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The previous studies on respiratory physiology have indicated that inspiration and expiration have opposite effects on heart
hemodynamics. The basic reason why these opposite hemodynamic changes cause regular timing variations in heart sounds is
the heart sound generation mechanism that the acoustic vibration is triggered by heart hemodynamics. It is observed that the
timing of the first heart sound has nonlinear relation with respiratory phase; that is, the timing delay with respect to the R-wave
increases with inspiration and oppositely decreases with expiration. This paper models the nonlinear relation by a Hammerstein-
Wiener model where the respiratory phase is the input and the timing is the output. The parameter estimation for the model is
presented. The model is tested by the data collected from 12 healthy subjects in terms of mean square error and model fitness. The
results show that themodel can approximate the nonlinear relation very well.The average square error and the average fitness for all
the subjects are about 0.01 and 0.94, respectively. The timing of the first heart sound related to respiratory phase can be accurately
predicted by the model. The model has potential applications in fast and easy monitoring of respiration and heart hemodynamics
induced by respiration.

1. Introduction

Heart sounds are commonly considered as a series of me-
chanical vibrations produced by heart vascular system [1–4].
The vibrationsmay be generated by the rapid contraction and
extension of heart wall, blood turbulence in heart chamber
and great vessel, and valves’ vibration triggered by blood pres-
sure difference. In this reasoning, a change in heart hemo-
dynamics is possible to be reflected by the features (ampli-
tude, timing, split, frequency, etc.) of heart sounds. Heart
hemodynamic changes can be caused by physical activities
(running, walking, etc.) [5], medicine (epinephrine, etc.)
[2, 3, 6], and physiological activities (respiratory) [7, 8]. A
normal respiratory process generally causes regular heart
hemodynamic changes. During inspiration, an increased
pressure gradient is observed from the extrathoracic regions
to the right atrium because of the lowered pleural pressure.
This increased gradient leads to increased blood filling of
the right ventricle (RV). The increased RV end-diastolic

volume (EDV) leads to an increased RV stroke volume (SV)
via the Frank-Starling mechanism. The dilated RV causes
the left ventricle (LV) to become less compliant by physical
compression. The interventricular septum thus moves left-
ward, which results in reduced LV filling. Simultaneously, the
distending lungs and their circulatory volume tend to reduce
the pressure gradient and flow from the pulmonary veins to
the LV, and the transmural diastolic aortic pressure, which is
the LV afterload, increases. These additive effects induced by
respiration result in decreased LV-SV. The opposing process
occurs during expiration in which RV-EDV and RV-SV
decrease and LV-EDV and LV-SV increase. Due to these
regular hemodynamic changes caused by respiratory process,
features of heart sounds have close relation to the respiratory
process. The relation is especially prominent as a body in
peace and quiet conditions because of less interference. The
mechanism of the splitting of S2 induced by respiration
was well established in [9]. Greater splitting of S2 was
observed during inspiration due to the earlier occurrence of
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the aortic component and a delay in the pulmonary compo-
nent. Respiration has also been shown to modulate systolic
and diastolic time intervals [7, 8]. Amit et al. [8] characterized
the morphological variations induced by respiratory activity
using the computational techniques of cluster analysis and
classification. The authors’ study further proved that respira-
tion has regular effect on the timing of the first heart sound
(S1) [7].The delay of S1 reached amaximumat late inspiration
and reached aminimumat late expiration and the aortic com-
ponent occurred earlier in inspiration and later in expiration.
The delays of the first heart sound gradually increased with
inspiration and reached amaximum at the end of inspiration;
the opposite behaviorwas observed in expiration.Thedelay at
deepest inspiration was significantly greater than that at peak
expiration with all subjects who were involved.

It can be found from the previous works that the relation
between respiratory phase and the timing of S1 was highly
nonlinear. This paper tries to approximate the relation in
time domain by quantitative nonlinearHammerstein-Wiener
model. The timing of the first heart sound may therefore be
predicted by the model. Cardiovascular status in respiratory
process may be possible to be monitored by the relation.
These results suggest that a quantitative analysis of the rela-
tion could be used as a noninvasive continuous monitoring
of hemodynamic state during respiratory cycles.

