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Abstract
Background: Mesenchymal stem cells (MSCs) from type 2 diabetes mellitus
(T2DM) individuals exhibit increased adipogenesis and decreased osteo-
genesis. We investigated the potential of adipose tissue‐derived MSCs
(ADMSCs) secretome obtained from healthy individuals in restoring the
tumor necrosis factor‐α (TNF‐α) mediated imbalance in the adipo/
osteogenic differentiation in the dental pulp‐derived MSCs obtained from
T2DM individuals (dDPMSCs).
Methods: dDPMSCs were differentiated into adipocytes and osteocytes
using a standard cocktail in the presence of (a) induction cocktail, (b)
induction cocktail + TNF‐α, and (c) induction cocktail+ TNF‐α + ADMSCs‐
secretome (50%) for 15 and 21 days resp. Differentiated adipocytes and
osteocytes were stained by oil red O and alizarin red and analyzed by using
ImageJ software. Molecular expression of the key genes involved was
analyzed by using reverse‐transcription polymerase chain reaction
(RT‐PCR).
Results: Treatment of TNF‐α augmented the adipogenesis (9571 ± 765 vs.
19,815 ± 1585 pixel, p < 0.01) and decreased the osteogenesis (15,603 ± 1248 vs.
11,894 ± 951 pixel, p < 0.05) of dDPMSCs as evidenced by the oil red O and alizarin
red staining respectively. Interestingly, dDPMSCs differentiated along with TNF‐α
and 50% ADMSCs secretome exhibited enhanced osteogenesis (11,894 ± 951 vs.
41,808 ± 3344 pixel, p < 0.01) and decreased adipogenesis (19,815 ± 1585 vs.
4480 ± 358 pixel, p < 0.01). Additionally, dDPMSCs differentiated along with
ADMSCs secretome exhibited decreased expression of PPARg (p < 0.01), C/EBPa
(p < 0.05), and FAS (p < 0.01) whereas mRNA expression of Runx2 (p < 0.05),
Osterix (p < 0.01), and OCN (p < 0.05) was upregulated as revealed by the RT‐PCR
analysis.
Conclusion: ADMSCs secretome from healthy individuals restore the
TNF‐α influenced differentiation fate of dDPMSCs and therefore can be
explored for T2DM clinical management in the future.
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Key points
• Mesenchymal stem cells (MSCs) from type 2 diabetes mellitus (T2DM)
individuals are known to exhibit increased adipogenesis and decreased
osteogenesis.

• Adipose tissue‐derived MSCs (ADMSCs) secretome from healthy indivi-
duals modulate the TNF‐α influenced differentiation fate of MSCs obtained
from diabetic individuals into adipocytes and osteocytes.

• ADMSCs secretome can be explored in restoring the disturbed micro-
environment of MSCs and offering an effective alternative for the T2DM in
future.

1 | INTRODUCTION

Bone is one of the key organs which provide support
and protect the vital organs inside body. In the
pathophysiological state of type 2 diabetes mellitus
(T2DM), the microenvironment is known to influence
bone homeostasis by modulating osteoclast/osteoblast
ratio.1 Clinical evidence suggest that T2DM influences
skeletal metabolism and patients with uncontrolled
hyperglycemia exhibit low bone mineral density and
increased risk of fracture.2–4 Enhanced osteoblast
apoptosis, decline in the osteoblast differentiation, and
enhanced bone resorption are the key hallmarks of the
T2DM affected individual especially in the elderly
population.5

Mesenchymal stem cells (MSCs) serve as precursor to
various cell types. Interestingly, the fate of MSCs is decided
by the chemical and physical microenvironment, and other
factors such as age and metabolic status.6 The fate of MSCs
towards osteocytes and adipocytes is known to be
implicated in several pathological conditions including
obesity and T2DM.6,7 Moreover, T2DM and metabolic
syndrome have been predicted to be implicated in affecting
MSCs properties and their subsequent differentiation fate.
Serum of diabetic patients has been shown to impair the
proliferation and differentiation of MSCs into osteocytes.4

Additionally, serum obtained from diabetic individuals
inhibit the osteogenic differentiation.4 It is noteworthy that
the MSCs population inside bone marrow tends to get
differentiated into adipocytes rather than osteocytes in
diabetic individuals.8,9 The microenvironment in T2DM is
comprised of pro‐inflammatory cytokines, growth factors,
triglycerides, hormones, and so forth.10 Interestingly, high
levels of TNF‐α found in the serum of T2DM individuals are
known to inhibit osteogenesis, and chondrogenesis, and
also alter the miRNA composition in MSCs derived
exosomes.11

Accumulating evidence suggests the therapeutic role of
MSCs and their secretome in the clinical management of
T2DM and bone disorders. In this study, we investigated
whether secretome of MSCs from healthy individuals can
restore the TNF‐α mediated osteo/adipogenic differentia-
tion imbalance in the MSCs from diabetic individuals.

