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ABSTRACT 
Temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) is associated with a complex 
genetic architecture, but the translation from genetic risk factors to brain vulnerability remains 
unclear. Here, we examined associations between epilepsy-related polygenic risk scores for HS 
(PRS-HS) and brain structure in a large sample of neurotypical children, and correlated these 
signatures with case-control findings in in multicentric cohorts of patients with TLE-HS. 
Imaging-genetic analyses revealed PRS-related cortical thinning in temporo-parietal and fronto-
central regions, strongly anchored to distinct functional and structural network epicentres. 
Compared to disease-related effects derived from epilepsy case-control cohorts, structural 
correlates of PRS-HS mirrored atrophy and epicentre patterns in patients with TLE-HS. By 
identifying a potential pathway between genetic vulnerability and disease mechanisms, our 
findings provide new insights into the genetic underpinnings of structural alterations in TLE-HS 
and highlight potential imaging-genetic biomarkers for early risk stratification and personalized 
interventions. 

KEY WORDS: Imaging-genetics, temporal lobe epilepsy, brain structure, genetic risk, childhood 
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INTRODUCTION 
Epilepsy is characterized by an enduring predisposition to recurrent spontaneous seizures and 
affects over 50 million people worldwide.1 One of the most common forms of epilepsy is 
temporal lobe epilepsy (TLE), a focal epilepsy associated pathologically with hippocampal 
sclerosis (HS) and pharmaco-resistance. Cumulative evidence has underscored the complexity of 
TLE-HS, revealing contributions of genetic and acquired factors in epileptogenesis. With seizure 
onsets typically in childhood and adolescence,2 developmental transitions spanning youth 
represent a key window for epilepsy risk. Adequately capturing the condition’s effects on brain 
organization, particularly in development, may advance our understanding of brain mechanisms 
giving rise to seizures and may have important implications for disease monitoring and early 
diagnosis. 

In addition to its typical association with mesiotemporal pathology, neuroimaging evidence in 
patients with TLE-HS has identified widespread structural alterations. Magnetic resonance 
imaging (MRI) analysis of brain morphology has established robust structural compromise in the 
hippocampus, subcortical regions as well as more widespread temporal and fronto-central 
cortical systems. These findings were initially shown in single centre studies,3–6 and more 
recently confirmed in large-scale multisite initiatives, notably ENIGMA-Epilepsy.7,8 The latter 
initiative has mapped consistent patterns of multilobar atrophy in TLE-HS, and furthermore 
contextualized findings with measures of brain network architecture confirming temporo-limbic 
regions as epicentres of distributed structural pathology.9 Despite a likely influence of 
environmental factors and clinical events on brain structure in TLE,10 there has been growing 
evidence of important genetic influence,11 suggesting a possible mechanism contributing to this 
classical disease phenotype. 

Epilepsy has a complex genetic architecture, with many contributory genetic factors.12–16 
Variants underlying many different monogenic forms of epilepsy are rare, yet of large effect that 
can confer high risk or be causally responsible for the disease.17,18 Despite the clinical 
implications of these variants, common epilepsy syndromes, particularly TLE-HS, rarely carry 
such variants and presumably have a complex, multigenic inheritance.19 Causation may therefore 
be attributable to the synergy of multiple genetic variants interacting with each other, together 
with acquired environmental factors. Recent genome-wide association studies (GWAS) have 
identified common risk alleles.13–16 These individual genetic risk variants are usually of small 
effect and cannot quantify risk or inform prognosis and treatment.20 However, genome-wide 
profiling using polygenic risk scores (PRS) may provide a window into the genetic liability of 
the disease. By estimating the combined effect of individual single nucleotide polymorphisms 
(SNPs), it can collectively capturing the variance explained by these common alleles and provide 
an individualized measure of genetic risk.21–23 While previous studies have revealed enriched 
genetic vulnerability for epilepsy in patients,24–26 the consequences of epilepsy susceptibility on 
disease phenotypes, such as brain morphology, have not been systematically charted. 
Investigating this micro-to-macroscale mechanism may provide insight into the translation of 
genetic vulnerability to disease etiology or consequences. 