2. Methods

2.1. Data Collection. The experimental protocol was ap-
proved by the Ethics Committee of the Department of
Biomedical Engineering, Dalian University of Technology.
Twelve youngmale subjects aged 24± 1.8 years participated in
the experiments. All subjects provided their consent to par-
ticipate in the experiments.They were asked to remain at rest
for 10min before data collection. Each subject was asked to lie
on his back in a bed during data sampling.Heart sounds, ECG
lead II, and respiratory signals were simultaneously recorded
at a sampling frequency of 2 kHz (PL3516B111, ADinstru-
ments, Australia). Aheart soundmicrophone sensor (MLT201,
ADinstruments, Australia) was placed at the left third inter-
costal space. The breathing transducer (MLT1132, ADin-
struments, Australia) was a belt sensor positioned at the
middle of the thorax to record respiratory movement. One
data collection period lasted 150–180 s. Data were collected
thrice for each subject with 3-minute intervals. A portion of
collected signals is given in Figure 1.

2.2. Preprocessing and Variable Definitions

(1) Respiratory Phase. The respiration signal was collected
from the belt sensor. The signal is band-pass filtered at
[0 0.5]Hz and then subjected to a Hilbert transform. The
instantaneous respiratory phase can be obtained using a 4-
quadrant inverse tangent. A breathing signal was mapped
to the respiration phase [−𝜋 𝜋]. This study defines the res-
piration phase: inspiration begins at phase 0 and ends at phase
𝜋 (maximumnegative intrathoracic pressure), and expiration
begins at phase −𝜋 and ends at phase 0 (maximum positive
intrathoracic pressure).
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Figure 1: A portion of the collected signals. ECG: ECG signal of the
lead II; HS: heart sound signal; RES: respiratory signal.
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Figure 2: Definitions of the timing and the phase.

(2) Variables’ Definitions.The timing of the first heart sound
is defined as the time delay from the R-wave to the prominent
peak of the first heart sound. It is denoted as 𝑑(𝑡

𝑛
) in Figure 2,

where the variable “𝑡
𝑛
” is the time occurrence at which the

prominent peak of the first heart sound of the 𝑛th cardiac
cycle occurs. The respiratory phase corresponding to the
prominent peak is denoted as 𝑝(𝑡

𝑛
), shown in Figure 2. A pair

of 𝑑(𝑡
𝑛
) and 𝑝(𝑡

𝑛
) can be extracted from one cardiac cycle.

Discrete time series of 𝑑(𝑡
𝑛
) and 𝑝(𝑡

𝑛
) can thus be obtained

from the data recordings (seen in Figure 3(a)).

2.3. Hammerstein-Wiener Model

(1) Nonlinear Relation between 𝑑(𝑡
𝑛
) and 𝑝(𝑡

𝑛
). To view the

nonlinear relation between 𝑑(𝑡
𝑛
) and 𝑝(𝑡

𝑛
), an example is

given in Figure 3(b). Over three hundred pairs of 𝑑(𝑡
𝑛
) and

𝑝(𝑡
𝑛
) were extracted from signals collected from a subject.

The scatter plot of the data was drawn in the joint phase-
timing plane as shown in Figure 3(b). It can be seen that the
timing varies with the respiratory phase. This is originated
from the regular hemodynamic changing in heart chambers
and great vessel induced by respiration. This phenomenon
was observed by the authors in all the subjects involved in
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Figure 3: Nonlinear relation between the timing and the phase. (a) Two series of the timings and the phases are shown in time domain.
(b) Scatter plot in the joint plane of timing and phase. EXP: expiration, INS: inspiration. (c) The nonlinear relation is approximated by a
Hammerstein-Wiener model.

the experiments [7]. To view the trend of respiratory phase
with respect to the associated timing, a polynomial fitting
is used to approximate the relation as indicated by the solid
line in Figure 3(b).The timing delay gradually increased with
inspiration and reached a maximum at the end of inspi-
ration; the opposite behavior was observed in expiration.
The purpose of this paper is to study the time domain
relation between 𝑑(𝑡

𝑛
) and 𝑝(𝑡

𝑛
) quantitatively. The timing,

𝑑(𝑡
𝑛
), was expected to be predicted by 𝑝(𝑡

𝑛
) via a nonlinear

Hammerstein-Wiener model (seen in Figure 3(c)).

