
Research Article
Identification of a Tumor Microenvironment-Related Gene
Signature Indicative of Disease Prognosis and Treatment
Response in Colon Cancer

Wenzheng Chen,1,2 Jianfeng Huang ,3 Jianbo Xiong ,1 Pengcheng Fu ,3

Changyu Chen ,3 Yi Liu ,1 Zhengrong Li ,1 Zhigang Jie ,1 and Yi Cao 1

1Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, China
2Second Abdominal Surgery Department, Jiangxi Province Cancer Hospital, China
3Medical College of Nanchang University, China

Correspondence should be addressed to Zhigang Jie; jiezg123@126.com and Yi Cao; doctorcaoyi@126.com

Received 6 April 2021; Accepted 24 July 2021; Published 17 August 2021

Academic Editor: Ana Cipak Gasparovic

Copyright © 2021 Wenzheng Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. The tumor microenvironment (TME) is associated with disease outcomes and treatment response in colon cancer.
Here, we constructed a TME-related gene signature that is prognosis of disease survival and may predict response to
immunotherapy in colon cancer. Methods. We calculated immune and stromal scores for 385 colon cancer samples from The
Cancer Genome Atlas (TCGA) database using the ESTIMATE algorithm. We identified nine TME-related prognostic genes
using Cox regression analysis. We evaluated associations between protein expression, extent of immune cell infiltrate, and
patient survival. We calculated risk scores and built a clinical predictive model for the TME-related gene signature. Receiver
operating characteristic (ROC) curves were generated to assess the predictive power of the signature. We estimated the half-
maximal inhibitory concentration (IC50) of chemotherapeutic drugs in patients using the pRRophetic algorithm. The expression
of immune checkpoint genes was evaluated. Results. High immune and stromal scores are significantly associated with poor
overall survival (p < 0:05). We identified 773 differential TME-related prognostic genes associated with survival; these genes
were enriched in immune-related pathways. Nine key prognostic genes were identified and were used to construct a TME-
related prognostic signature: CADM3, LEP, CD1B, PDE1B, CCL22, ABI3BP, IGLON5, SELE, and TGFB1. This signature
identified a high-risk group with worse survival outcomes, based on Kaplan-Meier analysis. A nomogram composed of
clinicopathological factors and risk score exhibited good accuracy. Drug sensitivity analysis identified no difference in sensitivity
between the high-risk and low-risk groups. High-risk patients had higher expression of PD-1, PDL-1, and CTLA-4 and lower
expression of LAG-3 and VSIR. Infiltration of dendritic cells was higher in the high-risk group. Conclusions. We identified a
novel prognostic TME-related gene expression signature in colon cancer. Stratification of patients based on this gene signature
could be used to improve outcomes and guide better therapy for colon cancer patients.

1. Introduction

Despite significant advances in our understanding of cancer
biology and clinical cancer management, colon cancer
remains a devastating disease. According to the Global Cancer
Statistics 2018 [1], there were ~1.1 million new colon cancer
cases and 551,269 deaths of colon cancer in 2018, and the
mortality rate of colon cancer is expected to rise by 60% by

the year 2035 [2]. In China, there were approximately 376.3
per 100,000 new cases and 191.0 per 100,000 cancer deaths
of colon cancer in 2015, according to the data of the National
Central Cancer Registry of China [3]. Several factors may help
to explain the high mortality of colon cancer, including diag-
nosis at late stage, a high propensity for disease metastasis,
and inherent drug resistance. Despite advances in options
for colon cancer treatment, the 5-year survival rate remains
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at just 64.9% [4]. Therefore, it is urgent to discover additional
diagnostic and prognostic biomarkers and therapeutic targets
that can be used to improve long-term outcomes for patients
with colon cancer.