2 | MATERIALS AND METHODS

2.1 | Mesenchymal stem cells isolation

Adipose‐derived MSCs (ADMSCs) were procured
from School of Regenerative Medicine, Bangluru
(India). Dental pulp MSCs were isolated from the
extracted tooth of diabetic patient having history of
diabetes for more than 3 years (HbA1c > 9.0%) by
explant culture as previously demonstrated by us.12

DP‐MSCs and dDPMSCs were expanded in the α‐
minimal essential medium (MEM) (Gibco), 10% fetal
bovine serum (FBS, Gibco), and 1% antibiotic‐
antimycotic solution (Gibco).

2.2 | Stem cells characterization

Passage 4 ADMSCs and dDPMSCs were characterized
for the positive cell surface marker expression of CD90,
CD73, CD105 (1:1000, PE‐Tagged), and negative cell
surface marker expression of CD34, CD45, and HLADR
(1:1000, FITC‐Tagged) by using Attune NxT Flow
Cytometer (Thermo Fisher Scientific) as shown by
us.13 Cells were further characterized for the tri‐lineage
potential by using differentiation cocktail for adipogen-
esis, osteogenesis, and chondrogenesis followed by
staining with oil red O, alizarin red, and alcian blue
staining as previously described.12

2.3 | Preparation of ADMSCs secretome
(ADMSCs‐S)

ADMSCs‐S were obtained by the method described
previously.14 Passage 4‐5 ADMSCs were seeded in T75
cell culture flask (1 × 106 cells per flask). Once MSCs
attained 80%–85% confluence, they were washed with
phosphate‐buffered saline (PBS), and fresh α‐MEM
(without serum) was added. Culture flasks were kept
at 37°C inside CO2 incubator for 48 h. The secretome
obtained was filtered by 0.22 μmol/L filters. ADMSCs‐S
was preserved in −80°C until further use.
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2.4 | Analysis of growth factors and
cytokines in the ADMSCs‐S

ADMSCs‐S obtained as described in the Section 2.3 was
analyzed for presence of the growth factors and cytokine
by using LEGEND plex™ Human Growth Factor Panel
(13‐plex) and MACS Plex cytokine 12 assay kit (Miltenyi
Biotec) on Attune NxT Flow Cytometer as per the
manufacturer's instruction.

2.5 | Adipogenic differentiation of
dDPMSCs

For adipogenic differentiation, 2 × 104 cells were seeded in
24 well culture plates. Once they achieve 80%–90%
confluency, they were given treatment of (a) adipogenic
induction cocktail (dexamethasone [1 µmol/L], isobutyl
methylxanthine [0.5mmol/L], indomethacin [200 µmol/L],
and insulin [10 µg]), (b) adipogenic induction cocktail +
TNF‐α, and (c) adipogenic induction cocktail + TNF‐α +
ADMSCs‐CM (50%) for 15 days. At 15 days, the induction
medium was discarded and cells were fixed with 4%
paraformaldehyde for 30min. After PBS wash, oil red O
stain was added for 30min. Oil red O stained area were
quantitatively analyzed by using ImageJ software.

2.6 | Osteogenic differentiation of
dDPMSCs

dDPMSCs were induced into osteocytes by using an
induction cocktail (dexamethasone [0.1 µmol/L],
β‐glycerophosphate [10mmol/L], and ascorbic acid
[2mmol/L]). Cells were given treatment of (i) induction
cocktail (Control), (ii) induction cocktail + TNF‐α, and (iii)
induction cocktail + TNF‐α +ADMSCs‐CM (50%) for
21 days. The culture medium was changed twice a week.
At 21 days, the induction medium was discarded followed
by the fixation with 4% paraformaldehyde for 30min.
Further, cells were stained with alizarin red for 15min,
washed with distilled water, and visualized under micro-
scope. Alizarin red stained areas were quantitatively
analyzed by using ImageJ software.