(2) Sampling Frequency Transform. One pair of data, 𝑑(𝑡
𝑛
)

and 𝑝(𝑡
𝑛
), can be obtained from one cardiac cycle. A problem

rises that the discrete sequences of 𝑑(𝑡
𝑛
) and 𝑝(𝑡

𝑛
) are not

uniformly discrete in time domain because the time interval
of the digital sequence 𝑑(𝑡

𝑛
) is not a fixed number. The

reasons to explain this nonuniform discrete are (1) the peak
timings with respect to the R-waves are varying from one
cardiac cycle to another and (2) the cardiac durations are
varying from cycle to cycle due to the heart rate variability.
To overcome this problem, a sampling frequency transform
is needed. From the scatter plot shown in Figure 3(b), one
can see that the relation looks symmetric with respect to
phase zero. A second-order polynomial is thus good to fit
the relation. The uniformly discrete data can be obtained by
the polynomial interpolation. On the other hand, the fitting
may be considered as a way to reduce the errors caused by
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Figure 4: Sampling frequency transform from nonuniform discrete
to uniform discrete by interpolation.

unknown reasons. Once the sampling frequency transform is
completed, the discrete sequence of respiratory phase and the
timing sequence are uniformly discrete in time domain, seen
in Figure 4. They can be used as the input and output of the
model. The two discrete sequences after sampling frequency
transform are denoted as 𝑝(𝑡) and 𝑑(𝑡) in the following.

AHammerstein-Wienermodel generally consists of three
parts [10, 11], that is, a static nonlinear module (NL1),



4 Computational and Mathematical Methods in Medicine

�(t)p(t) x(t) d̂(t)
NL1 F(·) NL2 G(·)LS B(z−1)

A(z−1)

Figure 5: Structure of the Hammerstein-Wiener model.

a dynamic linearmodule (LS), and another nonlinearmodule
(NL2), seen in Figure 5. With the three modules, this model
structure has the ability to approximate a high dynamic
nonlinearity [11]. The phase sequence 𝑝(𝑡) is input to the first
nonlinearmoduleNL1 and the output is V(𝑡).The internal V(𝑡)
is the input of dynamic linear module LS which outputs 𝑥(𝑡).
The nonlinear module NL2 has input 𝑥(𝑡) and output 𝑑(𝑡). In
the model, V(𝑡) and 𝑥(𝑡) are internal variables. The variable
transmissions between the modules are written as

V (𝑡) = 𝐹 (𝑝 (𝑡)) , (1)

𝑥 (𝑡) = 𝐵 (𝑧
−1
) V (𝑡) + (1−𝐴 (𝑧

−1
)) 𝑥 (𝑡) , (2)

where

𝐴(𝑧
−1
) = 1+ 𝑎1𝑧

−1
+ ⋅ ⋅ ⋅ + 𝑎

𝑚
𝑧
−𝑚

,

𝐵 (𝑧
−1
) = 𝑏0 + 𝑏1𝑧

−1
+ ⋅ ⋅ ⋅ + 𝑏

𝑛
𝑧
−𝑛

.