The tumor microenvironment (TME), defined as the tissue
environment surrounding a tumor, plays an important role in
the tumorigenesis and prognosis of colon cancer. The TME
contains not only cancer cells but also noncancer cells, includ-
ing components of the extracellular matrix, blood vessels,
immune cells, neurons, and cells that perform other tissue
functions; these cell types all contribute to the malignant
phenotypes of cancer, including uncontrolled proliferation,
resistance to apoptosis, and evasion of immune surveillance
[5, 6]. Thus, the composition and proportion of stromal and
immune cells in the TMEmay significantly influence therapeu-
tic responses and clinical outcomes in cancer patients [7, 8].
For example, the lung cancer lineage specifiers SOX2 and
NKX2-1 contribute to tumor cell fate and neutrophil recruit-
ment, suggesting that the determination of tumor immune
microenvironment might impact the nature of the tumor [9].
Yamamoto et al. [10] performed a comprehensive multiplex
immunohistochemistry analysis of the TME and found that
M2 macrophage infiltration is useful to predict response to
neoadjuvant chemotherapy and long-term survival in patients
with esophageal cancer. Recently, several studies have proposed
immune gene expression-based signatures for risk stratification
and for predicting clinical outcomes in many kinds of cancers.
For example, Cheng et al. [11] reported that an immune-
related risk signature had prognostic significance in patients
with glioblastoma and also showed that the immune status
and local immune response could be indicated by the risk
signature.

In the present study, we analyzed the association of
immune and stromal scores with clinicopathological features
of colon cancer. We identified a set of TME-related genes that
could predict disease outcomes and treatment responses of
patients with colon cancer. A combination of multiple
immune biomarkers was developed to construct a novel
prognostic and treatment-related signature which could be
used to guide prognostic and therapeutic decisions for colon
cancer patients. We also estimated the value of this signature
to predict treatment efficacy in patients with colon cancer for
a variety of treatments, including chemotherapy and immu-
notherapy. Overall, this study deepens our understanding
of the impact of the tumor microenvironment on colon can-
cer outcomes and treatment responses and may be useful to
provide a basis and reference for the clinical management
and targeted therapy of colon cancer.

2. Materials and Methods

2.1. Raw Data Acquisition. Transcriptome RNA-seq data and
corresponding clinical data for 385 colon cancer samples
were downloaded from TCGA database. The clinical infor-
mation of the patients is shown in Table 1.

2.2. Generation of Stromal and Immune Scores. The ESTI-
MATE algorithm [12] was used to evaluate the immune
and stromal contents to provide immune and stromal scores

for each colon cancer sample. Immune score and stromal
score are positively related to the ratio of immune and stro-
mal cells; the higher the respective score, the larger the ratio
of the corresponding component in the TME. The samples
were divided into the high and low score groups by the
median of the scores.

2.3. Acquisition of Differentially Expressed Genes and
Functional Enrichment Analysis. Differentially expressed
genes (DEGs) between the high score and low score in the
immune group and stromal groups were identified by using
differential expression analysis in the limma package in R
Statistical Software [13]. The DEGs were screened by the fol-
lowing threshold parameters: fold change > 1 and p < 0:05.
Only terms with both p and q values < 0.05 were considered
significantly different. DEGs were visualized by heatmaps
with the pheatmap package in R. The intersection of differen-
tially expressed immune-related and stromal-related genes
was evaluated by a Venn diagram.

To explore the possible pathways resulted to the differ-
ences in the immune-related genes and the stromal-related
genes, GO and KEGG enrichment analyses were performed

Table 1: Patient characteristics of TCGA colon cancer cohort.

Characteristic No. of patients

Age (year)

Median 69

<65 145

≥65 240

Gender

Male 205

Female 180

Clinical stage

I 66

II 151

III 103

IV 65

T stage

T1 9

T2 68

T3 263

T4 44

TX 1

N stage

N0 231

N1 88

N2 66

Distant metastasis

M0 286

M1 54

Mx 45
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using the packages clusterProfiler [14], enrichplot, and
ggplot2 in R, with a statistical threshold set at p < 0:05.

2.4. Survival Analysis and Association of Scores with Clinical
Stage. Survival analysis was performed using with the sur-
vival and survminer packages in R. Overall survival (OS)
curves were plotted by the Kaplan-Meier method and differ-
ences evaluated using the log rank test. A p value < 0.05 was
regarded as statistically significant. The clinicopathological
characteristic data of colon cancer patients were downloaded
from TCGA. Association of scores with clinicopathological
features was carried out using R, and the Wilcoxon rank
sum or Kruskal-Wallis rank sum test was performed as a test
of significance.

2.5. Screening of Key Prognostic TME-Related Genes. To iden-
tify key prognostic genes associated with the TME, we per-
formed univariate Cox regression analysis to estimate the
relationship between each gene individually and the OS of
patients. The top 17 DEGs were selected in a stepwise manner
to perform multivariate Cox regression analysis. Ultimately, 9
DEGs were identified for a further study.

