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a b s t r a c t 

Geological characteristic (GC) is one of the most essential factors influencing setting earth pressure balance (EPB) 

shield parameters and cutterhead wear. Identification of GC has crucial significance to shield tunnelling efficiency 

and safety. Stacking classification algorithm (SCA) is widely applied in engineering with the identification and 

classification. Grid search (GS) is designed to tune hyper-parameter and optimize non-linear problems with 

K-folds cross-validation (K-CV), which is commonly used to change validation set in the training set. The 

performance of SCA can be improved by GS and K-CV. The types of GC during shield advance can be identified by 

integrating K-means ++ with silhouette coefficient ( S i ) and elbow method (EM). The results of K-means ++ and 

shield parameters severed as a database for SCA. The approach was applied in Guangzhou mixed ground. The 

results showed that the proposed framework could predict the geological characteristics well. The method article 

is a companion paper with the original article [1] . The proposed method enables: 
• Developed approach merges SCA and GS method. 
• Application of SCA-GS method in geological characteristics classification. 
• It can increase the reliability of classification results. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

a r t i c l e i n f o 

Method name: Integrating SCA method with GS and K-CV 

Keywords: Stacking classification algorithm, Grid search, K-folds cross-validation, prediction 

Article history: Received 21 April 2022; Accepted 10 October 2022; Available online 20 October 2022 

✩ ARTICLE INFO Method name: Method of integrating GS and K-CV into stacking classification algorithm 

∗ Corresponding author: College of Engineering, Shantou University, Shantou, Guangdong 515063, China 

E-mail address: yantao@stu.edu.cn 

https://doi.org/10.1016/j.mex.2022.101883 

2215-0161/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.mex.2022.101883
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2022.101883&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:yantao@stu.edu.cn
https://doi.org/10.1016/j.mex.2022.101883
http://creativecommons.org/licenses/by/4.0/


2 T. Yan / MethodsX 9 (2022) 101883 

 

 

 

 

 

 

 

 

 

Specification Table 

Subject area: Engineering Geology 

More specific subject area: Geological characteristics 

Method: Integrating SCA method with GS and K-CV 

Name and reference of the original 

method: 

Wolpert, D.H., (1992) Stacked generalization, Neural Networks, 5(2), 241-259, 

https://doi.org/10.1016/S0893-6080(05)80023-1 [2] . 

Resource availability: DOI: https://doi.org/10.1016/j.jrmge.2022.03.002. 

Method details 

Stacking classification algorithm (SCA) 

In the process of SCA, a variety of models were combined into an ensemble algorithm. The detail

of SCA implementation is given [2] : 

Step 1: Establish the database and pre-process data. The data with different characteristics are

acquired, and the database matrix is constructed in Eq. (1) . 

X = 

[
x i, j 

]
n ×m 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

C 1 C 2 C 3 · · · C m 

X 1 x 1 , 1 x 1 , 2 x 1 , 3 · · · x 1 ,m 

X 2 x 2 , 1 x 2 , 2 x 2 , 3 · · · x 2 ,m 

X 3 x 3 , 1 x 3 , 2 x 3 , 3 · · · x 3 ,m 

. 

. . 
. 
. . 

. 

. . 
. 
. . 

. 

. . 
. 
. . 

X n x n, 1 x n, 2 x n, 3 · · · x n,m 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(1) 

where C m 

is the name of data m; X n denotes the n th sample in C m 

. Then, the mean value of 3

sequential points after time t is used to replace the value of time t . Meanwhile, the data in X n are

normalized to the interval [0, 1] according to Min-Max Normalization. The normalized database is 

presented as follow: 

X ′ = 

[
x ′ i, j 

]
n ×m 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

C 1 C 2 C 3 · · · C m 

X ′ 1 x ′ 1 , 1 x ′ 1 , 2 x ′ 1 , 3 · · · x ′ 1 ,m 

X ′ 2 x ′ 2 , 1 x ′ 2 , 2 x ′ 2 , 3 · · · x ′ 2 ,m 

X ′ 3 x ′ 3 , 1 x ′ 3 , 2 x ′ 3 , 3 · · · x ′ 3 ,m 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

X ′ n x ′ n, 1 x ′ n, 2 x ′ n, 3 · · · x ′ n,m 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(2) 

where X 

′ and x ′ are the normalized value corresponding to Eq.(1). 