(3)

The predicted timing is the output of the model

𝑑 (𝑡) = 𝐺 (𝑥 (𝑡)) . (4)

(3) Parameter Estimation of the Model. In order to achieve
high nonlinearity, the nonlinear modules NL1 and NL2 are
assumed to be polynomials with known order 𝑁

𝐹
and 𝑁

𝐺
. It

is obvious that the degree of nonlinearity that the Hammer-
stein-Wiener model can reach is determined by the orders
of the polynomials. Generally speaking, the higher degree of
nonlinearity between the input and the output and the higher
orders are needed:

V (𝑡) = 𝐹 (𝑝 (𝑡)) =

𝑁𝐹

∑

𝑖=1
𝑓
𝑖
𝑝
𝑖

(𝑡) , (5)

𝑑 (𝑡) = 𝐺 (𝑥 (𝑡)) =

𝑁𝐺

∑

𝑖=1
𝑔
𝑖
𝑥
𝑖

(𝑡) . (6)

The output of the linear module is rewritten as

𝑥 (𝑡) = 𝑏0V (𝑡) + (𝐵 (𝑧
−1
) − 𝑏0) V (𝑡)

+ (1−𝐴 (𝑧
−1
)) 𝑥 (𝑡) .

(7)

Equation (1) is submitted into (7); one can obtain

𝑥 (𝑡) = 𝑏0𝐹 (𝑝 (𝑡)) + (𝐵 (𝑧
−1
) − 𝑏0) V (𝑡)

+ (1−𝐴 (𝑧
−1
)) 𝑥 (𝑡) .

(8)

The nonlinear module 𝐺(⋅) is rewritten as

𝑑 (𝑡) = 𝑔1𝑥 (𝑡) +

𝑁𝐺

∑

𝑖=2
𝑔
𝑖
𝑥
𝑖

(𝑡) . (9)

Equation (7) is submitted into (9); one can obtain

𝑑 (𝑡) = 𝑔1 [𝑏0𝐹 (𝑝 (𝑡)) + (𝐵 (𝑧
−1
) − 𝑏0) V (𝑡)

+ (1−𝐴 (𝑧
−1
)) 𝑥 (𝑡)] +

𝑁𝐺

∑

𝑖=2
𝑔
𝑖
𝑥
𝑖

(𝑡) .

(10)

To simplify the relation shown in (10), it commonly assumes
that the variable 𝑔

1
= 1 and 𝑏

0
= 1. Equation (5) is submitted

into (10); the output of the model is finally presented as

𝑑 (𝑡) =

𝑁𝐹

∑

𝑖=1
𝑓
𝑖
𝑝
𝑖

(𝑡) + (𝐵 (𝑧
−1
) − 1) V (𝑡)

+ (1−𝐴 (𝑧
−1
)) 𝑥 (𝑡) +

𝑁𝐺

∑

𝑖=2
𝑔
𝑖
𝑥
𝑖

(𝑡) ,

(11)

where 𝑑(𝑡) is the predicted timing by the model. The pre-
dicted timing can be organized as a product of vectors

𝑑 (𝑡) = 𝜑
T
(𝑡, 𝜃) 𝜃, (12)

where 𝜃 is a parameter vector

𝜃 = [𝑓1, . . . , 𝑓𝑁𝐹 , 𝑏1, . . . , 𝑏𝑛, 𝑎1, . . . , 𝑎𝑚, 𝑔2, . . . , 𝑔𝑁𝐺]
T
. (13)

The operator “T” is matrix transposition. 𝜑(𝑡, 𝜃) is the data
vector

𝜑 (𝑡, 𝜃) = [𝑝 (𝑡) , . . . , 𝑝
𝑁𝐹

(𝑡) , V (𝑡 − 1) , . . . , V (𝑡 − 𝑛) ,

− 𝑥 (𝑡 − 1) , . . . , − 𝑥 (𝑡 −𝑚) , 𝑥
2
(𝑡) , . . . , 𝑥

𝑁𝐺
(𝑡)]

T
.

(14)

There are two internal variables which are generally unmea-
surable. Hence, the parameter estimation cannot be per-
formed directly on the basis of (12). The previous work
applies an iterative approachwith internal variable estimation
to estimate the parameters [11]. This approach can be simply
extended to the case of two or even more internal variables.