In this study, we aimed to uncover the cumulative effects of epilepsy-related genetic risk variants 
on structural brain organization during development. We analyzed structural MRI and 
genotyping data in a large population-based cohort of neurotypical children from the Adolescent 
Brain Cognitive Development study (ABCD).27 To investigate associations between genetic risk 
factors for epilepsy-related HS and brain-wide morphology, we generated PRS-related models of 
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cortical thickness and subcortical volume. Network contextualization further identified 
connectome epicentres of PRS-HS effects—network pathways that may govern the genetically 
affected morphological patterning. To pinpoint common processes between genetic risk and 
disease pathologies, we employed spatial correlations with autocorrelation preserving null 
models and related structural effects of PRS-HS to disease-related atrophy and epicentres derived 
from large multi-site MRI-based datasets of patients and controls.28–30 

RESULTS 
Genetic and neuroimaging data samples 

We studied genetic and imaging data of 3,826 unrelated neurotypical children (mean ± standard 
deviation [SD] age = 10.0 ± 0.6 years; 2,052 males) from the multi-site ABCD 2.0.1 release.31 
Epilepsy-related PRS was calculated to determine an individual’s genetic burden for TLE-HS. 
Based on previous GWAS summary statistics,15 we took the weighted sum of disease-related risk 
alleles in an individual’s genome, with weights reflecting the effect sizes of each variant. In 
parallel, cortical thickness across 68 gray matter brain regions and volumetric data from 12 
subcortical gray matter regions and bilateral hippocampi were obtained from all children.32  

Structural correlates of PRS-HS 

Imaging-genetic correlations based on surface-based linear models related PRS-HS to brain 
structure. We observed a significant and negative association between global cortical thickness 
and with genetic vulnerability (left hemisphere: r = -0.041, pFDR < 0.05; right hemisphere: r = -
0.044, pFDR < 0.05; Figure 1A). Adopting a regional approach, these effects colocalized to 
bilateral temporal pole and postcentral gyrus, left precuneus, inferior parietal and lateral occipital 
regions as well as right superior, and middle temporal, precentral and paracentral gyri (range r = 
-0.0501 – -0.0362, pFDR < 0.05; Figure 1B). 
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Figure 1 | PRS-HS associations with cortical thickness (ABCD). (A) Distribution of genetic risk effects on 
morphology across the different lobes (in order from top to bottom: all, frontal, limbic, occipital, parietal, temporal). 
(B) Regional imaging-genetic correlations between PRS-HS and thickness. Blue and red colours represent negative 
and positive correlations, respectively. White outline indicates pFDR < 0.05. L, left; PRS-HS; polygenic risk score for 
epilepsy-related hippocampal sclerosis; R, right. 

After correcting for multiple comparisons, there were no significant relationships between PRS-
HS and subcortical and hippocampal volume (all pFDR ≥ 0.05; Supplementary figure 1). 

Network substrates of PRS-related structural changes 

Given the large-scale effects of PRS-HS on cortical thickness, contextualizing imaging-genetic 
correlations with connectome architecture may provide insight into how localized genetic 
susceptibility propagates through distributed brain networks and predicts structural 
vulnerabilities. Data-driven epicentre mapping can identify one or more specific regions—or 
epicentres—whose connectivity profile spatially resembles structural effects of PRS-HS.9,33–35 
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We systematically correlated the functional and structural connections of each cortical and 
subcortical region to the imaging-genetic patterns (see Figure 1), with non-parametric spin 
permutation null models to control for spatial autocorrelation (5,000 repetitions, p-values were 
denoted as pspin).

36 This analysis implicated bilateral temporal-limbic and parietal cortices, 
amygdalae, hippocampi, and thalami as the most significant functional and structural epicentres 
(all pspin < 0.05; Figure 2B).  

 
 
Figure 2 | Network epicentres of morphological changes associated with PRS-HS. (A) Schematic representation 
of epicentre mapping approach using seed-based cortico- and subcortico-cortical connectivity. PRS-HS, polygenic 
risk score for epilepsy-related hippocampal sclerosis. (B) Correlation coefficients indexing spatial similarity 
between imaging-genetic effects and seed-based functional (top) and structural (bottom) connections for every 
cortical and subcortical region. Red and blue colours represent negative associations , while grey depicts positive 
correlations. White outline indicates pspin < 0.05. L, left; R, right. 