2.7 | Alkaline phosphatase activity

Differentiation of dDPMSCs was performed as shown in
Section 2.6 under the treatment of (i) induction cocktail
(Control), (ii) induction cocktail + TNF‐α, and (iii) induction
cocktail + TNF‐α +ADMSCs‐CM (50%). At the end of
21 days, culture supernatant was collected and subjected
to the alkaline phosphatase assay using QuantiChrom™ ALP
assay kit described previously.15 ALP activity of the control
and treated samples were expressed as IU/L. ALP activity
was calculated as follows.
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2.8 | Gene expression studies

dDPMSCs were differentiated along with (i) induction
cocktail (Control), (ii) induction cocktail + TNF‐α, and
(iii) induction cocktail + TNF‐α + ADMSCs‐CM (50%)
into adipocytes and osteocytes for 15 and 21 days
respectively as described in the Sections 2.5 and 2.6.
TRIZOL method was adopted for total RNA extraction.
Furthermore, total RNA was converted to cDNA by high
capacity reverse transcription kit (Applied Biosciences).
RT‐PCR conditions and primer sequences of GAPDH,
C/EBPα, PPARγ, FAS, Osteonectin, ALP, and RunX2 are
given in Table 1. Data were normalized GAPDH
expression levels. Relative quantification using the ΔΔCt
method was used for data analysis.16 RT‐PCR analysis
was executed on quantstudio 5 (Applied Biosystems).

2.9 | Statistical analysis

Statistical analysis was used by using SPSS (IBM) 20.0
software. One‐way analysis of variance was
performed to find differences in the treatment
groups. p‐Value less than 0.05 (*) and 0.01 (**) was
considered significant. Experiments were performed
in triplicates.

TABLE 1 Primer sequences used in the study.

Gene Species Forward Reverse Tm (°C)

GAPDH Human TCCCTGAGCTGAACGGGAAG GGAGGAGTGGGTGTCGCTGT 60

C/EBPα Human GGGTCTGAGACTCCCTTTCCTT CTCATTGGTCCCCCAGGAT 60

PPARg Human GAACGACCAAGTAACTCTCCTCAAAT TCTTTATTCATCAAGGAGGCCAGCATT 62

FAS Human TATGCTTCTTCGTGCAGCAGTT GCTGCCACACGCTCCTCTAG 60

Osteonectin Human GAGGAAACCGAAGAGGAGG GGGGTGTTGTTCTCATCCAG 60

ALP Human GACGGACCCTCGCCAGTGCT AATCGACGTGGGTGGGAGGGG 60

RunX2 Human GGTTAATCTCCGCAGGTCAC GTCACTGTGCTGAAGAGGCT 60

Abbreviation: Tm, temperature.
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3 | RESULTS

3.1 | Characterization of MSCs

Post expansion of ADMSCs and dDPMSCs, cells exhibited
fibroblast‐like morphology. Furthermore, ADMSCs and
dDPMSCs were positive for the expression of CD90, CD73,
and CD105, whereas they lacked the expression of HLA‐DR,
CD45, and CD34 as shown in Figures 1 and 2, respectively.
ADMSCs and dDPMSCs were able to differentiate into
adipocytes, osteocytes and chondrocytes as evidenced by
the oil red O, alizarin red and alcian blue staining.

3.2 | Growth factor and cytokine analysis
of ADMSCs secretome

MSCs exhibit paracrine action through secretion
of growth factors, cytokines, small bioactive
proteins, etc. We found significant presence of the
G‐CSF, HGF, M‐CSF, PDGF‐AA, PDGF‐BB, TGFa,
VEGF, SCF, Angiopoetin‐2, EGF, and EPO in the
secretome of ADMSCs. Further, immunomodulatory
cytokines such as CXCL8, IL‐6, IL‐4, CXCL‐10,
IL‐1b, CCL2, and IL‐17 were detected as shown in
Figure 3.

F IGURE 1 ADMSCs characterization: (A) ADMSCs showed positive (>95%) CD90, CD73, and CD105 expression whereas negative (<2%) CD45,
CD34, and HLA‐DR expression (B) Tri‐lineage differentiation potential of ADMSCs, scale bars = 100 µm. ADMSCs, adipose tissue‐derived
mesenchymal stem cells.
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F IGURE 2 dDPMSCs characterization: (A) dDP‐MSCs showed positive (>95%) CD90, CD73, and CD105 expression whereas negative (<2%) of and
CD45, CD34, and HLA‐DR expression. (B) Tri‐lineage differentiation potential of dDPMSCs, scale bars = 100 µm. dDPMSCs, dental pulp‐derived
mesenchymal stem cells.

