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We previously reported that polyploid giant cancer cells (PGCGs) induced by CoCl
2
could form through endoreduplication or

cell fusion. A single PGCC formed tumors in immunodeficient mice. PGCCs are also the key contributors to the cellular atypia
and associate with the malignant grade of tumors. PGCCs have the properties of cancer stem cells and produce daughter cells
via asymmetric cell division. Compared with diploid cancer cells, these daughter cells express less epithelial markers and acquire
mesenchymal phenotype with importance in cancer development and progression. Tumor budding is generally recognized to
correlate with a high recurrence rate, lymphnodemetastasis, chemoresistance, and poor prognosis of colorectal cancers (CRCs) and
is a good indicator to predict the metastasis and aggressiveness in CRCs. Micropapillary pattern is a special morphologic pattern
and also associates with tumor metastasis and poor prognosis. There are similar morphologic features and molecular phenotypes
among tumor budding, micropapillary carcinoma pattern, and PGCCs with their budding daughter cells and all of them show
strong ability of tumor invasion and migration. In this review, we discuss the cancer stem cell properties of PGCCs, the molecular
mechanisms of their regulation, and the relationships with tumor budding and micropapillary pattern in CRCs.

1. Introduction

Colorectal cancer (CRC) is one of the most common malig-
nant tumors and its incidence ranks the third of malignant
tumors [1]. The metastasis and relapse of CRC are the main
reasons of tumor recurrence and patient death [2]. Twenty
percent of CRCs have lymph node and/or distant metastasis
at diagnosis [3]. The overall 5-year survival rate for CRCs
patients is 64% and this rate drops to 12% in metastatic
CRC patients [1]. The high death rate of metastatic CRCs is
well known. If we can identify characteristic features in the
primary lesion which are highly correlated to recurrence and
metastasis of CRCs, then these characteristics can be used as
prognostic markers to predict the recurrence or metastasis
[4, 5]. The essential step in tumor invasion and metastasis is
the tumor dedifferentiation and dissociation at the invasion
front [6]. However, the degree of tumor differentiation in

CRCs is hard to evaluate and is not exactly in accordance
with themetastasis. Recently, increasing evidences confirmed
the important role of polyploid giant cancer cells (PGCCs)
and tumor budding in predicting the metastasis and patient’s
prognosis of CRCs [7, 8].

Normal human cells contain 46 chromosomes, but
tumors cells contain abnormal numbers (usually between
60 and 90) of chromosomes, with cell-to-cell variability.
Structural abnormalities of chromosomes such as inversions,
deletions, duplications, and translocations are commonly
observed in cancer cells but are rare in normal cells [9, 10].
The cells with abnormal number of chromosomes are named
polyploid cells. PGCCs contribute to solid tumor heterogene-
ity and are the main histological feature of malignant tumor
in pathologic diagnosis. Commonly, the number of PGCCs
is higher in high-grade malignant tumor than in low-grade
malignant tumor, in recurrent tumor after chemotherapy
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than in tumor before chemotherapy, and in themetastatic foci
than in the primary tumor [11, 12]. PGCCs are previously con-
sidered to be at the stage of mitotic catastrophe and believed
to be nondividing senescent cells. Polyploid giant cells appear
in skeletal muscles, osteoclasts, and senescent cells [13] and
can be formed via cell fusion or abortive cell cycles [14].
We previously found that PGCCs isolated from the ovarian
cancer and breast cancer cell lines can revert to regular cancer
cells through budding [12, 15]. PGCCs can express cancer
stem cell markers including CD44 and CD133. The daughter
cells budded from PGCCs expressed EMT-related proteins
and show strong ability of tumor invasion and migration.

Tumor budding is similar to the morphological features
of micropapillary pattern [16–20]. Based on the morpho-
logic features, protein expression, and biologic behaviors, we
speculate that these daughter cells budded from PGCCs fall
into the broad term of tumor budding and micropapillary
cancer pattern [12, 15, 21]. This review will discuss the
recent development of PGCCs and its association with tumor
budding and micropapillary pattern in CRCs.