Step 2: Determine types for the database. The database types can be labelled by K-means ++
algorithm [3] . Euclidean distance is applied in K-means ++ , which can be expressed as Eq. (3) . 

dist(A, B ) = 

√ 

n ∑ 

i =1 

∣∣∣a i − b i | 2 (3) 

where dist ( A, B ) represents the distance of samples A and B; a i and b i denote the coordinates

of samples A and B. The square error is utilized as the objective function in K-means ++ . The

objective function is a convex function of cluster centers ( μ1, μ2 ,…, μk ) and the stagnation point

of the objective function is the clustering centers. The objective function and cluster centers can be

expressed as follows [4] : 

J( μ1 , μ2 , ..., μk ) = 

1 

2 

K ∑ 

j=1 

N j ∑ 

i =1 

( x i − μ j ) 
2 (4) 

∂ J 

∂ μ j 

= −2 

N j ∑ 

i =1 

( x j − μ j ) → 0 ⇒ μ j = 

1 

N j 

N j ∑ 

i =1 

x j (5) 
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here J () is the objective function; μj is the center of cluster j; N j denotes the sample number of

ategory j; x i represents a random sample in the database; x j is the sample point of cluster j . The

lbow method (EM) and silhouette coefficient ( S i ) are utilized to find the value of K in K-means ++ .

he diagram of the sum of the squared errors ( SSE ) versus K in elbow method will form an elbow, and

he corresponding K to the elbow of the diagram is determined as the optimal cluster number. When

here are more than one elbow in elbow method, K in elbow method corresponding to the maximum

ilhouette coefficient ( S i ) can be selected as the best value for the K-means ++ . The SSE and silhouette

oefficient ( S i ) can be calculated by Eq. (4) and Eq. (5) in the companion paper [1] . The value of K

ypes can be set as 1to K corresponding to different values of X n . Then, each X n will be labelled with

he value of K ( L n 
k 
) in the matrix in Eq. (6) . 

X ′ k = 

[
x ′ i, j , L 

]
n ×( m+1) 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

C 1 C 2 C 3 · · · C m 

X ′ 1 x ′ 1 , 1 x ′ 1 , 2 x ′ 1 , 3 · · · x ′ 1 ,m 

X ′ 2 x ′ 2 , 1 x ′ 2 , 2 x ′ 2 , 3 · · · x ′ 2 ,m 

X ′ 3 x ′ 3 , 1 x ′ 3 , 2 x ′ 3 , 3 · · · x ′ 3 ,m 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

X ′ n x ′ n, 1 x ′ n, 2 x ′ n, 3 · · · x ′ n,m 

Label 

L 1 
k 

L 2 
k 

L 3 
k 
. 
. . 

L n 
k 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(6)

Step 3: Input primary learners, meta-classifier and establish stacking classification model. SCA

ncludes two layers, primary learners and meta-classifier. Support vector machine (SVM), random

orest (RF), and gradient boosting decision tree (GBDT) are utilized in the primary learners [5] . The

ogistic regression algorithm (LR) is employed as a meta-classifier. The results of the first layer with

ore characteristics can be taken as the input in the second layer to obtain higher accuracy for the

roposed model. The results of the first layer can be constructed in Eq. (7) . 