Relation to epilepsy-specific atrophy and network epicentres  
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To link genetic vulnerability to disease alterations, we examined the spatial resemblance between 
imaging-genetic findings to atrophy patterns observed in patients with TLE-HS. We leveraged 
the ENIGMA-Epilepsy Consortium aggregating case-control MRI data of 785 individuals with 
TLE-HS and 1,512 healthy controls from multiple sites around the world.8,28 Between-group 
differences (ENIGMA-Epilepsy) revealed profound atrophy in patients, with strongest effects in 
bilateral precuneus, precentral, paracentral, and temporal cortices (pFDR < 0.05; Figure 3A). 
Correlating alteration maps with PRS effects (from ABCD, see Figure 1) showed significant 
overlap with left (r = 0.63, pspin = 0.001) and right TLE-HS (r = 0.59, pspin = 0.0006; Figure 3B).  

 
 
Figure 3 | Comparison between PRS-HS effects and epilepsy case-control atrophy. (A) Case-control differences 
in left and right TLE-HS from ENIGMA-Epilepsy (top) and from MICs and NKG (bottom). Blue and red colours 
point to atrophy and hypertrophy in patients relative to healthy controls, respectively. Outline in white represents 
pFDR < 0.05. L, left; R, right; TLE-HS, temporal lobe epilepsy with hippocampal sclerosis. (B) Spatial correlations 
between epilepsy-related atrophy (top: ENIGMA-Epilepsy; bottom: MICs and NKG) and imaging-genetic effect 
maps (ABCD) are compared against permutation-based null correlations. Points represent the empirical correlation 
(with significance defined as pspin < 0.05). In the boxplots, the ends of boxes represent the first (25%) and third 
(75%) quartiles, the centre line (median) represents the second quartile of the null distribution (n = 5,000 
permutations), the whiskers represent the non-outlier endpoints of the distribution. 

Network mapping of TLE-related atrophy (ENIGMA-Epilepsy) revealed significant temporo-
limbic and parieto-occipital epicentres in TLE-HS (pFDR < 0.05; Figure 4A). Similarly, imaging-
genetic epicentres (from ABCD, see Figure 2) were strongly correlated with disease epicentres 
in left TLE-HS (functional: r = 0.95, pspin < 0.001; structural: r = 0.78, pspin < 0.001), right TLE-
HS (functional: r = 0.93, pspin < 0.001; structural: r = 0.94, pspin < 0.001; Figure 4B), suggesting 
potential pathway convergence between PRS-HS and TLE-HS effects.  
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Figure 4 | Comparison between imaging-genetic and epilepsy-related disease epicentres. (A) Functional and 
structural disease epicentres in left and right TLE-HS from ENIGMA-Epilepsy (top) and from MICs and NKG 
(bottom). Red and blue colours represent negative associations, while grey depicts positive correlations. Outline in 
white represents pspin < 0.05. L, left; R, right; TLE-HS, temporal lobe epilepsy with hippocampal sclerosis. (B) 
Spatial correlations between epilepsy-related epicentres (top: ENIGMA-Epilepsy; bottom: MICs and NKG) and 
imaging-genetic effect maps (ABCD) are compared against permutation-based null correlations. Points represent the 
empirical correlation (with significance defined as pspin < 0.05). In the boxplots, the ends of boxes represent the first 
(25%) and third (75%) quartiles, the centre line (median) represents the second quartile of the null distribution (n = 
5,000 permutations), the whiskers represent the non-outlier endpoints of the distribution. 

Assessing the consistency of these correlations, we repeated correlation analyses with a separate 
independent case-control set, collected from (a) Montreal Neurological Institute and Hospital 
(MICs; nTLE-HS/HC = 23/36)29 and (b) Jinling Hospital (NKG; nTLE-HS/HC = 37/57).30 we compared 
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between PRS effects (from ABCD, see Figure 1) and disease-related atrophy (from MICs and 
NKG; Figure 3A) and observed moderate and highly significant positive correlations for left (r = 
0.50, pspin = 0.0002) and right TLE-HS (r = 0.41, pspin = 0.009). Imaging-genetic epicentres (from 
ABCD, see Figure 2) were strongly similar with disease epicentres (Figure 3A) in left 
(functional: r = 0.93, pFDR < 0.001; structural: r = 0.77, pFDR < 0.001) and right TLE-HS 
(functional: r = 0.89, pFDR < 0.001; structural: r = 0.89, pFDR < 0.001; Figure 3B). 