The iterative approach is implemented based on the pre-
ceding estimation for internal variables. It is assumed that the
internal variables of the 𝑠th step in the iterative procedure are

𝑠V (𝑡) =

𝑁𝐹

∑

𝑖=1

𝑠

𝑓
𝑖
𝑝
𝑖

(𝑡) ,

𝑠

𝑥 (𝑡) =
𝑠V (𝑡) +

𝑛

∑

𝑖=1

𝑠

𝑏
𝑖

𝑠V (𝑡 − 𝑖) −

𝑚

∑

𝑗=1

𝑠

𝑎
𝑗

𝑠

𝑥 (𝑡 − 𝑗) .

(15)

The error to be minimized in the 𝑠th step is written as

𝑠

𝑒 (𝑡) = 𝑑 (𝑡) −
𝑠

𝜑
T
(𝑡,
𝑠

𝜃)
𝑠

𝜃, (16)

where 𝑠𝜑(𝑡, 𝑠𝜃) is the data vector with the corresponding esti-
mates of internal variables according to (15).
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Figure 6: An example of model evaluation. (a) Approximation between 𝑑(𝑡) and the predicted 𝑑(𝑡), (b) approximation between the observed
timing and the predicted timing.

The steps to implement the iterative procedure may be
summarized as follows.

(1) Initialization: the parameter 𝜃 is initialized as zero
vector and 𝑠 = 1.

(2) A least mean square (LMS) algorithm is used to
minimize the error in the 𝑠th step.

(a) Starting from 𝑡 = 𝑚+𝑛+𝑁
𝐹
+𝑁
𝐺
−1, let 𝑠𝜃(𝑡) =

𝑠

𝜃.
(b) An iterative procedure is used to obtain the

optimal parameter for the 𝑠th step

𝑠

𝑒 (𝑡) = 𝑑 (𝑡) −
𝑠

𝜑
T
(𝑡,
𝑠

𝜃 (𝑡))
𝑠

𝜃 (𝑡) ,

𝑠

𝜃 (𝑡 + 1) =
𝑠

𝜃 (𝑡) + 𝜇
𝑠

𝑒 (𝑡)
𝑠
𝜑 (𝑡,
𝑠

𝜃 (𝑡)) ,

(17)

𝜇 is a step size in the procedure.

(c) Once the iteration converges or reaches the
maximum number of iterations, the iteration
stops. The convergence condition is generally
defined as the degree of variation of the param-
eters in the process, such as the dynamic vari-
ance. Once the degree of variation reaches a low
level, the iteration is believed to converge suc-
cessfully. The optimal parameter vector, 𝑠𝜃opt,
for the 𝑠th step is obtained.

(3) Let 𝑠+1𝜃 = 𝑠𝜃opt.
𝑠+1
𝜃 is substituted into (15) to obtain

the internal variable 𝑠+1k(𝑡) and 𝑠+1x(𝑡).
(4) Repeat the steps (2)–(4).

2.4. Performance Evaluation. In thismodel, respiratory phase
is the model input and the timing is the model output. Two
indicators are used to evaluate the consistence between the
predicted timing and the observed timing. One indicator is
mean square error (MSE) which is written as

MSE =
1
𝑁

𝑁

∑

𝑡=1
(𝑑 (𝑡) − 𝑑 (𝑡))

2
, (18)

where 𝑁 is number of samples of the digital sequence.
Another indicator is the degree of fitness which is

𝑅
2
= 1−

∑
𝑁

𝑡=1 (𝑑 (𝑡) − 𝑑 (𝑡))

2

∑
𝑁

𝑡=1 (𝑑 (𝑡) − 𝑑)

2 , (19)

where 𝑑 is the average of 𝑑(𝑡). The degree of fitness is in the
range [0 1]. A higher fitness value means that the model can
approximate the relation between the input and output better.