2.6. Immunohistochemistry (IHC) and Immune Cell Infiltration
of the Nine DEGs. Images of immunohistochemistry (IHC)
staining of the protein products of the 9 DEGs in colon cancer
samples and para-cancer tissue were extracted from the Human
Protein Atlas (HPA) database (http://www.proteinatlas.org).

The Tumor Immune Estimation Resource (TIMER)
database [15] was utilized to explore the associations between
the 9 DEGs and immune cell infiltration, including B cells,
CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and
dendritic cells.

2.7. Construction of a TME-Related Gene Signature.We con-
structed a TME-related gene signature by using the generated
coefficients and corresponding expression of the 9 selected
DEGs. The formula for the gene signature risk score is as fol-
lows: risk score =∑ ðExp ðgeneÞ ∗ coef ðgeneÞÞ, where Exp
(gene) is the corresponding expression of the included genes
and coef (gene) represents the regression coefficient from the
multivariate Cox regression analysis. Patients were further
classified into a low-risk group and a high-risk group accord-
ing to the median risk score.

2.8. Validation of the TME-Related Gene Signature and
Construction of a Nomogram. To verify the independent
prognostic value of the immune-related gene risk signature
on disease survival, univariate and multivariate Cox regres-
sion analyses were conducted. A nomogram including age,
gender, stage, TNM classification, and risk score was used
to calculate the total score. We assessed the 1-, 3-, and 5-
year survival probabilities based on the nomogram. The 1-,
3-, and 5-year dependent ROCs were utilized to assess the
performance of the nomogram.

2.9. Estimation of Immune Cell Fraction. The infiltration level
and proportion of distinct immune cells in colon cancer sam-
ples from TCGA database were quantified using CIBER-
SORT and leucocyte signature matrix 22 (LM22) [16]. We

evaluated differences in the immune cell fraction between
the low-risk and high-risk groups.

2.10. Exploration of the Significance of the Model in
Predicting Response to Chemotherapy, Targeted Therapy,
and Immunotherapy. To evaluate the model in predicting
the clinical response of colon cancer treatment, we calcu-
lated the IC50 of common chemotherapeutic and targeted
agents, such as cisplatin, paclitaxel, sorafenib, and sunitinib.
The differences in the IC50 between the high- and low-risk
groups were compared by the Wilcoxon signed-rank test,
and the results were shown as box drawings obtained using
with pRRophetic and ggplot2 packages in R. To study the
relationship between the model and the expression level of
genes related to immune checkpoints, including PD-1,
PDL-1, CTLA-4, LAG-3, and VSIR, we performed violin
plot analysis using the ggstatsplot package in R.

2.11. Statistical Analysis. Spearman’s correlation analysis was
utilized to assess the correlations between the risk scores and
immune cell infiltration and TME scores. Survival curves
were conducted using the Kaplan-Meier method and the
log-rank test. All statistical analyses were conducted using
R Statistical Software version 4.0.4 and strawberry-perl-
5.32.0.1. A p value < 0.05 was considered to indicate a signif-
icance difference.

3. Results

3.1. Immune and Stromal Scores, Screening of DEGs, and
Functional Enrichment Analysis. A total of 385 cases with
transcriptome RNA-seq data were downloaded from TCGA
database to estimate the proportion of tumor-infiltrating
immune cells and the amount of immune and stromal com-
ponents in colon cancer samples. The clinical characteristics
of the colon cancer cohort, including age, gender, clinical
stage, and TNM classification, are presented in Table 1. We
analyzed the selected patient data based on their gene expres-
sion profiles and calculated the immune scores and stromal
scores by using the CIBERSORT and ESTIMATE algorithms.
The immune scores ranged from -967.41 to 2405.66. The
stromal scores ranged from -2204.16 to 1685.93.

