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Merkel cell polyomavirus (MCPyV) is a small DNA tumor virus ubiquitous in
humans. MCPyV establishes a clinically asymptomatic lifelong infection in healthy
immunocompetent individuals. Viral infections are considered to be risk factors for
spontaneous abortion (SA), which is the most common adverse complication of
pregnancy. The role of MCPyV in SA remains undetermined. Herein, the impact
of MCPyV infection in females affected by SA was investigated. Specifically,
an indirect enzyme-linked immunosorbent assay (ELISA) method with two linear
synthetic peptides/mimotopes mimicking MCPyV antigens was used to investigate
immunoglobulin G (IgG) antibodies against MCPyV in sera from 94 females affected
by SA [mean ± standard deviation (SD) age 35 ± (6) years] and from 96 healthy females
undergoing voluntary pregnancy interruption [VI, mean (±SD) age 32 ± (7) years].
MCPyV seroprevalence and serological profiles were analyzed. The overall prevalence of
serum IgG antibodies against MCPyV was 35.1% (33/94) and 37.5% (36/96) in SA and
VI females, respectively (p > 0.05). Notably, serological profile analyses indicated lower
optical densities (ODs) in females with SA compared to those undergoing VI (p < 0.05),
thus indicating a reduced IgG antibody response in SA females. Circulating IgGs were
identified in sera from SA and VI females. Our immunological findings indicate that a
relatively reduced fraction of pregnant females carry serum anti-MCPyV IgG antibodies,
while SA females presented a more pronounced decrease in IgG antibody response to
MCPyV. Although yet to be determined, this immunological decrease might prompt an
increase in MCPyV multiplication events in females experiencing abortive events. The
role of MCPyV in SA, if present, remains to be determined.

Keywords: spontaneous abortion, miscarriage, pregnancy, viral infection, Merkel cell polyomavirus, antibodies,
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INTRODUCTION

Merkel cell polyomavirus (MCPyV) is a small DNA tumor virus
(Witkin et al., 2020). It is the main causative agent of Merkel
cell carcinoma (MCC), which is a rare, but highly aggressive,
non-melanoma skin cancer (Rotondo et al., 2017; Jin et al.,
2019). MCPyV oncogenic activity is mediated by viral DNA
integration into the host genome (Rotondo et al., 2017; Del
Marmol and Lebbé, 2019; Pietropaolo et al., 2020), alongside
the expression of two viral oncoproteins large T (LT) and small
T (sT) antigens (Csoboz et al., 2020; Liu and You, 2020). Two
additional MCPyV proteins are major capsid protein 1 (VP1) and
minor capsid protein 2 (VP2), which present structural functions
(Pietropaolo et al., 2020). VPs have previously been exploited
as immunoantigens in studies focusing on the detection of
immunoglobulin G (IgG) antibodies against MCPyV in humans
(Touzé et al., 2010, 2011). Serological studies have indicated that
MCPyV is ubiquitous in the healthy population, with varying
rates reported as ranging from 60 to 80%, approximately (Carter
et al., 2009; Kean et al., 2009; Pastrana et al., 2009; Faust et al.,
2011; Tolstov et al., 2011; Touzé et al., 2011; Viscidi et al., 2011;
Coursaget et al., 2013; Van Der Meijden et al., 2013; Šroller et al.,
2014; Zhang et al., 2014; Vahabpour et al., 2016; Kamminga et al.,
2018; Csoboz et al., 2020; Zhou et al., 2020; Mazziotta et al.,
2021a,b). Initial exposure to MCPyV occurs early in life. Then,
MCPyV establishes a lifelong, asymptomatic infection in healthy
immunocompetent individuals (Hashida et al., 2016; Prezioso
et al., 2019). However, in certain circumstances, such as during
host immune system impairment, increased MCPyV replication
levels/activity can occur, thereby leading to an increase in MCC
occurrence (Rotondo et al., 2017; Tabachnick-Cherny et al., 2020;
Decaprio, 2021).