3.3 | ADMSCs secretome restore the
TNF‐α induced adipo‐osteo imbalance in
dDPMSCs

Our primary aim was to study the effect of ADMSCs
secretome on the TNF‐α influenced imbalance in osteogenic
and adipogenic differentiation of dDPMSCs. The treatment
of TNF‐α resulted into decreased osteogenesis (15,603 ± 1248
vs. 11,894 ± 951 pixel, p < 0.05) and increased adipogenesis
(9571 ± 765 vs. 19,815 ± 1585 pixel, p < 0.01) as evidenced by
the alizarin red and oil red O staining (Figure 4A).
Interestingly, dDPMSCs differentiated along with TNF‐α
and 50% ADMSCs secretome exhibited enhanced osteogen-
esis (11,894 ± 951 vs. 41,808 ± 3344 pixel, p < 0.01) and
decreased adipogenesis (19,815 ± 1585 vs. 4480 ± 358 pixel,

p < 0.01). Microscopic results were further validated with
imageJ analysis of the alizarin red and oil red O staining and
revealed the similar results (Figure 4B).

3.4 | ADMSCs secretome restore TNF‐α
mediated decrease in the ALP activity

ALP activity is the key indicator of the bone mineralization.
Our results showed that the treatment of TNF‐α resulted into
significant decrease in the ALP activity (97.5 ± 6.3 vs.
57.5 ± 3.5 U/mL, p < 0.01), whereas ADMSCs secretome
prevented the TNF‐αmediated decrease in the ALP activity
(57.5 ± 3.5 vs. 76.0 ± 4.2 U/mL, p < 0.01) as shown in
Figure 5.
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F IGURE 3 Levels of the growth factors (A) and cytokines (B) in the ADMSCs secretome analyzed by the FACS. Data shown are mean ± SD.
(n = 3). ADMSCs, adipose tissue‐derived mesenchymal stem cells; FACS, fluorescence activated cell sorting; SD, standard deviation.
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F IGURE 4 (A) Osteogenic and adipogenic differentiation of ADMSCs in presence of (i) induction cocktail (Control), (ii) induction
cocktail + TNF‐α, and (iii) induction cocktail + TNF‐α + ADMSCs‐CM (50%). Differentiated osteocytes and adipocytes were stained with alizarin red
and oil red O stain, respectively. (n = 3). Stained area is selected with ImageJ analysis software (yellow boundary) for the quantitative analysis.
Images are of 4X resolution, (B) ImageJ analysis of the alizarin red and oil red O stained area, (n = 3, p < 0.05, p < 0.01). ADMSCs, adipose tissue‐
derived mesenchymal stem cells; TNF‐α, tumor necrosis factor‐α.

3.5 | ADMSCs secretome restore TNF‐α
mediated gene expression in the
differentiated dDPMSCs

To further validate our results, we analyzed the mRNA
transcript expression implicated in adipogenesis (PPARg,

C/EBPa, and FAS) and osteogenesis (Runx2, Osterix, and
OCN) by RT‐PCR. We observed a significant up regula-
tion of the mRNA expression of PPARg (p < 0.01), C/EBPa
(p < 0.01), and FAS (p < 0.01) upon treatment with TNF‐α
whereas mRNA expression of Runx2 (p < 0.01), Osterix
(p < 0.01), and OCN (p < 0.05) was significantly down
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regulated. Interestingly, dDPMSCs differentiated along
with ADMSCs secretome exhibited decreased expression
of PPARg (p < 0.01), C/EBPa (p < 0.05), and FAS (p < 0.01)
whereas mRNA expression of Runx2 (p < 0.05), Osterix
(p < 0.01), and OCN (p < 0.05) was upregulated (Figure 6).

4 | DISCUSSION

Our study unequivocally revealed that ADMSCs secre-
tome derived from healthy individuals restore the TNF‐α
mediated imbalance in adipogenesis and osteogenesis
of MSCs obtained from diabetic donor as evidenced by
the oil red O and alizarin red staining resp. Further-
more, ADMSCs secretome potentially restored the TNF‐
α mediated decrease in the ALP activity which is one of
the reliable markers of osteogenic differentiation. Our
results were further validated with mRNA transcript
expression which revealed that ADMSCs secretome
significantly decreased the mRNA transcript expression
of PPARg, C/EBPa and FAS whereas increase the
expression of Runx2, Osterix and OCN in the differenti-
ated dDPMSCs.