2. PGCCs and Cancer Stem Cells

Cancer stem cells, often referred to as tumor-initiating or
tumor-propagating cells [22, 23], are capable of generating
entire tumormass.These cells are considered as the seed cells
to fuel the development, chemoresistance, and recurrence of
human cancer. The history of the cancer stem cell can be
traced toConeheimwho proposed the embryonic nest theory
of cancer stem cells 150 years ago [24, 25].The early definitive
evidence of cancer stem cells was found in leukemias [26].
Later, Al-Hajj et al. and other groups showed that cancer
stem cells were present in solid cancers, including breast
carcinoma and glioblastoma [27, 28]. Intensive efforts have
been devoted to identifying and characterizing cancer stem
cells. To date, stem cell-like populations have been charac-
terized and isolated by flow cytometry using so-called cancer
stem cell markers [27–29]. However, these markers were
neither pure nor specific for cancer stem cells [30–32]. Fur-
thermore, the phenotypes of these marker-enriched cancer
cells were not stable and could change from marker-positive
to marker-negative [33]. Thus, characterizations of markers
that unequivocally identify a population of cancer stem
cells remain challenging. American Association for Cancer
Research (AACR) consensus conference workshop described
cancer stem cell as “a cell within a tumor that possesses
the capacity to self-renew and to cause the heterogeneous
lineages of cancer cells that comprise the tumor” [34].

PGCCs are often considered as the senescent cells.
PGCCs in tumors have not attracted major attention due to
lack of extensive study and their poorly understood biology
[12]. Actually, PGCCs are the key contributors to cancer
heterogeneity and form the basis for differential diagnosis
of benign and malignant tumors. They associate with the
malignant grade and lymph nodemetastasis.The relationship
between PGCCs and cancer differentiation has long been
known, but it is not clear if PGCCs contribute to tumorigene-
sis or they are only the consequence of malignant transfor-
mation [35–37]. Clinical evidence is accumulating in support

of the view that the number of PGCCs positively correlates
with the malignant degree of cancer. In cancer, multiple
stresses including antimitotic chemotherapy drugs, radio-
therapy, hypoxia, or poormicroenvironment can increase the
number of PGCCs.

We recently reported that PGCCs can be purified from
human ovarian and breast cancer cells lines and primary
human ovarian tumors with the use of chemical hypoxic
mimetic, cobalt chloride (CoCl

2
) [12, 15, 21, 36–38], and

confirmed that these cells were formed through cell fusion
and produced daughter cells via asymmetric cell division. On
the other hand, PGCCs are slow-cycling in nature and express
stem cell markers.These cells are prone to differentiation into
other benign tissues including adipose, cartilage, and bone,
which has been confirmed both in vitro and in vivo [12]. A
single PGCC can form spheroids in medium and Matrigel
in vitro through time-lapse observation. A single PGCC can
also form tumorwhen it was subcutaneously injected into the
SCID mice. PGCCs express a distinct signature of proteins
involved in hypoxia, invasion, chromatin remodeling, and
cell cycle regulation [39–41].These features of PGCCs suggest
that PGCCs may represent a novel type of cancer stem cells
which can be defined by size and morphology without using
cell surface markers.

PGCCs generate daughter cells via asymmetric cell divi-
sionwhich is a hallmark of stem cells. Inmulticellular eukary-
otes, mitosis is the recognized process for somatic cell divi-
sion, ensuring the accurate separation of geneticmaterial [42,
43]. Asymmetric cell division is important in producing cell
diversity during normal tissue development. In contrast to
symmetric cell divisions, asymmetric cell division produces
two daughter cells including stem cell and non-stem cell
which have different cellular fates [44]. Asymmetric cell divi-
sion is a fundamental process involving many physiological
and pathological processes. In a typical outcome, the stem
cell generates a copy of itself, and a second daughter cell pro-
grammed to differentiate into a non-stem cell type [45, 46].
Asymmetric division is a key mechanism ensuring tissue
homeostasis, maintaining the stem and progenitor cell pop-
ulation, and allowing the development of diverse functional
cells.