Spontaneous abortion (SA) is the natural loss of pregnancy
before the 20th week of gestation and represents the most
common adverse complication in pregnancy. Approximately 10–
20% of clinically recognized pregnancies end in a spontaneous
loss of the embryo/fetus (Hertz-Picciotto and Samuels, 1988;
American College of Obstetricians and Gynecologists Committee
on Practice Bulletins—Gynecology, 2018).

Spontaneous abortion causes comprise genetic abnormalities
in either partners, which may lead to abnormal chromosomal
numbers or alterations (Eiben et al., 1990; Suzumori and Sugiura-
Ogasawara, 2012; Dean et al., 2018). Additional SA causes include
negative lifestyle factors, such as unhealthy diet/weight other
than smoking, alcohol and drug abuse, and other factors, such
as ethnicity, stress, and occupational/chemical exposures (De La
Rochebrochard and Thonneau, 2002; Sopori, 2002; Lashen et al.,
2004). Hormonal, anatomical, and autoimmune abnormalities, as
well as male genetic/epigenetic factors, have also been identified
(Toth et al., 2010; Rotondo et al., 2012, 2013, 2021a). Notably,
although a variety of SA factors have been reported, other causes
are yet to be determined (Miyaji et al., 2019; Fukuta et al.,
2020). Indeed, nearly one-half of SA cases, defined as idiopathic,
presents an undefined etiology (Jeve and Davies, 2014).

A growing number of studies have identified infectious
agents as SA risk factors (Giakoumelou et al., 2016;
Contini et al., 2018). Nearly 40% of SA cases are estimated
to be linked to infectious agents, including viruses

(Donders et al., 2000; Srinivas et al., 2006; Giakoumelou et al.,
2016), while over 60% of females experience at least one
infection during pregnancy (Collier et al., 2009). Viruses
can therefore cause severe complications during pregnancy
and are reported as associated with cases of stillbirth and
preterm delivery, in addition to SA (Giakoumelou et al., 2016;
Racicot and Mor, 2017).

Different human viruses, such as dengue, Zika, adeno-
and adeno-associated viruses, human cytomegalovirus (HCMV),
herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), and
the recently discovered severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), can potentially impact pregnancy
outcome, ending, in the worst cases, in an SA event (Burton
and Watson, 1997; Fisher et al., 2000; Giakoumelou et al.,
2016; Azevedo et al., 2018; Carabali et al., 2018; de Freitas
et al., 2018; Sayyadi-Dehno et al., 2019; Auriti et al., 2021;
Rotondo et al., 2021b).

The limited amount of data available preclude robust
conclusions on the clinical significance of polyomavirus
(PyV) infections, including MCPyV, in SA from being made
(Tagliapietra et al., 2019, 2020; Mazzoni et al., 2020). Footprints
of viral DNAs from PyVs, including Simian virus 40 (SV40),
JCPyV/BKPyV, and MCPyV, have been detected at low
prevalence in umbilical cords, placenta, peripheral blood
mononuclear cells (PBMCs), and/or chorionic villi from both
pregnant and SA females (Sadeghi et al., 2010; Tagliapietra et al.,
2019, 2020; Mazzoni et al., 2020). Immunological data have also
indicated the presence of circulating IgGs against SV40, JCPyV,
and BKPyV in the same study groups (Tagliapietra et al., 2019,
2020). A role in SA has been excluded for other PyVs, i.e., KIPyV
and WUPyV (Sadeghi et al., 2010). Notably, until now, only
one study has reported on the presence of circulating antibodies
against MCPyV in pregnant females (Sadeghi et al., 2010), while
MCPyV serology in females with SA is unknown.

The lack of immunological data in this field has raised the
question of whether MCPyV infection might be linked to SA.
To this purpose, we aimed to assess the MCPyV seroprevalence
and serological profiles in two sets of sera belonging to females
affected by SA, the case, and healthy females (HF) undergoing
voluntary interruption of pregnancy (VI), as control.