A total of 1011 DEGs were identified between the sam-
ples with high and low immune scores; of these, 985 genes
were overexpressed and 26 genes were underexpressed. Sim-
ilarly, 1434 DEGs were obtained from samples with high vs.
low stromal scores, including 1426 overexpressed and 8
underexpressed genes. We generated heatmaps to display
the results of these comparisons between samples with high
and low immune and stromal scores (Figures 1(a) and 1(b),
respectively). Intersection analysis was performed to narrow
the scope of target genes that are associated with immune
and stromal score and identified 769 overexpressed and 4
underexpressed DEGs common to both comparisons
(Figures 1(c) and 1(d)). These DEGs (total 773 genes) were
selected for further analysis as potential factors that could
determine the status of the TME.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were
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Figure 1: Continued.
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Figure 1: Continued.
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performed to evaluate the possible functions of the 773 DEGs
in the intersection. The results from GO enrichment analysis
indicated that the DEGs mapped to the immune-related GO
terms, including leukocyte cell-cell adhesion, leukocyte migra-
tion, positive regulation of cytokine production, regulation of
lymphocyte activation, and T cell activation (Figure 1(e)).
The results fromKEGG enrichment analysis identified enrich-
ment in genes associated with cytokine-cytokine receptor
interaction, hematopoietic cell lineage, rheumatoid arthritis,

Staphylococcus aureus infection, and viral protein interaction
with cytokine and cytokine receptor (Figure 1(f)). These
results suggested that these genes may function in immune
responses of colon cancer.

Based on the median levels of the immune and stromal
scores, the patient samples from TCGA cohort were, respec-
tively, divided into the high and low groups. Survival curves
based on the high and low immune and stromal scores were
plotted to evaluate the prognostic value of the immune and
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Figure 1: Differential gene expression analysis based on immune and stromal scores in colon cancer. (a, b) Heatmaps for DEGs identified by
comparison of the high and low score groups for immune and stromal scores. (c, d) Venn diagrams for immune and stromal score
overexpressed and underexpressed DEGs. (e, f) Circular plots for GO and KEGG enrichment analysis of the 773 DEGs.
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Figure 2: Continued.
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stromal scores. Higher immune score was significantly associ-
ated with improved overall survival rate (Figure 2(a)). Higher
stromal score was significantly associated with poorer overall
survival rate (Figure 2(b)). High immune scores showed a
significant association with advanced M classification of
TNM classification (Figure 2(c)) and advanced clinical stages
II and IV (Figure 2(d)). The association of stromal scores with
TNM classification and clinical stage were not significant
(Supplementary Figure 1). These results showed that the
ratio of immune and stromal components is associated with
disease prognosis in colon cancer.

3.2. Identification of Nine Immune-Related Key Prognostic
Genes. Next, univariate Cox regression analysis and multivar-
iate Cox regression were employed to explore the potential
prognostic value of these DEGs in colon cancer outcomes.
Univariate Cox regression analysis showed that 17 DEGs were
significantly associated with survival (Figure 3(a)). Multivari-
ate Cox regression analysis identified 9 DEGs (CADM3,
LEP, CD1B, PDE1B, CCL22, ABI3BP, IGLON5, SELE, and
TGFB1) that were significantly associated with survival
(Figure 3(b)). The 9 genes were selected for further analysis.
The coefficients of univariate Cox regression and multivariate
Cox regression are presented in Tables 2 and 3.

3.3. Protein Expression and Prognostic Value of Nine Key Genes
in Colon Cancer Patients. We explored the protein expression
of the 9 key genes in colon cancer using the Human Protein
Atlas database. CCL22 and PDE1B were not available on the
website, and we evaluated the expression of CADM3, LEP,

CD1B, ABI3BP, IGLON5, SELE, and TGFB1 protein in this
database. Staining for CADM3, IGLON5, and TGFB1 was
low in tumor tissue; staining for LEP and ABI3BPwas medium
in tumor tissue; staining for CD1B was high in tumor tissue.
SELE staining was negative in tumor tissue (Figures 4(a)–
4(g)). Protein expression for all seven genes was found staining
in tumor stromal tissue, suggesting that these seven genes may
affect the tumorigenesis and prognosis of colon cancer by act-
ing through stromal components.

The relationship of expression of these 9 key genes with
prognosis of colon cancer patients was analyzed by the
Kaplan-Meier method. Higher expression of CADM3, LEP,
PDE1B, ABI3BP, IGLON5, SELE, and TGFB1 was signifi-
cantly associated with shorter OS of colon cancer patients
(Figures 4(h), 4(i), 4(k), and 4(m)–4(p)). High expression
of CD1B and CCL22 was associated with longer OS for colon
cancer patients (Figures 4(j) and 4(l)). These results indicated
that the expression of the 9 key genes is significantly associ-
ated with the prognosis of colon cancer and suggested that
these genes may be useful biomarkers for constructing a
prognostic signature of colon cancer.