3. Tumor Budding and Its Clinical and
Pathologic Significances

Prognosis of CRC patients has been associated with sev-
eral morphological features including the infiltration depth,
tumor cell differentiation, and lymph node or distant metas-
tasis. These morphological features are the primary parame-
ters for prognostic evaluation and tumor staging of CRCs in
clinics [47]. However, other pathological indicators including
tumor budding should be noted in the pathologic records to
help the clinicians to judge the prognosis of patients with
CRC [48]. Tumor budding is an increasingly recognizable
feature to indicate the lymph node metastasis in CRCs
[49–53]. “Tumor budding” was first described by Imai who
noticed that cells sprouting from the edge of tumor entity are
indicative of a tumorwith high growth rate [54]. It is generally
thought that tumor budding is a histological feature that is
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observed by pathologists from microscopy. The term “tumor
budding” is referred to as a cluster of cancer cells which
are located in the invasive front microscopically [55, 56].
Tumor budding is defined as an isolated single cancer cell or a
cluster composed of fewer than five cancer cells and has been
reported to be highly related to the recurrence rate and poor
prognosis in CRCs [48, 49, 57–61]. Tumor cells with mini-
mally differentiated CRCs show strong ability of tumor inva-
sion and migration and lymph node metastasis. The number
of tumor buddings has negative correlations with the degree
of tumor differentiation. There are more tumor buddings in
minimally differentiated CRCs than in the highly differen-
tiated and moderately differentiated CRCs [57, 62–65]. In
clinical practice, Dukes staging system has been widely used
forCRCclassification formany years because it can effectively
predict the disease prognosis. However, some patients with
the same Dukes stage have different prognosis and different
response to chemotherapy. Comprehensive evaluation sys-
tem including the degree and type of differentiation, tumor
budding, lymph node metastasis, and infiltrative depth
should be used to guide the clinical treatment and predict
prognosis. The comprehensive evaluation system should be
reproducible and have substantial predictive value for the
patients with CRC.

Several large studies tried to establish the criteria of
clinical significances of tumor budding in CRCs and con-
firmed that tumor budding correlates with the lymph node
or distant metastasis and associates with patient prognosis.
Hase et al. studied 663 patients with CRCs; they divided
patients into two groups according to the number of buddings
including none or mild group and moderate or severe group
[55]. They found that the presence of moderate-to-severe
tumor budding indicated a bad biological behavior of CRCs;
they also proposed that meticulous follow-up and adjuvant
chemotherapy may be beneficial to patients with moderate-
to-severe tumor budding regardless of their Dukes staging. In
a multivariate analysis, tumor budding but not diffuse infil-
tration was identified as an independent prognostic factor.
Other studies showed that tumor budding is an independent
factor to predict the prognosis of CRCs. Ueno et al. reported
that the number of tumor buddings is associated with tumor
metastasis inCRCs [66–69]. A count of 0 to 9 tumor buddings
per field (magnification of ×250) was marked as low grade,
and a count of 10 or more was considered as high grade [68].
Like the Gleason scores in cancers of the prostate, tumor
budding may be one of the important scoring factors to
predict the prognosis in CRC patients.

Themorphologic characteristics of tumor budding reflect
the loss of adhesive epithelial phenotype in cancer cells and
are accompanied by the metastasis of cancer [70–73]. Results
from Pyke et al. confirmed that laminin-5 is a marker of
invading cancer cells because of similar distributions between
laminin-5-positive budding cancer cells at the invasive front
in CRCs and the receptor for urokinase-type plasminogen
activator [74]. It was suggested that laminin-5 might rep-
resent a valuable marker for tumor budding. Furthermore,
laminin-5 and urokinase-type plasminogen activator recep-
tor colocalized in CRCs could be important in the invasion
and metastasis of cancer cells [74].

4. The Role of EMT in the Process of Tumor
Budding and PGCCs with Daughter Cells

EMT is involved in many physiological processes including
mesoderm formation and neural tube formation and patho-
logical processes including wound healing and organ fibrosis
[75, 76]. It should be pointed out that EMT plays an essential
role in cancer metastasis and progression as epithelial cells
lose their cell polarity and cell-cell adhesion and become
mesenchymal cells with migratory and invasive properties
[77]. During EMT, cells lose their epithelial morphology
because of the cytoskeleton reorganization. Low cell-cell
adhesion resulted from E-cadherin dysfunction and different
expression of tight and adherent junction proteins increased
invasive properties of cancer cells [78].