To further evaluate specificity of PRS-HS effects, we cross-referenced our imaging-genetic 
patterns (from ABCD, see Figure 1 and 2) with atrophy and disease epicentre maps in idiopathic 
generalized epilepsy (IGE), another common epilepsy syndrome, and six psychiatric disorders 
(attention deficit disorder [ADHD], autism spectrum disorder [ASD], bipolar disorder [BD], 
major depressive disorder [MDD], obsessive-compulsive disorder [OCD], and schizophrenia 
[SCZ]), all acquired from the ENIGMA Consortium.28,37 Spatial correlations between PRS-HS 
and TLE-HS effects (see Figure 3 and 4) were among the highest even when compared against 
the different conditions (Table 1; IGE: Supplementary figure 2; psychiatric conditions: 
Supplementary figure 3 and 4).  

Table 1 | Spatial correlation between effects of PRS-HS and different conditions 

Condition Analysis Correlation (r) P-value (pspin) 

IGE 

Regional 0.42 0.004 

Functional epicentre 0.76 < 0.001 

Structural epicentre 0.70 < 0.001 

ADHD 

Regional -0.29 0.071 

Functional epicentre -0.80 < 0.001 

Structural epicentre -0.67 < 0.001 

ASD 

Regional 0.14 0.322 

Functional epicentre 0.84 < 0.001 

Structural epicentre 0.71 < 0.001 

BD 

Regional 0.08 0.328 

Functional epicentre -0.15 0.076 

Structural epicentre -0.33 0.011 

MDD 

Regional -0.41 0.005 

Functional epicentre -0.72 < 0.001 

Structural epicentre -0.86 < 0.001 
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OCD 

Regional -0.13 0.171 

Functional epicentre -0.38 < 0.001 

Structural epicentre -0.69 < 0.001 

SCZ 

Regional 0.17 0.184 

Functional epicentre 0.41 0.002 

Structural epicentre 0.60 < 0.001 

ADHD, attention deficit/hyperactive disorder; ASD, autism spectrum disorder; BD, bipolar disorder; IGE, idiopathic 
generalized epilepsy; MDD, major depressive disorder; OCD, obsessive compulsive disorder; SCZ, schizophrenia 

Consistency of imaging-genetic analyses 

Constructing PRS-HS at different PSNP
 thresholds (n = 7; 0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5), we 

evaluated the robustness of the imaging-genetic effects (from ABCD, see Figure 1 and 2). Our 
findings were not affected by such methodological variations. Across the range of predictive 
thresholds, widespread decreases in thickness were related to PRS-HS, with strongest 
associations again in parietal and temporal regions (Supplementary figure 5A). Recapitulating 
the reliability of threshold-specific effects, we demonstrated high similarities among different 
thresholds (100.0% of correlations were significant, pspin < 0.05). Moreover, we found 
comparable associations between imaging-genetic and cortical atrophy maps in left (89.2% of 
correlations were significant, pspin < 0.05) and right TLE-HS (67.9% of correlations were 
significant, pspin < 0.05; Supplementary figure 5B). Translating this approach to network 
models of PRS-HS, temporo-limbic and parietal epicentres identified in the main analyses were 
consistent across different PSNP thresholds (Supplementary figure 6A). Moreover, the spatial 
distribution of these network epicentres was highly correlated with one another (100% of 
correlations were significant, pspin < 0.05; Supplementary figure 6B).  