MATERIALS AND METHODS

Human Sera
Human sera were obtained from females who had experienced
SA (n = 94), i.e., the case, and females undergoing VI
(n = 96), i.e., the control. SA and VI sera were from
our archive (Tognon et al., 2020). Samples were collected
within 12 h from the abortion. Samples were stored at
−80◦C until testing, as reported previously (Mazziotta et al.,
2021a,b). The mean ages [± standard deviation (SD)] of
SA and VI groups were 35 ± 6 and 32 ± 7 years
(p > 0.05), respectively. SA and VI inclusion criteria were
(i) patients aged 18–42 years; (ii) gestational age within the
first 12 weeks; and (iii) for the VI group, females selected
according to Italian Law 194, article 6, comma B. Exclusion
criteria were (i) severe hormonal or uterine dysregulations; (ii)
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immunosuppressive therapies known to cause SA events; (iii)
genetic disorders; (iv) presence of infections, such as hepatitis
B virus (HBV), human immunodeficiency virus (HIV), hepatitis
C virus (HCV), and syphilis; (v) use of teratogenic drugs; and
(vi) acquired/congenital immunodeficiency syndromes/diseases.
Written informed consent was obtained from all subjects/patients
according to the Declaration of Helsinki. The Ethical Committee
of Ferrara, Italy, authorized the study (ID: 151078). In addition,
immunological data from a set of sera belonging to a cohort
of age-matched HF [n = 95, mean age ± SD, 34 ± (9) years]
(p> 0.05), from our previous study (Mazziotta et al., 2021b), were
included herein for comparison.

MCPyV Linear Synthetic Peptides
The indirect enzyme-linked immunosorbent assay (ELISA)
employed in this study to detect IgGs to MCPyV in sera from
SA and VI was recently developed and validated (Mazziotta
et al., 2021a,b). The immunoassay uses two linear synthetic
peptides/mimotopes, known as MCPyV VP1 S and VP2 F (or
S and F peptides) for detecting circulating IgGs against MCPyV
in healthy adult and elderly individuals, as described (Mazziotta
et al., 2021a,b). The peptides were synthesized using standard
procedures and purchased from UFPeptides s.r.l., Ferrara, Italy.
Amino acid (a.a.) sequences of VP1 S (24 a.a. residues) and VP2
F (25 a.a. residues) peptides are as follows:

VP1 S: NH2-NSPDLPTTSNWYTYTYDLQPKGSS-COOH
and
VP2 F: NH2-SLSPTSRLQIQSNLVNLILNSRWVF-COOH.

Indirect Enzyme-Linked Immunosorbent
Assay
Indirect ELISA was performed as reported (Mazziotta et al.,
2021a,b). S and F peptides, 5 µg each, were diluted in
100 µl of coating buffer 1X, pH 9.6 (Candor Bioscience,
Wangen, Germany), which was used to coat each well of the
immunological plates (Nunc-Immuno PolySorp, Thermo Fisher
Scientific, Milan, Italy). The peptide-coated plates were incubated
at 4◦C for 16 h. Successively, immunological plates were rinsed
three times with a washing buffer (Candor Bioscience, Wangen,
Germany) to remove unbound peptides. For the blocking phase,
200 µl per well of blocking solution containing the casein
and Tween detergent (Candor Bioscience, Wangen, Germany)
was added to each well and incubated at 37◦C for 90 min.
Plates were washed three times with the washing buffer before
serum samples were added. Each well was covered with 100 µl
of serum samples diluted 1:20 in a low cross-buffer (Candor
Bioscience, Wangen, Germany). Sera in each plate included (i)
positive controls, that is, immune human sera derived from
patients with MCPyV-positive MCC (Mazziotta et al., 2021b);
(ii) negative controls, that is, three human MCPyV-negative
sera (Mazziotta et al., 2021b); and (iii) sera from SA and VI
under analysis. Immunological plates with sera were incubated
at 37◦C for 90 min. Each sample was analyzed in triplicate. Wells
were washed three times, and then the secondary antibody was
added to each sample. This solution consists of a goat anti-
human IgG heavy (H)- and light (L)-chain-specific peroxidase

conjugate (Calbiochem-Merck, Darmstadt, Germany) diluted
1:10,000 in a low cross-buffer. The solution was added to each
well, whereas plates were incubated at room temperature (RT)
for 90 min. After 90-min incubation, the plates were washed
three times; then 100 µl of 2,2′-azino-bis-3-ethylbenzothiazoline-
6-sulfonic acid (ABTS) solution (Sigma-Aldrich, Milan, Italy)
was added to each well. Plates were incubated at RT for 45 min.
ABTS reacted with the peroxidase enzyme to yield the color
reaction. Finally, the plate was read with a spectrophotometer
(Thermo Electron Corp., model Multiskan EX, Vantaa, Finland)
at a wavelength (λ) of 405 nm. Color intensity in wells
was determined by an optical density (OD) reading. The OD
readings correspond to the amount of immune complexes
formed by the specific antibodies binding to S and F synthetic
peptides/mimotopes.