3.4. Association between Nine Key Genes and Immune Cell
Infiltration Level in Colon Cancer.We explored the association
between expression of the 9 key genes and immune cell
infiltration in colon cancer using the TIMER database. Expres-
sion of CADM3, CD1B, PDE1B, CCL22, ABI3BP, IGLON5,
SELE, and TGFB1 was related to immune cell infiltration
(Figures 5(a) and 5(c)–5(i)). The expression of CD1B,
CCL22, and ABI3BP was significantly positively correlated
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Figure 2: Association of immune and stromal scores with survival and M classification of colon cancer. (a) Kaplan-Meier survival analysis of
colon cancer patients in the high and low immune score groups. (b) Kaplan-Meier survival analysis of colon cancer patients in the high and
low stromal score groups. (c) Distribution of high and low immune scores in M classification. (d) Distribution of high and low immune scores
in tumor stage.
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Figure 3: Identification of prognostic TME-related DEGs in colon cancer. (a) Univariate Cox analysis identified 17 TME-related DEGs that
were significantly correlated with OS of colon cancer patients; forest plot showing the gene expression and prognosis of colon cancer patients.
(b) Multivariate Cox analysis identified 9 TME-related DEGs that were significantly correlated with OS of colon cancer patients; forest plot
showing the gene expression and prognosis of colon cancer patients.
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with levels of infiltrating B cells (Figures 5(c), 5(e), and 5(f)).
Expression of CADM3, LEP, CD1B, CCL22, ABI3BP, SELE,
and TGFB1 was significantly positively correlated with levels
of infiltrating CD8+ T cells (Figures 5(a)–5(c), 5(e), 5(f),
5(h), and 5(i)). Expression of CADM3, LEP, CD1B, PDE1B,
CCL22, ABI3BP, IGLON5, SELE, and TGFB1 was correlated
to levels of infiltrating CD4+ T cells, macrophages, neutro-
phils, and dendritic cells.

3.5. Construction of a TME-Related Prognostic Signature.A risk
score was calculated based on the expression of all 9 key prog-
nostic genes that were selected to establish a prognostic signa-
ture. For each patient sample, the risk score was calculated
according to the followed equation: risk score = ½ð−1:076 ∗
Exp ðCADM3Þ+ð0:321∗Exp ðLEPÞÞ+ð−3:629 ∗ Exp ðCD1BÞÞ
+ð0:958∗Exp ðPDE1BÞÞ+ð−0:371 ∗ Exp ðCCL22ÞÞ + ð0:5403
∗ ExpðABI3BPÞÞ + ð0:628 ∗ ExpðIGLON5ÞÞ + ð0:370 ∗ Expð
SELEÞ Þ + ð0:015 ∗ ExpðTGFB1ÞÞ� . The samples were divided
into the high-risk and low-risk groups based on themedian risk

score. The distribution of risk score, the survival overview, and
gene expression heatmap are presented in Figure 6(a). The area
under the ROC curve for risk score, stage, and T, M, and N
classification was 0.826, 0.795, 0.721, 0.717, and 0.748, respec-
tively, which shows that the prognostic risk model demon-
strates sensitivity and specificity comparable to or superior
to other traditional prognostic factors (Figure 6(b)). Survival
analysis showed that patients in the high-risk group had sig-
nificantly poorer overall survival than those in the low-risk
group (Figure 6(c)).

Univariate and multivariate Cox regression analyses were
carried out stepwise to assess the predictive power of the
prognostic signature. Univariate Cox regression analysis
showed that stage; T, M, and N statuses; and risk core were
significantly correlated with OS. The results of multivariate
Cox regression analysis indicated that T status and risk score
were independent prognostic factors for OS.

A prognostic nomogram was established to provide a
quantitative and visual method for predicting the 1-, 3-, and

Table 2: The coefficients of included genes obtained from univariate Cox regression analysis.