DISCUSSION 
Emerging literature emphasizes the importance of genotype-phenotype associations in 
understanding the etiological mechanisms of epilepsy. Capitalizing on recent imaging-genetic 
initiatives, we combined polygenic risk and whole-brain anatomy to characterize the polygenic 
burden of epilepsy-related HS in typical development. We found widespread decreases in 
cortical thickness associated with elevated PRS-HS, with the greatest effects in temporal and 
parietal regions. These imaging-genetic correlations were anchored to the connectivity profiles of 
fronto-parietal and temporo-limbic epicentres, and may play a crucial role in the network 
vulnerability of the brain. Structural correlates of PRS-HS mirrored case-control cortical thinning 
observed in patients with TLE-HS. Findings were replicable across different PSNP thresholds as 
well as different epilepsy case-control studies. Taken together, PRS-associated structural 
vulnerabilities may represent an early biomarker for TLE-HS pathogenesis, offering new 
avenues for risk stratification and pre-emptive interventions based on their genetic profiles 
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Structural brain organization in typical development includes a complex, and genetically 
determined cascade of changes from childhood to adolescence and ultimately to adulthood. 
Cross-sectional and longitudinal characterization of cortical gray matter tissue demonstrate 
global and regional thinning during this period.38–42 Despite being an important aspect of normal 
maturation, deviations from typical development have been associated with vulnerability for 
various neurological and psychiatric conditions, 43–45 including TLE-HS.46–48 While the exact 
pathogenesis of TLE-HS remains unknown, genetic studies have characterized the role of 
common susceptibility variants in patient cases.13–16 These variants account for a moderate 
proportion of disease phenotypic variance, and may have adverse effects on structural brain 
development.15 Core to our analytical framework is the association of individualized genetic risk 
profiling and mapping of structural brain phenotypes, pinpointing the morphological 
vulnerabilities influenced by underlying predisposition to the disease. Particularly relevant for a 
complex disorder that is impacted by many small-effect variants, PRS provides a personalized 
and compact measure of overall genetic liability.21–23 Linked imaging-derived phenotypes would 
help visualize the structural, biological impact of common variant accumulation.28 Examining a 
neurotypical population, we identified widespread cortical thinning in children with elevated 
PRS-HS, and conversely no relationship in the hippocampus: genetic risk is not determinant or 
causative of HS, but rather serves to influence the cortical alterations. Enrichment of risk variants 
related to focal epilepsy have been reported in patients with early onset seizures.24,25 Childhood-
onset epilepsy has also been associated with widespread structural alterations extending beyond 
the seizure focus.48,49 Given that thickness changes in development reflect pruning and neuronal 
maturation,50–52 high genetic risk to TLE-HS may accelerate and alter synaptic elimination 
and/or strengthening, potentially promoting an epileptogenic network.53 Although no inferences 
can be drawn on the specific molecular mechanisms from our macroscopic imaging-genetics 
study, atypical structural modelling of the developing brain related to genetic risk may help 
predict a child’s susceptibility to epilepsy.  

While imaging-genetic analyses indicate significant associations between PRS-HS and structural 
brain changes, the observed effect sizes are relatively low, in line with those reported in previous 
studies across different, genetically mediated conditions.54–57 It is essential to consider the 
context of a typically developing cohort where the genetic burden of TLE-HS is reduced. The 
adverse impacts of risk variants may be more subtle than those observed in a patient population 
with notably greater genetic vulnerability. Moreover, it is difficult to identify the mechanisms 
linking PRS-related morphological changes to disease onset without clear long-term follow up of 
epilepsy diagnosis in these healthy individuals. Patient-level data containing both genetics and 
imaging are necessary to address the pivot from PRS-related changes to clinically significant 
pathology, but have not been collected to date at a large scale. Despite these methodological 
challenges, using a population-based cohort, such as ABCD, provides a starting point to detect 
these relationships and improve our understanding of how genetic predispositions correlate with 
brain structural vulnerabilities. 

Alterations in TLE-HS commonly implicate many brain regions organized within interconnected 
systems.7,9,58–63 Understanding these interactions and their contributions to epileptogenesis 
requires the integration of connectome architecture. Epicentre mapping emerges as a valuable 
data-driven method to pinpoint critical regions—termed epicentres—that may serve as critical 
anchors in the manifestation of common genetic variants.9,33–35 Analyzing how localized genetic 
vulnerabilities propagate through distributed brain regions can identify potential network 
pathways linking genetic risk to pathological mechanisms. In particular, marked PRS-related 
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thinning occurs in regions strongly connected to temporo-limbic and parietal territories. 
Diffusion MRI is highly effective at detecting strong long-range fibre bundles and direct 
monosynaptic structural connections, but it does not fully capture short-range intracortical and 
spatially distributed polysynaptic cortical systems.64 By contrast, resting-state functional MRI 
can detect functional connectivity in the absence of direct structural connections, and thus is 
more informative about polysynaptic configurations.65,66 These temporo-limbic and parietal 
epicentres have been characterized by a disproportionately high number of monosynaptic and 
polysynaptic connections and serve as crucial areas for the integration and broadcasting of 
signals across different structural and functional networks. Consequently, such regions are 
inherently vulnerable to TLE-HS pathology.9,62,67 Given the convergence between functional and 
structural genetic epicentres, these regions also show susceptibility to the effects of accumulated 
genetic risk factors. Local changes related to PRS-HS may therefore impact global network 
organization, such that it increases vulnerability to targeted hub attacks, and potentially to 
seizure activity. 