The cutoff for each S and F peptide was set in each indirect
ELISA run, as the mean of the OD readings of negative control
sera (n = 3) plus three SDs of mean (mean + 3 SDs) (Classen
et al., 1987; Saraswati et al., 2019; Mazziotta et al., 2021a,b),
as described previously for other ELISA methods (Meyer, 2001;
Lardeux et al., 2016).

Immune serum samples were considered MCPyV positive
when reacting to both S and F synthetic peptides, in three replica
ELISA experiments carried out by three independent operators,
without data variability.

Statistical Analysis
Merkel cell polyomavirus seroprevalence rates were statistically
analyzed applying a two-sided chi-square test (Tognon et al.,
2020; Oton-Gonzalez et al., 2021). Values were analyzed using
the D’Agostino Pearson normality test, and parametric and
non-parametric tests were applied according to normal and
non-normal variables, respectively, as reported (Nakagawa and
Schielzeth, 2010; Rotondo et al., 2020a). In detail, ODs were
analyzed using a one-way analysis of variance (ANOVA) and
Kruskal–Wallis multiple comparison tests, according to normal
and non-normal variables, respectively [OD medians, 95%
confidence interval (CI)]. The Spearman correlation coefficient
r was used to evaluate the OD concordance between S and F
peptides. Statistical analyses were carried out using GraphPad
Prism version 8.0 for Windows (GraphPad, La Jolla, CA,
United States) (Rotondo et al., 2020b). A p-value < 0.05 was
considered statistically significant (Mazzoni et al., 2020).

RESULTS

Indirect Enzyme-Linked Immunosorbent
Assay Reliability Assessment
In the first phase of this investigation, the reliability of our
immunoassay was assessed in sera from female patients with
SA and those who had undergone VI, by determining the OD
concordance between MCPyV VP1 S and VP2 F peptides. OD
concordance between S and F peptides was evaluated using the
Spearman correlation analysis in SA (n = 94) and VI (n = 96) sera.
In addition, immunological data from a group of age-matched
HF (n = 95), which had previously been investigated in our

Frontiers in Microbiology | www.frontiersin.org 3 December 2021 | Volume 12 | Article 789991

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-789991 December 8, 2021 Time: 13:1 # 4

Mazziotta et al. Anti-MCPyV IgGs in Spontaneous Abortion

laboratory for MCPyV serology (Mazziotta et al., 2021b), were
included herein for statistical comparisons. OD concordance
between S and F peptides was therefore analyzed in SA, VI, and
HF sera considered alone, as well as in combination (n = 285).
Results indicate a good degree of correlation between ODs for S
and F peptides for the SA group, with a Spearman coefficient r of
0.7727 (p < 0.0001) (Figure 1A), and for the VI group, with an r
of 0.6221 (p < 0.0001) (Figure 1B). A good correlation between
S and F peptide ODs was also found in HF sera with an r of
0.7686 (p < 0.0001) (Figure 1C). In addition, when evaluating
the combined SA, VI, and HF sera, a good concordance between
S and F was determined with an r of 0.7854 (p < 0.0001)
(Figure 1D). These data indicate that both peptides can be used
simultaneously, therefore underlining that our assay is reliable in
detecting anti-MCPyV IgGs in sera from SA and VI females.