X ′ k, 3 = 

[
x ′ i, j , L 

]
n ×(m +3) 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

C 1 C 2 C 3 · · · C m 

X ′ 1 x ′ 1 , 1 x ′ 1 , 2 x ′ 1 , 3 · · · x ′ 1 ,m 

X ′ 2 x ′ 2 , 1 x ′ 2 , 2 x ′ 2 , 3 · · · x ′ 2 ,m 

X ′ 3 x ′ 3 , 1 x ′ 3 , 2 x ′ 3 , 3 · · · x ′ 3 ,m 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

X ′ n x ′ n, 1 x ′ n, 2 x ′ n, 3 · · · x ′ n,m 

Labl e 1 
L 1 

k, 1 

L 2 
k, 1 

L 3 
k, 1 

. . 

. 

L n 
k, 1 

Labe l 2 
L 1 

k, 2 

L 2 
k, 2 

L 3 
k, 2 

. . 

. 

L n 
k, 2 

Labe l 3 
L 1 

k, 3 

L 2 
k, 3 

L 3 
k, 3 

. . 

. 

L n 
k, 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(7)

here L n 
k,m 

is the label of sample n in model m ( m = 1, 2, 3). The radial basis function (rbf) in SVM,

he method of weighted mean in RF, the multi-classification loss function in GBDT are expressed as

q. (8) - (10) and applied to classify the multiple geological characteristics [6–8] . 

κ( x i , x j ) = exp (−
∥∥x i − x j 

∥∥2 

2 σ 2 
) (8)

G (x ) = 

m ∑ 

i =1 

w i g i (x ) (9)

L (y, f t (x )) = −
K ∑ 

k =1 

y k log p k (x ) , y k ∈ (−1 , 1) (10)

here κ() is the kernel function; x i , x j are sample points; G ( x ) is the output according to weight of x;

 i is the weight of decision trees; g i ( x ) is the value of decision trees; L () represents the loss function;

 t ( x ) is the output function; y denotes the label of point x; p k ( x ) represents the probability for sample

 in class k . 

Step 4: Train the stacking classification model and predict. The classification model will be trained

nd evaluated using cross-validation and training set. Fig. 1 indicates the frame of the first layer

unning process in stacking algorithm (taking 3-CV as a case). The training set is input into the first

ayer to train the primary learners and establish the primary models (M i ). The new features in training

et and test set will be calculated via the primary models using the validation set in raw training and



4 T. Yan / MethodsX 9 (2022) 101883 

Fig. 1. First layer running process in stacking classification algorithm (SCA). 

Fig. 2. Second layer running process in stacking classification algorithm (SCA). 

 

 

 

 

 

 

test sets. Fig. 2 shows the second layer running process in stacking classification algorithm. The new

features in training set are taken as input of new training set. The new training set is composed of

input of new training set and output of raw training set, which are applied to train the classifier in

second layer (LR) and establish a prediction model. Then, the new features in test set are taken as

input of new test set and are input into the prediction model to output the final results. 

Step 5: Evaluate the stacking classification algorithm model. The output GC of the SCA algorithm

will be compared with the actual geological characteristics of raw test set. The F1-score, recall ( R ),

and precision ( P ) are used to assess the proposed strategy. 
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Fig. 3. Flowchart of grid search and K-folds cross-validation. 

G

 

e  

a  

t  

T  

T  

c  

T  

d  

s

A

 

(  

w  

a

 

 

w  

a  

c

 

w  

(  

p  
rid search with cross-validation 

Grid search is an exhaustive search method of selecting parameters. In all candidate parameters,

very possibility will be tried, and the best performance of parameter combination will be selected

s final parameters of the model. However, the database is divided into test and training set, and

he model with the default hyper-parameters are trained using training set, which has low accuracy.

he grid search combined with cross-validation can solve the problem of high error for the model.

he database is divided into three parts: test, training, and validation set. The proposed framework

an be fitted by training set and verified on validation set. Test set is applied in assessing the model.

o avoid the influence of database division, cross-validation is employed to reduce contingency of

atabase division. K-folds cross-validation is commonly used to change validation set in the training

et. Grid search is usually applied together with K-CV. Fig. 3 shows the flowchart of GS and K-CV. 

pplication of the method 

The SCA-GS model can be used to classify the GC during shield advance. Four shield parameters

cutterhead rotation speed (CRS), advance rate (AR), shield thrust (F), and cutterhead torque (T))

ere collected from the sensors installed in EPB shield machine [9–11] . The empty data is removed

ccording to Eq. (11) and Eq. (12) [12] . 

