-
tarity [51,52]. FireDock software was then used for rescoring and refinement thanks to
its ability to improve the flexibility and scoring errors typically had during the molecular
docking calculations by fast rigid-body docking tools [53]. More in detail, the input for
PatchDock consisted of PDB files of BF1 and BDF1 ligands, and BSA. The structure of BSA
was obtained from the Protein Data Bank database (PDB; ID: 4f5s); the clustering RMSD
(root mean square deviation) was set to 4.0 Å, and the complex type was set as the default
type. The top 10 results for both BF1 and BDF1 dockings were transferred to FireDock
for refinement. The top-ranked FireDock solutions, according to the contribution of the
atomic contact energy (ACE), were chosen for the study of the complexes in analogy to

http://lucianoabriata.altervista.org/jsinscience/cd/cd3.html
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Biomolecules 2022, 12, 262 4 of 12

other literature examples [54]. Inter-protein residue–residue contacts for homo-dimeric BSA
were predicted by DeepHomo Server (http://huanglab.phys.hust.edu.cn/deephomo/,
accessed on 31 December 2021) [55], while the protein–ligand interaction diagrams re-
ported in this work were obtained by PLIP (Protein–Ligand Interaction Profiler, https:
//plip-tool.biotec.tu-dresden.de/, accessed on 31 December 2021) [56].

2.7. Pharmacokinetic Properties

We predicted for BF1 and BDF1 the logarithms of the partition coefficients (cLogP),
blood–brain barrier (BBB) permeability, pan-assay interference compounds (PAINS) score,
and druggability properties presented in this work and in Supporting Information by
SwissADME (http://www.swissadme.ch/index.php, accessed on 14 December 2021).

3. Results and Discussion

In order to achieve insights on the molecular interactions of benzofurans with the
model protein BSA (bovine serum albumin), we performed both spectroscopic [circular
dichroism (CD) and fluorescence] and in silico (molecular docking, ligand-protein analysis)
studies as described in the sections below.

3.1. CD Binding Studies on BSA in Complex with BF1 and BDF1

It is well known that the BSA secondary structure is mainly dominated by α-helix
structures, which account for approximately 60% of its structure, while β–sheet content is
less than 10% [57]. Accordingly, in our experiments, the far-UV CD spectra of unliganded
BSA exhibited the characteristic features of the typical helical structure of the proteins
with two negative bands at 208 and 222 nm (Figure 2, blue). After addition of BF1, the
signal intensity at 208 nm was slightly greater than at 222 nm (line dark green), which
suggested an increase in β-sheet content in the protein structure as a consequence of the
interaction with the ligand as reported in the literature for similar spectral changes [58].
On the other hand, the addition of the benzodifuran BDF1 led to the spectral curve in red
(Figure 2), which did not show any predominant band between 208 and 222 nm. These
evidences suggest that the secondary structure of BSA underwent slight but significant
modifications as consequence of the binding with BF1 and BDF1, with the former being
able also to increase slightly the β-sheet content of the albumin structure. To achieve a more
quantitative information on this aspect, we then performed a deconvolution of the CD
spectra and reported the variations of secondary structure contents of BSA in the absence
and presence of an excess of benzofurans, as shown in Table 1.
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Figure 2. (a) CD spectra of BSA (0.12 µM, blue) and its complexes with the benzofuran derivatives
(25 nmol) BF1 (dark green) and BDF1 (red) in 90 mM NaCl, 1.8 mM KCl, 6.6 mM Na2HPO4, 1.2 mM
KH2PO4 (pH = 7.5) at 20 ◦C. (b) Zoomed-in view of the CD bands between 200–235 nm.
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Table 1. Variations in BSA structure content (%) determined by benzofuran ligands. Please note that
even though only minor changes can be detected after ligand binding, BF1 determines an increase in
β-sheet more significant than BDF1.

∆(BF1-BSA) (%) ∆(BDF1-BSA) (%)

α +0.06 −0.79

β +5.70 +1.00

Random coil −5.76 −0.21

According to this table, BDF1 provoked only minor secondary structure changes of
BSA, while a certain increase in β-sheet (+5.70%) was observed in the case of the complex
of the albumin with BF1 confirming our initial analysis and the literature considerations
on the increase in the 208 nm/222 nm band ratio [58]. To investigate the effect of the two
classes of benzofurans on protein stability, we recorded CD denaturation curves monitoring
the CD values at 222 nm vs. temperature (Figure 3a).
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Figure 3. CD thermal denaturation curves [CD222 (mdeg) vs. T (◦C)] (a) and first derivatives vs. T
(b) plots for BSA (0.12 µM, blue) and its complexes with the benzofuran derivatives (25 nmol)
BF1 (green) and BDF1 (red) in 90 mM NaCl, 1.8 mM KCl, 6.6 mM Na2HPO4, 1.2 mM KH2PO4

(pH = 7.5) at 20 ◦C.