Detection of Serum IgG Antibodies
Against MCPyV by Indirect
Enzyme-Linked Immunosorbent Assay
Human sera, from SA (n = 94) and VI (n = 96) females, were
analyzed by indirect ELISA for IgG Ab reactivity to MCPyV
VP1 S and VP2 F peptides/mimotopes. The prevalence of anti-
MCPyV IgGs was therefore determined in SA and VI groups.
A statistically similar overall prevalence of 36.2% (34/94) and
43.6% (41/94) was obtained in SA sera, when tested with S
and F peptides, respectively (p > 0.05) (Table 1). Comparable
prevalence rates of 39.6% (38/96) and 47.9% (46/96) were
obtained in VI sera reacting to S and F peptides, respectively
(p > 0.05). With only a few exceptions, sera testing negative
for S peptide did not react to F peptide and vice versa. In
detail, 8.5% (8/94) of SA sera resulting negative for S peptide
were positive for F peptide, while 1.1% (1/94) of sera tested F
peptide negative, while being positive for S peptide. In VI, 10.4%
(10/96) of sera tested F peptide positive were negative for S
peptide, whereas 2.1% (2/96) of sera negative for F peptide were
positive for S peptide.

In this study, sera were considered MCPyV positive when
reacting with both mimotopes S and F, as previously reported
(Mazziotta et al., 2021a,b).

The combined overall prevalence of IgGs against MCPyV, for
both S and F peptides, was 35.1% (33/94) and 37.5% (36/96) in
serum samples from SA and VI groups, respectively (p > 0.05).

Serological Profiles of Serum IgG
Antibodies Reacting to MCPyV
Serological profiles for IgG reactivity to MCPyV VP1 S and VP2
F peptides/mimotopes were analyzed, both for the single peptide
and in combination. Immunological data were taken from sera
belonging to SA (n = 94) and VI (n = 96) females. Results are
reported as OD readings at λ 405 nm. The median [interquartile
range (IQR)] ODs for S peptide and F peptide, alone and in
combination, were then determined in SA and VI sera; then
values were compared.

Serologic profile analysis indicated that the median (IQR) OD
values for S peptide resulted as 0.09 (0.08–0.11) and 0.11 (0.09–
0.12) in SA and VI groups, respectively (Figure 2A). The median

(IQR) OD values for F peptide resulted as 0.11 (0.1–0.14) and 0.18
(0.13–0.23) in SA and VI groups, respectively (Figure 2B). Lastly,
the median (IQR) OD values for combined S and F peptides
resulted as 0.1 (0.09–0.13) in SA and 0.12 (0.1–0.18) in VI groups
(Figure 2C). The difference in OD levels between SA and VI
groups was statistically significant for both S and F peptides
considered alone, as well as upon combining ODs of the two
peptides (p < 0.05, for S peptide; p < 0.0001, for both F peptide
alone and combined S and F peptides) (Figure 2).

Serum IgG Reactivity to MCPyV in
Females Experiencing Spontaneous
Abortion and Healthy Females Who Had
Undergone Voluntary Interruption vs.
Healthy Non-pregnant Females
In a second phase, MCPyV seroprevalence and serologic profiles
in SA (n = 94) and VI (n = 96) females were compared to those
obtained in sera from a group of age-matched HF (n = 95)
females (p> 0.05), which had previously been investigated in our
laboratory for MCPyV serology (Mazziotta et al., 2021b).

Merkel cell polyomavirus seroprevalence was found to be
lower in both SA (35.1%, 33/94) and VI groups (37.5%, 36/96)
than in the HF group (62.1%, 59/95) (p< 0.001). Serologic profile
analysis indicated that S-peptide ODs were lower in both SA
[n = 94, median (IQR), 0.09, 0.08–0.11] and VI groups (n = 96,
0.11, 0.09–0.12) than in HF (n = 95, 0.17, 0.12–0.26, p < 0.0001)
(Figure 2A). Similarly, F-peptide ODs were lower in both SA
(0.11, 0.1–0.14) and VI (0.18, 0.13–0.23) compared to the HF
group (0.3, 0.19–0.49, p < 0.0001) (Figure 2B). Furthermore,
lower ODs for combined S- and F-peptides were detected in both
SA (0.1, 0.09–0.13) and VI sera (0.12, 0.1–0.18) compared to HF
(0.22, 0.15–0.34, p < 0.0001) (Figure 2C).