Gene Coefficient HR HR 95%L HR 95%H p value

HOMER2 0.01459 1.48684 1.00626 2.19693 0.04644

CADM3 0.03688 1.44503 1.16200 1.79700 0.00093

PLIN4 0.04032 1.04015 1.01264 1.06841 0.00399

LEP 0.02232 1.13932 1.02569 1.26553 0.01496

HRASLS5 0.03911 1.59489 1.27205 1.99967 5.22e-5

CD1B 0.01789 0.04203 0.00609 0.28999 0.00129

PDE1B 0.04838 1.47214 1.11829 1.93796 0.00583

CCL22 0.00657 0.81020 0.66409 0.98847 0.03805

NGFR 0.00760 1.16778 1.06615 1.27910 0.00084

ARL4C 0.01655 1.02605 1.00802 1.04440 0.00445

ABI3BP 0.03423 1.40937 1.10454 1.79832 0.00578

FABP4 0.00798 1.01125 1.00473 1.01780 0.00068

IGLON5 0.03996 1.28561 1.13649 1.45428 6.491e-5

SELE 0.03134 1.27338 1.07072 1.51440 0.00628

SUSD5 0.03320 2.19843 1.49476 3.23336 6.276e-5

TGFB1 0.04806 1.01723 1.00007 1.03468 0.04893

NUDT10 0.03337 2.76454 1.10313 6.92817 0.03005

Table 3: The coefficients of included genes obtained from multivariate Cox regression analysis.

Gene Coefficient HR HR 95%L HR 95%H p value

CADM3 -1.07653 0.34077 0.12161 0.95492 0.04058

LEP 0.321644 1.37939 0.99882 1.90496 0.03083

CD1B -3.62982 0.02652 0.00247 0.28395 0.00269

PDE1B 0.958764 2.60847 1.26418 5.38220 0.00947

CCL22 -0.37199 0.68936 0.50631 0.93858 0.01815

ABI3BP 0.540378 1.71665 1.05930 2.78192 0.02824

IGLON5 0.628527 1.87484 1.17199 2.99920 0.00874

SELE 0.370045 1.44778 1.14797 1.82589 0.00177

TGFB1 0.015920 1.01604 0.99836 1.03404 0.04548
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Figure 4: Continued.
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5-year OS probability of colon cancer patients (Figure 7(a)).
Based on this nomogram, the AUC values for 1-, 3-, and 5-
year OS were 0.769, 0.785, and 0.770 (Figure 7(b)).

3.6. The Relationship between the Nine-Gene Signature and
Infiltration of Immune Cells. The CIBERSORT algorithm
was applied to further study the differences in infiltration of
22 types of immune cells in colon cancer samples. The rela-
tive content distribution of the 22 immune cell types in the
colon cancer cohort and the correlation between the 22
immune cell types are shown in Figures 8(a) and 8(c).

The immune cells with significantly higher infiltration in
the high-risk samples were memory B cells, resting NK cells,
and monocytes (Figure 8(b)). The infiltration of macrophage
M2 cells and resting dendritic cells was significantly higher
in the low-risk samples than in the high-risk samples
(Figure 8(b)). Correlation analyses showed that infiltration
of resting dendritic cells was negatively correlation with the
gene signature (Figure 8(h)), and there were no correlations
between the gene signature and infiltration of memory B
cells, resting NK cells, M2 macrophages cells, or monocytes
(Figures 8(d)–8(g)). These data indicate that infiltration of
dendritic cells is significantly correlated with the risk score
and also suggest that infiltrating dendritic cells might be
used as a target of biotherapy in colon cancer patients.

3.7. Response of High- and Low-Risk Patients to Chemotherapy,
Targeted Therapy, and Immunotherapy. The pRRophetic algo-
rithmwas used to predict the IC50 of two common chemother-
apeutic agents (cisplatin and paclitaxel) (supplementary
Figure 2A-2B) and two common targeted therapeutic agents
(sorafenib and sunitinib) (supplementary Figure 2C-2D) in

high- and low-risk patients. There were no differences in
sensitivity to cisplatin, paclitaxel, sorafenib, or sunitinib based
on risk score (supplementary Figure 2A-2D). We also
investigated the potential susceptibility to immune checkpoint
inhibitors (targeting the immune checkpoint proteins PD-1,
PDL-1, CTLA-4, LAG-3, and VSIR) in both groups. The
circular plot (Figure 9(a)) showed the relationship of the risk
scores and the expression of five immune checkpoint inhibitor
targets.

Samples from the high-risk group had higher expression
of PD-1, PDL-1, and CTLA-4 (Figures 9(b)–9(d)). The
expression of LAG-3 and VSIR was significantly higher in
the low-risk group (Figures 9(e) and 9(f)). These data suggest
that high-risk patients may respond better to immune check-
point inhibitors targeting PD-1, PDL-1, or CTLA-4, and low-
risk patients may respond better to immune checkpoint
inhibitors targeting LAG-3 or VSIR.