By examining the first derivative maximum of the melting curves, we could demon-
strate that while BDF1 led to a slight destabilization (by less than 1 ◦C) of BSA structure,
BF1 increased melting temperature (Tm) by about 3 ◦C (Figure 3b, Table 2).

Table 2. Summary table of the melting temperatures (Tm) and their variations (∆Tm) with their respective
error bars, with respect to the unliganded protein1 for the complexes BF1-BSA and BDF1-BSA.

Compound Tm/◦C ∆T/◦C = (Tm − TmBSA)

BF1-BSA 72.9 ± 0.1 +3.1 ± 0.2

BDF1-BSA 69.0 ± 0.2 −0.8 ± 0.1
1 TmBSA = 69.8 ± 0.1 ◦C.

Taken together, the CD binding and melting studies suggested that only BF1 increases
BSA β-sheet content and thermal stability, which are both features related to BSA oligomer-
ization. Conversely, BDF1 does not significantly affect the structure elements rate in the
albumin and does not provoke any thermal stabilization. This experimental evidence could
be explained assuming that in binding to monomeric BSA, BDF1 prevents its aggregation,
and/or that its interaction with dimer albumin does affect protein dimerization favouring
dissociation into monomeric BSA, in analogy to other literature reports [22].
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3.2. Fluorescence Studies

Fluorescence spectroscopy was also used by us to confirm BSA complex formation
with BF1 and BDF1 and to have more quantitative information on the affinities of the
ligands for the protein target. The fluorescence method is a sensitive tool to study the
interactions between proteins such as BSA and small molecules. The molecular recognition
of BSA by small molecules mainly determines a static quenching, with the fluorescence
being quenched due to the formation of complexes between the fluorophore and quenchers
in the ground state [59]. In general, proteins contain three fluorophores, i.e., the amino
acids L-tryptophan, L-tyrosine and L-phenylalanine. Due to the low quantum yield of
L-phenylalanine and almost quenched characteristics of L-tyrosine, the intrinsic protein
fluorescence occurs mainly due to the L-tryptophan. BSA possesses two L-tryptophan
residues, Trp-134 and Trp-213. While this latter is situated within a hydrophobic binding
pocket of the protein, Trp-134 is found on the surface in the hydrophilic region of the
molecule [60]. In our experiment, when exciting at 280 nm, the BSA showed a strong
emission band at 347 nm. Interestingly, both compounds led to albumin fluorescence
quenching (Figure 4a,b) and their interaction was associated with a good affinity with
dissociation rates (kD) in the nanomolar range, with BF1 showing a higher affinity than
BDF1 (kD = 28.4 ± 10.1 nM vs. 142.4 ± 64.6 nM, insets of Figure 4a,b). More in detail,
the BSA emission band was monitored after adding the ligands. Successive additions of
benzofurans to BSA led to significant changes in the fluorescence emission. The fluorescence
intensity of BSA decreased and blue-shifted by about 10 nm with the addition of increasing
amounts of both ligands. The fluorescence quenching, along with the blue shifts, are
indicative of the formation of a complex between the BSA and ligands. Additionally,
the formation of the complex between the albumin and both benzofurans is indicative
of changes of the L-tryptophan environment. After subtracting the DMSO (dimethyl
sulfoxide) emission spectrum (as background signal), the fluorescence values were plotted
as functions of the concentrations, and from the data fitting it was possible to calculate the
apparent kD, as reported in the insets of Figure 4a,b.
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Figure 4. Fluorescence titrations of BSA (120 nM) with (a) BDF1 and (b) BF1 with ligand concen-
trations from 30 to 480 nM. Insets: changes in the normalized fluorescence intensity as a function
of ligand concentrations (nM) for the titrations of BSA with BDF1 and BF1, after the DMSO back-
ground subtraction. kD values with standard deviations determined by the fluorescence method are
also reported.

3.3. In Silico Studies on the Benzofuran/BSA Complexes

Aiming at giving a possible interpretation of the binding evidence described in the pre-
vious sections, we performed a molecular docking study. First, the PatchDock program was
used for blind molecular dockings between BSA and BF1 and BDF1. The top-10 solutions
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from the results of this shape complementarity-based docking methodology [51,52], which
produced near native conformation of BSA–ligand complexes (Figure 5), were screened for
further refinement and rescoring by using FireDock program to improve the flexibility and
scoring errors obtained from the previous rigid dockings [53]. Final results of dockings of
BDF1 and BF1 with BSA are presented in Table 3 and Figure 5.
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Table 3. Docking results for the best poses of BF1 and BDF1 in complex with BSA. All energies are
given as kj/mol.

Complex Global
Energy Attractive VDW * Repulsive VDW * ACE **

BF1-BSA(monomer) −44.20 −23.90 11.00 −11.16
BDF1-BSA(monomer) −40.05 −26.40 11.37 −6.94

BF1-BSA(dimer) −36.78 −22.73 17.36 −10.77
BDF1-BSA(dimer) −35.53 −23.79 11.73 −6.36

* VDW = Van der Walls. ** ACE = Atomic contact energy.