3. Experiments and Discussions

3.1. Experimental Results. The digital sequence of respiratory
phase and timing are both slow varying. They are downsam-
pled to 50Hz to reduce the number of samples. The time
domain nonlinear relation between respiratory phase and
timing of S1 is virtually seen in Figure 3(a). The authors
analyzed the nonlinear relations for various subjects. It was
found that a five-order polynomial was sufficient to approxi-
mate the nonlinearity and even the nonlinearity varied from
one subject to another. Based on this preknowledge, the
polynomial order in the nonlinear blocks is set to 5; that is,
𝑁
𝐹

= 5 and 𝑁
𝐺

= 5. In a similar way, the delay orders in
the linear block can also be analyzed by the relative delay
in time domain between the input and output. The delay
orders are empirically set as 𝑚 = 10 and 𝑛 = 40. The
data was collected from a healthy male subject aged 23 years.
The respiratory phase sequence, 𝑝(𝑡), was input to the model
with the abovementioned settings. The interpolated timing
by the solid line and predicted timing indicated by dash line
are shown in Figure 6(a). The predicted timing indicated
by “∗” and observed timing indicated by “O” are shown in
Figure 6(b). It can be seen that the stars are close to the corre-
sponding circles. The MSE and fitness measured for Figure 6
are 0.01 and 0.94, respectively. It means that the model works
very well to approximate the high dynamic nonlinearity for
the relation between respiratory phase and S1 timing.

There are 12 subjects involved in the experiments to
collect data. To evaluate themodel adaption to other subjects,
the MSE and fitness were listed in Table 1.
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Figure 7: Approximation performance of the Hammerstein-Wiener model for subject #2 with varied polynomial order. (a) MSE decreased
with the polynomial order; (b) fitness value increased with the polynomial order.

Table 1: MSE and fitness between 𝑑(𝑡) and predicted 𝑑(𝑡) for 12
subjects.

Subject number 1 2 3 4 5 6 Average
MSE 0.008 0.009 0.011 0.006 0.014 0.006 0.009
𝑅
2 0.963 0.957 0.946 0.970 0.926 0.959 0.954

Subject number 7 8 9 10 11 12 Average
MSE 0.019 0.016 0.010 0.011 0.014 0.010 0.013
𝑅
2 0.921 0.925 0.952 0.945 0.934 0.949 0.938

3.2. Discussions. The degree of nonlinearity that the Ham-
merstein-Wienermodel can approximate is directly related to
the order of the polynomials in the first and third modules.
The basic understanding to the model shows that a higher
degree of nonlinearity needs higher order polynomials. How-
ever, the degree of nonlinearity between the respiratory phase
and the timing of S1 varies from person to person. Then
the question of how the order of the polynomials can be
selected arises.The authors analyzed the nonlinearity that the
Hammerstein-Wiener model approximates for all subjects.
The results showed that the approximation performance of
the model increased a little once the order of the polynomials
is greater than 3. For example, for subject #2 in Table 1, the
variations of the performance are shown in Figure 7 when the
order of polynomials increases from2 to 7. It can be found that
significant improvement was obtained as the order increases
from 2 to 4; however, the improvement is much less and even
cannot be detected by visual check as the order increases from
4 to 7. The similar performance was observed for the other
11 subjects. So, the authors conclude that the order selection
is not a problem. Excellent performance is expected to be
obtained if the order is greater than 4.

4. Conclusions

The studies in respiratory physiology indicated that res-
piration has regular effect on heart hemodynamics. These
hemodynamic variations lead to the fact that the closure of
mitral valve occurs late in inspiration and early in expiration.
The opposite behaviors of mitral valve close are further
reflected by the timing of first heart sound due to the
mechanism of heart sound generation. A nonlinear relation is
observed between the timing and the respiratory phase based

on data collected from healthy subjects. A Hammerstein-
Wiener model is used to approximate the nonlinear relation
in time domain. The parameter estimation for the model is
presented in this paper. The performance tests show that the
timing of first heart sound can be accurately predicted by
the respiratory phase based on the model. This has potential
applications in fast and easy monitoring of respiration and
heart hemodynamics induced by respiration.
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