4. Discussion

The TME plays a crucial role in the pathogeneses and pro-
gression of colon cancer. Colon cancer cells regulate polariza-
tion of tumor-associated immune cells, and tumor-associated
macrophages affect angiogenesis and metastasis of colon can-
cer. Lan et al. [17] demonstrated that M2 macrophages shut-
tled specific miRNAs via exosomes to colorectal cancer cells;
these miRNAs targeted and downregulated BRG1 expression
to promote progression of colorectal cancer. Cheng et al. [18]
uncovered a new biological role for PKN2 in colon cancer as
an inhibitor of M2 macrophage polarization by regulating
the DUSP6-Erk1/2 pathways. Iwanaga et al. [19] demon-
strated that mast cell-derived PGD2 inhibits colitis and
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Figure 4: Immunohistochemical staining images from The Human Protein Atlas of seven key genes in colon cancer tissue (a–g). Differences
in protein expression and OS analysis of the included DEGs in colon cancer (h–p).
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prolongs tumor formation in colon cancer by attenuating
TNFα signaling. Haidari et al. [20] reported that neutrophil
extracellular traps play an important role in colon cancer
peritoneal metastasis, migration, and invasion. Westendorf
et al. [21] indicated that oxygen availability reduces CD4+
effector T cell function and suppresses the activity of Tregs
to influence surveillance of inflammation-related colon can-
cer. Yuan and Tian [22] demonstrated that overexpression
of LIN28B increases B-cell lymphoma 2 expression to pro-
mote colon cancer development. We identified significant
differences in infiltration of memory B cells, resting NK cells,
monocytes, M2 macrophages, and dendritic resting cells
between patients stratified as low and high risk for poor out-
come. These data indicate that tumor-associated immune
cells may play an important role in the pathogeneses and
progression of colon cancer. Therefore, it is of great interest
to identify an immune-related or stroma-related signature
to predict the prognosis of colon cancer patients.

In this study, we focused on the TME and established a
nine-gene signature of TME-related prognostic genes. Uni-
variate Cox analysis demonstrated that the signature was
related to colon cancer stage and T, N, and M classification
of colon cancer patients. Stepwise multivariate Cox analysis
indicated that T classification and risk score were indepen-
dent prognostic factors for colon cancer survival. The signa-
ture showed a significant ability to predict survival through

risk analysis, survival analysis, and 1-year, 3-year, and 5-
year multivariate ROCs. The nomogram containing age, gen-
der, stage, and risk score showed a good practicability. There-
fore, this novel prognostic signature provides an effective,
practical, and quantitative method for clinicians to predict
survival for patients with colon cancer.

The nine genes that composed the signature are related to
the pathogeneses and progression of cancer. Miao et al. [23]
demonstrated that miR-140-5p negatively regulates CEMIP
and CADM3 to suppress retinoblastoma cell proliferation,
migration, and invasion. Ghasemi et al. [24] found that LEP
induces ovarian cancer progression. Lee et al. [25] indicated
that CD1B facilitates prostate cancer progression and that
low CD1B expression correlates with poorer survival. Mao-
lake et al. [26] reported that tumor-associated macrophages
activate the CCL22-CCR4 axis to promote prostate cancer
migration. ABI3BP is a protective factor in gallbladder can-
cer, esophageal carcinoma, and lung carcinoma [27–29].
Ishimoto et al. [30] found that RHBDF2 regulates TGFB1
to induce invasion of gastric cancer by activating TACE
and motility of cancer-associated fibroblasts to promote
cleavage of TGFBR1. Based on the cancer relatedness of these
genes, these nine genes may be potential therapeutic targets.

Dendritic cells play an important role in the pathogeneses
and progression of many kinds of cancers. Zhou et al. [31]
demonstrated that the maturation and function of bone
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Figure 5: Correlation between the 9 DEGs and immune cell infiltration.
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Figure 6: Construction of the TME-related gene signature and prognostic analysis. (a) Risk score distribution, survival status, and heatmap of
gene expression among patients with colon cancer. (b) AUC values for risk score, stage, and T, N, and M classification. (c) Kaplan-Meier
survival curve of OS in the high-risk and low-risk patient groups based on the signature. (d) Univariate and (e) multivariate Cox analyses
of clinical characteristics and risk score with prognosis of patients with colon cancer in TCGA cohort.
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marrow-derived dendritic cells are significantly inhibited by
upregulation of FOXM1 through the Wnt5a signaling path-
way in pancreatic cancer and colon cancer. Cheng et al.
[32] demonstrated that overexpression of S100A9 protein
inhibits the differentiation of dendritic cells and macro-
phages in cancer. Therefore, dendritic cell vaccines have been
developed to treat some kinds of cancers, including colorectal