The secretome of MSCs is a unique composition of
soluble growth factors and cytokines, micro vesicles,
exosomes, small proteins and miRNAs. Additionally,
MSCs secretome is known possess potent immunomo-
dulatory potential which have been tested in varieties of
inflammatory clinical conditions.17,18 The secretome of
ADMSCs possess high levels of G‐CSF, HGF, M‐CSF,
PDGF‐AA, PDGF‐BB, TGFa, VEGF, SCF, angiopoetin‐2,
EGF, and EPO cytokines such as CXCL8, IL‐6, IL‐4,
CXCL‐10, IL‐1b, CCL2, and IL‐17. Interestingly, previous

studies have shown that growth factors such as FGFs,
PDGF, EGF, VEGF, and IGF modulate the adipogenic
and osteogenic differentiation of MSCs.19,20 The FGF
family of proteins are known to modulate the osteogenic
and adipogenic differentiation of MSCs.19,21 Interest-
ingly, FGF2 is known to induce expression RunX2, a key
transcriptional regulator of osteogenesis in MSCs.22

FGF2 is also known to enhance ALP activity and matrix
mineralization in rat bone marrow precursor cells.
Further, bone is a highly vascularized organ and
angiogenesis is pivotal in the osteogenesis process.
VEGF and PDGF is one of the principle growth factor
secreted by MSCs known to enhance osteogenesis by
modulation of inflammation, endochondral and intra-
membranous ossification.23,24 VEGF is also implicated
in determining the stem cells fate, especially into
adipocytes and osteocytes through gene modulation of
RunX2 and PPARγ transcript expression.25 Furthermore,
EGF is known to enhance osteogenic differentiation of
DPMSCs through up regulated expression of ALP and
osteocalcin.26

In the context of adipogenesis, our studies have
shown that ADMSCs secretome inhibit the adipogen-
esis and ameliorate the insulin resistance in 3T3‐L1
cells.14,27 Additionally, ADMSCs secretome reduce
the intramuscular accumulation of triglycerides
accumulation in C2C12 cells.14 In a high fat diet
induced obese mice, ADMSCs reduce the body
weight and improve the glucose homeostasis.28

Moreover, ADMSCs improve the glucose homeostasis
by enhancing glycogen synthesis and inhibition of
hepatic glucose production in T2DM rats.29 Interest-
ingly, secretome obtained from human tonsil‐derived

F IGURE 5 ALP activity of the differentiated
dDPMSCs in presence of (i) induction cocktail
(Control), (ii) induction cocktail + TNF‐α, and
(iii) induction cocktail + TNF‐α + ADMSCs‐CM
(50%). Data shown are mean ± SD. (n = 3, p < 0.
05, p < 0.01). ADMSCs, adipose tissue‐derived
mesenchymal stem cells; ALP, alkaline
phosphatase; SD, standard deviation; TNF‐α,
tumor necrosis factor‐α.
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MSCs (TMSCs) inhibit adipogenic differentiation via
inhibition of glucocorticoid signaling.30 Also, T‐MSCs
secretome reduced the visceral and bone marrow adiposity
in the dexamethasone induced obesity in BALC/c mice.30 It
is noteworthy that the glucocorticoids which are widely
prescribed drugs in inflammatory conditions can result into
osteoporosis even in the young individuals.31 From our
study, it is evident that ADMSCs secretome possess
immunomodulatory cytokines which have been shown to
inhibit glucocorticoid induced adipogenesis via phospho-
rylation of p38 and glucocorticoid receptors.30

Our findings from this study possess immense
clinical value as MSCs and their secretions are under-
going active clinical investigations in the T2DM and
osteoporosis. The fate of MSCs under the influence of a
diabetic microenvironment is compromised and
inclined towards the adipocytes rather than osteocytes.6

Therefore, application of secretome derived from
ADMSCs to restore the fate of MSCs in T2DM micro-
environment can be an effective strategy in the T2DM
therapy.

In conclusion, our study unequivocally demonstrates
that ADMSCs secretome obtained from healthy indivi-
duals restore the TNF‐α mediated adipo‐osteo differen-
tiation imbalance in the dDPMSCs. The potential of
ADMSCs secretome can be harnessed in the effective
clinical management of T2DM via modulating the
T2DM microenvironment.
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