DISCUSSION

The role of MCPyV in SA remains undetermined. Herein,
MCPyV seroprevalence and serological profiles were
investigated, for the first time, in sera from SA females using an
indirect ELISA with two linear synthetic peptides/mimotopes,
which mimic MCPyV VP antigens. The lack of immunological
studies into the involvement of MCPyV in SA prompted us
to apply our newly developed immunoassay (Mazziotta et al.,
2021a,b). Sera were considered MCPyV positive when IgGs
reacted to both S and F peptides (Mazziotta et al., 2021a,b).

Overall MCPyV-positive prevalence, resulted as 35.1% in SA,
was comparable to the 37.5% determined in VI (p > 0.05).
Our data indicate that both SA and VI female groups
present circulating IgGs to MCPyV, while, at least in terms
of seroprevalence, a relationship between MCPyV and SA
might be unlikely.

The involvement of MCPyV infection in SA has been poorly
investigated (Giakoumelou et al., 2016). Early findings indicate
the presence of MCPyV DNA in uterine cervical cancer tissues
(Imajoh et al., 2012), suggesting that, after infecting the uterus,
this PyV could potentially participate as a SA risk factor.
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FIGURE 1 | Correlation of OD values obtained using MCPyV VP1 S and VP2 F mimotopes. The concordance in ODs between VP1 S and VP2 F peptides was
evaluated in sera from females who had SA (n = 94), the case; females undergoing VI (n = 96), the control; age-matched HF (n = 95); and the entire set of combined
SA, VI, and HF sera (n = 285), using Spearman correlation analysis. A good correlation between VP1 S and VP2 F peptide was found in SA, VI, and HF sera
considered alone, as well as in combined SA, VI, and HF sera with an r of 0.7727 and p < 0.0001 (A), 0.6221 and p < 0.0001 (B), 0.7686 and p < 0.0001 (C), and
0.7854 and p < 0.0001 (D), respectively.

TABLE 1 | Seroprevalence of IgG antibodies reacting with Merkel cell polyomavirus VP1 S and VP2 F peptides in sera from females who experienced spontaneous
abortion (SA) and females undergoing voluntary interruption (VI).

Number of positive samples (%)

Groups Number of samples Mean age (years) ± SD VP1 S VP2 F VP1 S + VP2 F

SA 94 35 ± 6 34 (36.2) 41 (43.6) 33 (35.1)

VI 96 32 ± 7 38 (39.6) 46 (47.9) 36 (37.5)

Serum samples were from SA (n = 94) and VI (n = 96) females.
Statistical analyses were performed using the two-sided chi-square test.
No statistical differences were detected between SA and VI groups (p > 0.05).

FIGURE 2 | Serological profiles of serum antibody reactivity to MCPyV VP1 S (A), VP2 F (B) peptides, and combined S and F peptides (C) in females who had SA,
females who had undergone VI, and age-matched HF. Immunologic data are from SA (n = 94), VI (n = 96), and HF (n = 95) females, whereas data are reported as
OD value readings at λ 405 nm for sera assayed in indirect ELISA. In the scatter dot plot, each dot represents the dispersion of ODs for each sample. The median is
indicated by the line inside the scatter plot with the [interquartile range (IQR)] in SA and VI cohorts. (A) *p < 0.05, ****p < 0.0001; (B) ****p < 0.0001; (C)
****p < 0.0001.

Nevertheless, few copies of MCPyV DNA and/or RNA molecules
have been previously identified at low and similar prevalence in
chorionic villi and PBMCs from SA and VI females (Tagliapietra
et al., 2020), suggesting that MCPyV may not be involved in SA.

It is important to point out that SA females showed lower
ODs compared to females who had undergone VI (p < 0.05),
thus indicating a reduced anti-MCPyV IgG antibody response
in females experiencing SA. In addition, both SA and VI
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females exhibited lower rates and ODs compared to those
determined in age-matched, non-pregnant HF (62.1%), which
had been investigated in our previous study conducted on healthy
individuals (Mazziotta et al., 2021b). These findings indicate not
only that serum IgG antibody response to MCPyV may decline in
pregnancy but also that this decline is de facto more pronounced
in females experiencing SA.