To bridge the transition from genetic vulnerability to clinical phenotype, we contextualized 
regional and network correlates of PRS with case-control atrophy and epicentres, and revealed 
strong spatial resemblance: thinner areas in children with elevated genetic risk tend to be thinner 
in patients and be highly connected to disease-related networks. Structural alterations have been 
consistently identified in TLE-HS, and are most marked in mesiotemporal, limbic, and 
sensorimotor areas.3–7,68 These alterations are anchored to the connectivity profiles of distinct 
temporo-limbic and parietal epicentres.9 While family-based studies have shown low heritability 
for these atrophy patterns.69–71 in healthy relatives, these predisposed regions may be too subtle 
and difficult to capture in endophenotype paradigms due to the complexity of epilepsy. Large 
sample sizes with varying genetic risk, as utilized herein, are required to characterize these 
imaging-genetic associations.72 Moreover, disease contextualization points to a common driving 
process between genetic risk manifestations and disease effects. As such, the polygenic burden 
of TLE-HS may impact biological mechanisms underlying brain structure and network 
architecture, and potentially influence disease vulnerability and pathogenesis. Although genetics 
are insufficient to cause TLE-HS alone due to its multifaceted components, they may increase 
susceptibility to the consequences of external factors.20,73 in genetically vulnerable regions and 
their networks. 

Imaging-genetic associations also mirrored IGE-related atrophy and epicentres, to a lesser extent 
than in TLE-HS. Pleiotropy—whereby a genetic variant influences multiple traits–occurs in the 
genetics of complex traits and disorders.74,75 Relevant to epilepsy, certain genetic variants may 
contribute to the vulnerability to both generalized and focal syndromes.15 Despite the wide 
clinical spectrum of epilepsy, the shared genetic architecture may contribute to common 
pathological features.76 Supported by literature demonstrating similar patterns of cortical 
thinning across subtypes,7 our imaging-genetic model further adds to a common structural 
signature, such that widespread atrophy may originate from shared genetic pathways and reflect 
a more general epilepsy-related phenomenon. Similarly shown with disease epicentres herein, 
such a concept may also translate to network-level alterations. These associations may be 
potential biomarkers and encourage further exploration of the shared and trait-specific effects of 
common genetic factors in TLE-HS and the broader spectrum of epilepsy.  

Limitations of imaging-genetic associations with respect to the GWAS-identified SNPs need to 
be highlighted. Firstly, summary statistics used for PRS calculation was based on GWAS of 
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“focal epilepsy with documented HS”.15 Although it represents the most common pathological 
substrate for TLE-HS, hippocampal alterations occur in other epilepsy syndromes, and may be a 
cause, or consequence of epilepsy, or both.10,77,78 This phenotypic heterogeneity may impact the 
genetic associations identified. A more accurate delineation is crucial for detecting variants 
related to TLE-HS and its downstream effects, which may not be fully captured in our PRS 
correlations. Secondly, the same GWAS was mainly conducted in individuals of European 
ancestry.15 While our findings may be specific to European populations, they may not generalize 
to other under-represented groups.79 Replication of imaging-genetic effects, particularly using a 
GWAS that includes larger and more diverse cohorts—ideally with inclusion criteria that 
specifically define TLE-HS—could enhance the reliability and generalizability of imaging-
genetic effects. This would improve the power to detect smaller effect sizes and refine the 
understanding of how specific genetic variants influence brain structure. 