When we docked BDF1 to monomeric and dimeric BSA, an external interaction was
predicted onto monomeric BSA surface (Figure 5a) with the main interaction being pre-
dicted for the residue Glu-82 (hydrogen bonding, Figure S1, Supplementary data), while an
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inter-monomer binding of the ligand was observed for the docking with the dimeric BSA
(Figure 5c). Global energies for the best docking models were −40.05 and −35.53 kj/mol
with atomic contact energies of−6.94 kj/mol and−6.36 kj/mol for monomeric and dimeric
BSA, respectively (Table 3). As for the binding of BF1 with BSA, a predicted interaction
in the interior of monomeric BSA (Figure 5b) involving numerous residues including Leu-
189, Ile-455 (hydrophobic interactions), Glu-424, Ser-428, and Lys-431 (hydrogen bonding,
Figure S1 Supplementary data), was clearly revealed by our computational studies. Global
and atomic contact energies (−44.20 and−36.78 kj/mol and−11.16 kj/mol and−10.77 kj/mol
for monomeric and dimeric albumin, respectively, Table 3) were lower than those found for
BDF1, revealing, thus, a higher BF1 affinity for BSA than BDF1, in analogy to the trend that
we experimentally found by fluorescence (Figure 4). Interestingly, when docked to dimeric
BSA (Figure 5c,d), both benzofurans show a lower predicted affinity for the protein target,
and BF1 binds the inner region of one of the two monomers (Figure 5d) involving only
residues of chain A (Figure S2, Supplementary data), while BDF1 was predicted to bind at
the interface between the two BSA monomers (Figure 5c) with interactions with residues
from both A and B chains (Figure S2, Supplementary data). We hypothesize that BDF1 not
only prevents the monomer association in dimers in the equilibrium schematically repre-
sented in Figure 6, but in analogy to similar literature reports for ligands of dimer albumins,
it may provoke dimer dissociation into BSA monomers [22]. In our prediction, the residue
involved in the interaction of BDF1 with BSA monomer, i.e., Glu-82, lies in the vicinity
of Glu-97 that emerged from our in silico studies as one of the main residues involved in
the process of dimerization of BSA (Figure S3, Supplementary data), thus suggesting that
BDF1 binding onto the surface of monomeric BSA prevents its dimerization, in accordance
with the experimental evidence described in Section 3.1.

Finally, predicting some pharmacokinetic properties for BF1 and BDF1, we found that
the former, slightly less hydrophobic than the latter, could be endowed with a more
favourable druglikeness profile than the benzodifuran derivative (Figures S4 and S5
Supplementary data). In this prediction, both lack any unspecific biomolecular interacting
tendency (PAINS score: 0 for both compounds, Figures S4 and S5).
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4. Conclusions

We demonstrated here that benzofuran derivatives can efficiently bind to serum albu-
mins, which is of particular importance in drug delivery applications where these proteins
can act as carriers of these bioactive heterocyclic molecules. Moreover, we found that benzo-
furans differing for the number of fused furan rings, such as the benzomonofuran BF1 and
the benzodifuran BDF1, may show different binding properties toward the same protein
target. In fact, we found that BF1 binds BSA with higher affinity than BDF1 provoking
also a thermal stabilization of the albumin (by about 3 ◦C) not observed in the case of
the benzodifuran. Our combined experimental (CD and fluorescence-based) and in silico
(molecular docking) investigation led us to conclude that while benzomonofurans bind
BSA in internal pockets (altering the Trp-213 environment, which reflects in the observed
fluorescence changes), the larger benzodifuran structure interacts externally with the serum
albumin in the vicinity of Trp-134 (with effects on the fluorescence of BSA as experimentally
observed by us) and residues such as Glu-97 involved in the BSA dimerization, a process
consequently disfavoured by BDF1 but not BF1. The different albumin aggregation ten-
dency determined by the ligands could explain the experimentally found differences in
albumin stability and β-sheet content, found in our spectroscopic studies. In conclusion,
BF1, a potential anticancer drug previously developed in our group, forms stable complexes
(kD = 28.4 ± 10.1 nM) with BSA and could likely be efficiently transported in serum by
albumins, which could be used as convenient drug delivery systems, especially in this case.
On the other hand, BDF1 seems to bind BSA with still high affinity (kD = 142.4 ± 64.6 nM)
but less efficiently than BF1 preventing its oligomerization, and it could be further explored
in strategies aiming at contrasting protein aggregation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12020262/s1, Figures S1 and S2: 3D interaction diagrams
for ligands/BSA complexes; Figure S3: prediction of residue—residue interactions for homodimeric
BSA; Figures S4 and S5: predicted pharmacokinetic properties for BF1 and BDF1.
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