EMT has also been demonstrated to play an essential role
during the formation of cancer stem cells [79]. Previously, we
confirmed that PGCCs can be induced by CoCl

2
and pacli-

taxel. When cancer cell lines recovered from the treatment
of CoCl

2
and paclitaxel, PGCCs could produce daughter

cells via asymmetric cell division. Western blot analysis was
performed to confirm that cytokeratin (AE1/AE3) expression
was lower in the daughter cells than in cancer cells without
treatment.The increased expression ofmesenchymalmarkers
such as vimentin was evident in daughter cells [12, 15, 21].
Particularly after paclitaxel treatment, the daughter cells
developed an elongated, spindle cell, fibroblasticmorphology,
which was consistent with mesenchymal cells [15]. A high-
throughput iTRAQ-based proteomic methodology was used
to determine the differentially expressed proteins between
PGCCs treated with CoCl

2
and the control cells. Results

showed that a panel of stem cell-regulating factors and EMT-
related proteins were upregulated in PGCCs [21]. PGCCs
with budding daughter cells had higher Snail, TWIST, and
Slug expression than the diploid control tumor cells [21].

5. Wnt/𝛽-Catenin Signal Pathway in
Tumor Budding

Jass et al. reported that APC (adenomatous polyposis coli)
mutation was much less frequent in sporadic microsatel-
lite instability-high (MSI-H) cancers than in MSI-low or
microsatellite stable cancers [7]. APC can regulate the expres-
sion of 𝛽-catenin and is an important component of 𝛽-
catenin degradation complex. Tumor budding was charac-
terized by increased expression for both 𝛽-catenin and p16
(cyclin-dependent kinase inhibitor 2A) [68]. 𝛽-Catenin is
important for linkage of E-cadherins to the cytoskeleton
[80, 81].The downregulation of E-cadherin in carcinoma cells
is associated with increased invasive ability of cancer cells
[82, 83]. Furthermore, epithelial cell adhesion molecule (Ep-
CAM) has been confirmed to be involved in tumor budding
[84]. Loss of membranous Ep-CAM regulates the 𝛽-catenin
subcellular localization. When 𝛽-catenin translocates from
the cytoplasm to the nucleus, epithelial adhesionwas reduced
and migratory potential increased. Loss of Ep-CAM of CRC
cell membrane is highly correlated with tumor budding,
cancer grade, and local recurrence [84].
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6. Tumor Budding, Micropapillary Pattern,
and PGCCs in CRCs

Micropapillary pattern was first reported in breast cancer, in
which a small cluster of tumor cells appear in tumor tissue
and there are no vessels and stromal cells in the middle of
tumor cluster [16]. Micropapillary pattern has been detected
in about 20% of CRCs, a phenomenon analogous to the more
familiar one seen in some carcinomas of breast, bladder,
lung, pancreas, ovary, urothelial tract, and stomach [85–88].
Micropapillary pattern in carcinomas is associated with a
greater frequency of lymphovascular invasion and lymph
nodemetastases and poor prognosis [89]. Tang et al. reported
that the average number of metastatic lymph nodes, the
proportion of CRC with distant metastasis, and the number
of caseswith lymphovascular tumor emboli were significantly
higher in CRCs with micropapillary pattern compared to
those in CRCs without micropapillary pattern. Furthermore,
micropapillary pattern often appears in tumor with minimal
differentiation and the expression of E-cadherin in tumor
cells of micropapillary pattern is lower than that in regular
tumor cells [89]. The difference between tumor budding and
micropapillary pattern is mainly based on the location and
cell number. Micropapillary pattern can appear in both the
edge and center of tumor mass, and the cell number is often
more than five. Tumor budding is located in the invasion
front and the cell number is less than five. Verdú et al.
reported that there is an “inside-out” MUC1 immunohis-
tochemical staining feature in micropapillary pattern [90].
MUC1 plays an important role in the detachment of cells from
the stroma and determines the characteristic morphological
features of the invasive potential and aggressive behavior via
regulating the intercellular adherence [91]. Micropapillary
pattern has similar morphological features to tumor budding
in the invasion front of CRCs [90].