In summary, the present work highlights the potential for integrating imaging-genetic 
frameworks to uncover interplay between genetic predisposition, neuroanatomical changes, and 
epilepsy pathogenesis. Structural vulnerabilities linked to high PRS-HS in childhood resembled 
atrophy patterns commonly observed in patients. Collectively, these results highlight important 
candidates for stratification efforts that can unravel the complex etiology of epilepsy. Advancing 
the use of PRS as a potential biomarker for disease risk and for developing targeted interventions 
that prevent or limit progression of epilepsy 

MATERIAL AND METHODS 
Participants 

i) Adolescent Brain Cognitive Development (ABCD). The present study used the demographic, 
genetic, and neuroimaging data of 3,826 unrelated neurotypical children (mean ± standard 
deviation [SD] age = 10.0 ± 0.6 years; 2,052 males), derived from the multi-site ABCD 2.0.1 
release.31 Briefly, participants were recruited based on probability sampling of schools near the 
study sites. Parents or guardians provided written consent, while the child provided written 
assent. All aspects of the ABCD study were approved by the Institutional Review Board at the 
University of California, San Diego, United States. Overall, the large size of this cohort allows 
for unprecedented exploration of genetic risk for TLE-HS and its potential effects on brain 
organization in an a priori neurotypical child population. 

ii) Human Connectome Project (HCP). We selected 50 unrelated healthy adults. Imaging 
acquisition and processing are described in the Supplementary Materials.80 Such initiatives 
provide normative structural and functional connectivity information to employ network 
epicentre mapping of PRS-HS. 

iii) Enhancing Neuro Imaging Genetics through Meta Analysis Epilepsy Consortium (ENIGMA-
Epilepsy). Imaging-genetic associations from neurotypical children were compared to MRI-
based disease effects observed between 732 patients with TLE and radiological evidence of HS 
(mean ± SD age = 38.6 ± 10.6 years; 329 males; 391 left-sided focus) and 1,418 (mean ± SD age 
= 33.8 ± 10.5 years; 643 males) healthy controls (HC). Details of case-control cohorts are 
described in the Supplemental Materials and elsewhere.28 

iv) Independent TLE-HS case-control datasets. To assess the replication of the aforementioned 
analysis, imaging-genetic associations from typically developing children were also compared to 
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MRI-derived disease effects observed between 53 individuals with pharmaco-resistant TLE-HS 
and 93 age- (t = 1.51, p = 0.13) and sex-matched (χ² = 0.13, p = 0.72) healthy controls (HC). 
Case-control participants were selected from (a) Montreal Neurological Institute and Hospital 
(MICs; nTLE-HS/HC = 23/36)29 and (b) Jinling Hospital (NKG; nTLE-HS/HC = 37/57).30 
Sociodemographic, clinical and imaging details of patient-control cohorts are in the 
Supplementary Materials.  

Genomic data acquisition and pre-processing of ABCD 

i) SNP Genotyping. A total of 550,000 SNPs were genotyped from saliva samples using the 
Illumina Human660W-Quad BeadChip. The data were prepared for imputation using 
“imputePrepSanger” pipeline (https://hub.docker.com/r/eauforest/imputeprepsanger/), 
implemented on CBRAIN81 and the Human660W-Quad_v1_A-b37-strand chip as reference. 

ii) Genotyping quality control and imputation. Genotyping was quality control using PLINK 
1.9.82 Steps were: (1) assessment of heterozygosity using the PLINK –indep-pairwise command 
with parameters set to 200, 50, and 0.15 to remove samples with very high or low 
heterozygosity; (2) removal of samples whose heterozygosity F coefficient was > 3 SD units 
from the mean; (3) removal of samples and SNPs with low call rate at 0.01 and all SNPs with 
minor allele frequency (MAF) < 0.01; (4) removal of individuals with mismatched sex and 
gender; (5) exclusion of non-European individuals by PCA with Hapmap; (6) removal of 
samples wih a first- or second-degree relative in the cohort (π > 0.125); (7) application of a 
haplotype-based test for non-random missing genotype data to remove SNPs at p < 1 × 10–4 
where they had non-random associations between unobserved genotypes and missingness; and 
(8) application of a test for Hardy-Weinberg equilibrium (HWE) and removal of SNPs 
significant at p < 1 × 10-6. Imputation was performed using the Michigan Imputation Service 
with the Haplotype Reference Consortium (HRC) r1.1 2016 (hg19) as a reference panel.83  

iii) Deriving polygenic risk scores. Individualized PRS were computed using the summary 
statistics from an epilepsy genome-wide association study for focal epilepsy with documented 
HS.15 While this may not necessarily equate to TLE-HS, we used this classification as a close 
proxy given the high prevalence and relative specificity of HS in TLE. SNPs with an INFO < 0.8 
and an MAF < 0.01 were excluded, and duplicate SNPs were removed. PRSice-2 was used to 
calculate genetic risk scores.84 Given that an optimal probability threshold (PSNP) related to HS 
was previously not reported, we used multiple PSNP that significantly predicted focal epilepsy: 
0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5.26 All main analyses used PRS constructed at PSNP < 0.1.  