cancer [33], pancreatic cancer [34], and breast cancer [35]. In
our study, infiltration of dendritic cells was significantly
different between the two risk groups. There were no differ-
ences in sensitivity to cisplatin, paclitaxel, sorafenib, or suni-
tinib between the two risk groups, but expression of the
immune checkpoint molecules PD-1, PDL-1, CTLA-4,
LAG-3, and VSIR was significantly different between the
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Figure 7: Construction of a nomogram and validation of the prognostic risk model in colon cancer patients. (a) A nomogram based on
clinical characteristics and risk score among patients from TCGA cohort. (b) AUC values for 1-, 3-, and 5-year survival rates based on the
nomogram.
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Figure 8: Immune infiltration of the high- and low-risk score groups and the correlation between risk score and immune cell infiltration in
patients with colon cancer. (a) Bar plot showing the relative proportion of 22 kinds of infiltrating immune cells in patients from the high-risk
and low-risk groups. (b) Violin plot showing the ratio differences of 22 kinds of immune cells in the high- and low- risk score samples. (c)
Heatmap showing the correlation of proportions of 22 kinds of immune cells in the high- and low- risk score groups indicating the
correlation between two kinds of immune cells. (d–h) Scatter plots showing the significant correlation of 5 kinds of immune cells with risk score.
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high- and low-risk groups. It is possible that, for colon cancer
patients whose tumors are resistant to chemotherapy and
immunotherapy, dendritic cell vaccines may be an effective
therapeutic strategy.

The present study differs from previous studies regarding
gene signatures in the colon cancer TME [36–38]. Chen and
Zhao [36] constructed a TME risk score signature. However,
protein expression levels of selected DEGs and the correla-
tion between selected DEGs and immune cell infiltrations
were not validated. Zhang et al. [37] identified an immune-
related gene signature, but the correlation of risk score with
chemotherapeutic and targeted therapeutic agents was not
investigated. Ge et al. [38] indicated that genetic changes of
a five-gene signature may cause loss of intestinal barrier func-
tion and translocation of gut bacteria and affect the prognosis
of stage III colon cancer, but these changes were not related
to immune cell infiltrations.

Here, we devised an effective, practical, and quantitative
approach for clinicians to predict survival and to provide
individualized treatment for patients with colon cancer.
However, we recognize that there are some limitations of
our current study. First, the main datasets of our study were
obtained from TCGA database; other datasets should be
obtained and analyzed to reduce selection bias. Second, we
did not elucidate the mechanisms and function underlying
the TME-related signature, which merits a further study. In
addition, some crucial clinicopathological parameters, such
as CEA, MSI, dMMR, and KRAS, NRAS, BRAF mutation
status, were not represented in the nomogram, and it is nec-
essary to further validate the function of this TME-related
signature in additional clinical research.

5. Conclusions

In summary, the novel TME-related signature consisting of
CADM3, LEP, CD1B, PDE1B, CCL22, ABI3BP, IGLON5,
SELE, and TGFB1 is an effective, practical, and quantitative
approach for clinicians to predict survival and to provide
individualized treatment for colon cancer patients and is
expected to be further utilized in future clinical practice.
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Figure 9: Correlation of risk scores with expression of different immune checkpoint molecules. (a) Circular plot showing correlation
coefficients of risk score with expression levels of PD-1, PDL-1, CTLA-4, LAG-3, and VSIR. Cello plots showing differential expression of
(b) PD-1, (c) PDL-1, (d) CTLA-4, (e) LAG-3, and (f) VSIR between the high- and low-risk score groups.
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Supplementary Materials

Supplementary 1. Supplementary Figure 1 Association of
immune and stromal and scores with clinical characteristics
of colon cancer. (A-D) Distribution of immune score in
age, gender, and T and N classification. (E-J) Distribution
of stromal score in age, gender, T classification, N classifica-
tion, M classification, and stage.

Supplementary 2. Supplementary Figure 2 Correlation of risk
scores with chemotherapeutics such as cisplatin (A), pacli-
taxel (B), sorafenib (C), and sunitinib (D).
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