Notably, to the best of our knowledge, this is the first study
reporting on MCPyV serology in SA. Only one previous study
has reported on MCPyV serology in pregnancy, describing a
rate of nearly 46% in a cohort of pregnant females (Sadeghi
et al., 2010), a proportion similar to that obtained herein in
our study/control groups. Regarding the healthy population,
previous works have reported that a considerable fraction of
adults, both males and females, is exposed to an asymptomatic
MCPyV infection, with seroprevalence rates ranging from 60
to 80%, according to the study under consideration (Carter
et al., 2009; Kean et al., 2009; Pastrana et al., 2009; Faust et al.,
2011; Tolstov et al., 2011; Touzé et al., 2011; Viscidi et al.,
2011; Coursaget et al., 2013; Van Der Meijden et al., 2013;
Šroller et al., 2014; Zhang et al., 2014; Vahabpour et al., 2016;
Kamminga et al., 2018; Csoboz et al., 2020; Zhou et al., 2020;
Mazziotta et al., 2021a,b). Our immunological findings, alongside
those previously reported, cumulatively indicate that a relatively
reduced fraction of pregnant females carries anti-MCPyV IgGs
compared to the healthy population, while SA females have a
lower IgG antibody response to MCPyV.

The similar rate of immunological decrease determined
in SA and VI females compared to non-pregnant females
might be accounted for by the well-known immune
adaptation/modulation process occurring in pregnancy
(Longman and Johnson, 2007). Pregnant females present a
unique state of immunity, as they develop a tolerance for
the semi-allogeneic embryo/fetus, compared to non-pregnant
females (Giakoumelou et al., 2016). In other words, despite
recognizing the paternal antigens expressed by the embryo/fetus,
the maternal immune system undergoes an adaptation to hamper
her/his rejection (Mor and Cardenas, 2010). This adaptation
is mainly, but not only, due to a decrease in the production
and/or function of (i) lymphocyte T and natural killer cells,
involved in the adaptive immune response (Longman and
Johnson, 2007); and (ii) B cells, deputies in the production of
antibodies (Medina et al., 1993). A transient immune modulation
during pregnancy can therefore affect how SA and VI females
respond to viral agents, making them more susceptible to
viral infections (Giakoumelou et al., 2016), probably including
MCPyV infection. The diminished serum IgG antibody response
to MCPyV in both SA and VI females compared to non-pregnant
females might be a reflection of the transient modulation in
the immune function being experienced during pregnancy.
The lower IgG antibody response to MCPyV determined in SA
females might be linked to their more increased susceptibility
to MCPyV infection. However, the relationship between this
possible immunologic dysregulation and SA is unknown.

Conditions of physiological immune impairment in the host
can favor a minor response to MCPyV as a result of antiviral
surveillance decline (Ma and Brewer, 2014). This phenomenon

can lead to an increase in MCPyV replication levels/activity
or reinfection, ultimately leading to MCC (Ma and Brewer,
2014). A higher MCC rate has been determined in patients with
immunocompromising conditions such as oncologic patients
(Yu and Dasanu, 2016; Zheng et al., 2019) as well as in
patients/individuals being pharmacologically treated for organ
transplantation and/or autoimmune diseases (Lanoy and Engels,
2010; Boldorini et al., 2014; Clarke et al., 2015; Rotondo et al.,
2017; Pietropaolo et al., 2020). Notably, MCC cases have also
been identified in pregnant females (Chao et al., 1990; Paterson
et al., 2003; Kukko et al., 2008; Tyler, 2020), thus supporting
the view that a dysregulation in transient immune modulation
during pregnancy can, at least in certain circumstances, favor
an increase in MCPyV activity. It should be recalled that,
despite being oncogenic, MCPyV is ubiquitous in humans, while
establishing a lifelong and asymptomatic infection in healthy
immunocompetent individuals. The decreased IgG antibody
response to MCPyV might account for greater tolerance to
viral infections experienced during pregnancy, which in turn
might potentially lead to an increase in MCPyV replication
levels/activity in SA females, as reported for other viral agents
(Giakoumelou et al., 2016). Indeed, previous findings indicate
that maternal immune tolerance impairment may result in SA or
preeclampsia (Wang and Li, 2020).