Imaging acquisition and processing of ABCD  

i) Acquisition. All participants underwent 3T MRI scanning with prospective motion correction 
to reduce head motion and distortions, including a 3D T1-weighted (T1w) anatomical scan based 
on a magnetization-prepared rapid acquisition gradient echo sequence.31 

ii) Processing. T1w data were processed using FreeSurfer (version 5.3.0) to generate cortical 
surface and subcortical segmentations.85,86 Based on the Desikan-Killiany anatomical atlas,32 
subject-specific maps of cortical thickness were sampled across 68 grey matter brain regions, and 
volume measures were obtained from 12 subcortical gray matter regions (bilateral amygdala, 
caudate, nucleus accumbens, pallidum, putamen, and thalamus) and bilateral hippocampi. 
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iii) Multisite data harmonization. Morphological data were harmonized across sites using 
ComBat (https://github.com/Jfortin1/ComBatHarmonization), a post-acquisition statistical batch 
normalization of between-site effects, while preserving age, sex and genetic risk.87 

Statistical analyses 

i) Structural correlates of PRS-HS. We implemented surface-based linear models in BrainStat 
(version 0.4.2; https://brainstat.readthedocs.io/)88 with age, sex, and the first 10 genetic principal 
components as covariates, similar to previous imaging-genetics studies.54–56 These related PRS-
HS to cortical thickness and subcortical volume in neurotypical children from ABCD. Multiple 
comparisons were corrected using the false discovery rate (FDR) procedure.89 

ii) Network substrates of PRS-HS effects. We identified morphological polygenic risk epicentres 
by spatially correlating each brain region’s healthy functional and structural connectivity profiles 
from the HCP dataset to the imaging-genetic map (i.e., the unthresholded t-statistic map from i). 
This approach was repeated systematically across all cortical and subcortical regions with non-
parametric spin permutation null models to control for spatial autocorrelation (5,000 
repetitions),36 implemented in the ENIGMA toolbox (version 2.0.3; https://enigma-
toolbox.readthedocs.io/).90 Higher the spatial similarity between a given node’s connectivity 
profile and whole-brain patterns of PRS-HS vulnerability supported that the node was an 
epicentre. 

iii) Relation to disease-specific effects. We identified the spatial overlap between imaging-
genetic alterations from ABCD and epilepsy-related alterations. The latter were obtained 
previously published statistical case-control atrophy and epicentre maps for left and right TLE-
HS from ENIGMA-Epilepsy,8,28 sourced from the ENIGMA toolbox.90 Spin permutation-based 
testing (5,000 repetitions) assessed significant spatial associations between imaging-genetic and 
case-control effects, at the regional and network level. 

We furthermore performed spatial correlations with case-control atrophy and epicentre maps for 
left and right TLE-HS from independent case-control datasets (MICs and NKG). Patient-specific 
morphology maps were z-scored relative to controls. We used surface-based linear models with 
age, sex, and site as covariates to compare between groups. Subsequent epicentre analysis 
identified network associations with TLE-HS atrophy patterns. Spin permutation-based testing 
(5,000 repetitions) evaluated significant spatial correlations between imaging-genetic and case-
control effects. 

To evaluate the specificity of imaging-genetic effects to TLE-HS, we repeated the same analyses 
with IGE28 and six psychiatric disorders (ADHD, ASD, BD, MDD, OCD, and SCZ), all derived 
from the ENIGMA Consortium.37,90  

iv) Robustness analyses. To verify that results were not biased by choosing a particular threshold, 
we repeated the PRS analyses and associations with case-control atrophy across all predictive 
PSNP thresholds (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5).26 Specifically, PRS-HS was constructed at 
each threshold and pairwise spatial correlations between all pairs of imaging-genetic brain maps 
were performed. Significance testing of these correlations was assessed using spin permutation 
tests with 5,000 repetitions.  
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