PGCCs appear in most of micropapillary carcinoma pat-
terns and tumor budding. In some micropapillary patterns,
the absence of PGCCs may be due to the five-micrometer
thickness for slide processing. According to the morpholog-
ical observations in CRCs with large sample, we speculate
that tumor budding andmicropapillary pattern may have the
same origin, which derive from PGCCs with their budding
daughter cells. We previously reported that single PGCCs
which appeared after paclitaxel treatment from an invasive
breast cancer cell line MCF-7 formed cancer organotypic
structure (COS) including glandular, vessel-like, and papilla-
like structures in vitro [15].Thepapilla-like structures derived
from single PGCCs were made of PGCCs and their daughter
cells. Themorphology of the papilla-like structure resembled
that of micropapillary pattern in human CRCs [15]. As
described above, daughter cells budded from PGCCs in
tumors have strong ability to invade andmigrate. Both tumor
budding and micropapillary pattern originated from PGCCs
with budding daughter cells show strong invasive ability.

There is a close association among tumor differentia-
tion, tumor budding, PGCCs, and micropapillary carcinoma
pattern. Lv et al. also reported that single stromal PGCCs

with their budding daughter cells were often associated with
tumormetastasis in OSCs [92].The number of single stromal
PGCCs between low-grade and high-grade OSCs was differ-
ent and statistically significant. High-grade OSCs have more
single stromal PGCCs number [41, 92]. Single PGCCs gener-
ating daughter cells via budding can be observed in paraffin-
embedded CRCs slides. Tumor tissue with single stromal
PGCCs is more aggressive than tumor tissue without single
stromal PGCCs. In another unpublished paper by us, we have
confirmed that there aremore tumor buddings and PGCCs in
minimally differentiated CRCs than in highly differentiated
and moderately differentiated CRCs. PGCCs can generate
daughter cells via budding (Figures 1(a) and 1(b)). Because
of the fact that the cell number in micropapillary pattern is
more than that in tumor budding, there is a space separation
between the tumor tissue and mesenchymal tissue. However,
PGCCs always appear in micropapillary pattern (Figures
1(c) and 1(d)) and tumor budding (Figures 1(e) and 1(f)).
Thus, the criterion of using single stoma PGCCs with their
budding daughter cells may be better representative than
tumor budding or micropapillary pattern. The association
among tumor differentiation, tumor budding, PGCCs, and
micropapillary pattern can help us further understand tumor
metastasis and patient’s prognosis.

7. Future Prospects of Tumor Budding and
Single Stromal PGCCs

CRCs with tumor budding were identified to respond
to chemoradiotherapy poorly and have adverse prognosis.
Tumor budding is mostly unreported in daily diagnostic
practice due to the lack of a standardized evaluating system.
Karamitopoulou et al. suggested a method using 10 high-
power fields to assess tumor budding at the invasive front.
Their opinion showed that using 10 high-power fields to eval-
uate tumor budding had independent prognostic value and
could show good interobserver consistency [93]. Jass et al.
described “discrete clusters” of cells as buds [5]; Hase et al.
gave definition of buds as clusters “appearing to bud from
a larger gland” [55]. However, the identification of tumor
budding is often confused with the fibroblasts, histiocytes
masquerading, and fragmentation of a larger gland.

Since tumor budding is related to the prognosis of CRC
patients, the standardized evaluating index including tumor
budding and PGCCs could improve the grading of CRCs.
Thus, it is worth paying more attention to the relationships
between PGCCs with their newly budding daughter cells and
tumor budding. The molecular mechanisms of tumor budd-
ing are involved in the expression of EMT-related proteins
and Wnt/𝛽-catenin signaling pathway which may provide
clinicians with new hints to treat tumor with high-grade
malignancy through targeting these proteins involved in
tumor budding and PGCCs formation.
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Figure 1: Tumor budding, PGCCs, and micropapillary carcinoma pattern in CRCs. ((a) and (b)) PGCCs with budding appear in minimally
differentiated CRCs. Black arrows indicate PGCCs and red arrows indicate daughter cells generated by PGCCs (HE,×200). (c)Micropapillary
patterns appear in minimally differentiated CRC (HE, ×100). (d) PGCCs appear in micropapillary patterns (HE, ×100, black arrows). ((e) and
(f)) Single PGCCs with their budding daughter cells in CRCs; and the structure is similar to tumor budding. Black arrows indicate PGCCs
and red arrows indicate daughter cells budded by PGCCs (HE, ×200).
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