How a diminished antibody response to MCPyV in SA females
might negatively impact embryo development remains to be
determined. Following an increase in MCPyV multiplication, this
PyV might reach the embryo/fetus from the mother via vertical
transmission, through the mother’s blood, as demonstrated
for other viruses (Xu et al., 2015). As immune cells can
allow viral crossing through placental barriers (Robbins and
Bakardjiev, 2012; Cordeiro et al., 2015), a similar mechanism
for MCPyV cannot be excluded. Notably, MCPyV DNA has
been detected in white cells from pregnant females (Tagliapietra
et al., 2020). An ascending transmission from the maternal
reproductive system might be an alternative mechanism, as the
uterine cervix may be prone to MCPyV infection (Imajoh et al.,
2012). Likely, pregnancy may be affected following a maternal
response to an MCPyV activity increase, even in the absence
of a viral transmission, as found for other viruses (Mor and
Cardenas, 2010; Racicot and Mor, 2017). Viral infections nearby
placental barriers can trigger a mild inflammatory response
represented by an increased cytokine production (Koga et al.,
2009; Huang et al., 2014), promoting, in turn, an inflammatory
response in the embryo/fetus, which can lead to pregnancy
complications/abortion. A potential MCPyV activity increase
may determine a mother’s inflammatory response, ultimately
affecting pregnancy. Excluding chorionic villi and PBMCs
(Tagliapietra et al., 2020), an increase in MCPyV activity, if
present, due to a reduced anti-MCPyV immunological response
in SA females might occur in a tissue type, which is currently
unknown. Notably, the reservoir cell type of MCPyV is still
unclear (Liu et al., 2019). Evidently, due to the lack of molecular
data, further studies should be performed.

It is important to underline that MCPyV activity in terms
of DNA replication and gene expression was not investigated
herein. Therefore, the hypothesis that MCPyV activity might

Frontiers in Microbiology | www.frontiersin.org 6 December 2021 | Volume 12 | Article 789991

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-789991 December 8, 2021 Time: 13:1 # 7

Mazziotta et al. Anti-MCPyV IgGs in Spontaneous Abortion

increase following a reduced antibody response to MCPyV,
possibly making SA and VI females more susceptible to
MCPyV infection, remains to be verified. Further studies
evaluating the presence of viral DNA/RNA/proteins in key
embryo development tissues including cord blood, amniotic
fluids, cervical tissues, and fetal membranes should be conducted,
as performed for other viruses (Giakoumelou et al., 2016). Since
the basic immune conditions of SA, VI, and non-pregnant
females might be different, determining the total IgG fraction,
alongside IgGs to MCPyV, might help to better understand
how pregnant females respond to MCPyV infection. Moreover,
the prospective monitoring of the immunological status of
pregnant females throughout the different gestation phases
might be considered as an alternative investigative approach.
These molecular and immunological experiments can be part of
further investigations.

To avoid confounding variables, we excluded herein females
who were positive for (i) congenital/acquired immunodeficiency
syndromes or who were receiving immunosuppressive
therapies; (ii) known causes of SA, i.e., genetic factors and
anatomic/hormonal complications; and (iii) HIV, HBV, HCV,
and syphilis infections. SA and VI females were similar in age
(p > 0.05); samples were collected within 12 h from the abortion,
while females were at a gestational age within the first 12 weeks.

In conclusion, our indirect ELISA proved to be reliable in
identifying circulating IgGs reacting to MCPyV VP mimotopes
in females experiencing SA and who had undergone VI. For
the first time, IgG antibodies against oncogenic MCPyV were
found in sera from SA females. Our results indicate that a
reduced fraction of SA and VI females carries IgGs to MCPyV
compared to healthy, non-pregnant females, while SA females
presented a more pronounced decrease in IgG antibody response
to MCPyV. Although yet to be determined, females experiencing
abortive events might potentially present an increase in MCPyV
multiplication events as a result of the immunological decline
against MCPyV. Future investigations are needed to elucidate the
relationship between MCPyV infection and SA.
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