D = f (F ) · f (AD ) · f (CRS) · f (T ) (11)

f (x ) = 

{
0 , x = 0 

1 , x � = 0 
(12)

here if D = 1, data was saved. If D = 0, data was excluded. x is the value of shield parameters. The

bnormal value out of three times standard deviation from the mean value was removed with Pauta

riterion. The original data matrix is constructed in Eq. (13) . 

X = 

[
x i, j 

]
n ×4 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

F AD CRS T 

X 1 10 . 5 21 1 . 1 2 . 5 

X 2 27 . 5 15 1 . 2 5 . 7 
X 3 

. . 

. 

27 

. 

. 

. 

10 

. 

. . 

1 . 8 

. 

. 

. 

3 

. 

. . 
X 1179 18 . 7 35 1 . 3 2 . 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(13)

here F is shield thrust ( × 10 3 kN); AR is advance rate (mm/min); CRS is cutterhead rotation speed

rpm); T denotes cutterhead torque ( × 10 3 kN ·m). Then, the raw data were transformed into torque

enetration index (TPI) and field penetration index (FPI) [ 13 , 14 ], which can be obtained by Eq. (6) in
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the associated paper [1] . The mean value of 3 sequential points after time t replaced the value of time

t . Meanwhile, TPI and FPI are normalized to the interval [0, 1] according to Min-Max Normalization.

The normalized matrix is taken as input data and constructed in Eq. (14) . 

X ′ = 

[
x ′ i, j 

]
n ×2 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

F P I T P I 

X ′ 1 0 . 279 0 . 014 

X ′ 2 0 . 120 0 . 142 

X ′ 3 0 . 289 0 . 172 

. 

. . 
. 
. . 

. 

. . 

X ′ 1179 0 . 023 0 . 012 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(14) 

Geological characteristics are labelled by K-means ++ algorithm with elbow method (EM) and 

silhouette coefficient ( S i ) using normalized FPI and TPI. Then, according to the site investigation of

the construction site, the GCs in the project can be identified as K types, and the value of K types

can be set as 1 to K, corresponding to different values of FPI and TPI, respectively. The geological

characteristics in each tunnelling ring were labelled with the value of K ( L k n ) in Fig. 8 in the companion

paper [1] , and the database matrix is constructed in Eq. (15) . 

X ′ k = 

[
x ′ i, j , L 

]
n ×3 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

F P I T P I 

X ′ 1 0 . 279 0 . 014 

X ′ 2 0 . 120 0 . 142 

X ′ 3 0 . 289 0 . 172 

. 

. 

. 
. 
. 
. 

. 

. 

. 

X ′ 1179 0 . 023 0 . 012 

Label 

1 

2 

3 

. 

. 

. 

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(15) 

The database in Eq. (15) was split into training set with 80% and test set with 20% of data set and

were input to the SCA-GS model. The optimal value of parameters and accuracy of primary learners

are given in Table 3 in the companion paper [1] . The algorithms in the first layer with optimal hyper-

parameters are trained and tested using training and test sets. The results of the first layer can be

constructed in Eq. (16) . 

X ′ k 3 = 

[
x ′ i, j , L 

]
n ×5 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

F P I T P I 

X ′ 1 0 . 279 0 . 014 

X ′ 2 0 . 120 0 . 142 

X ′ 3 0 . 289 0 . 172 

. 

. . 
. 
. . 

. 

. . 

X ′ 1179 0 . 023 0 . 012 

Labl e 1 
1 

2 

3 

. 

. . 

1 

Labe l 2 
1 

2 

3 

. 

. . 

1 

Labe l 3 
1 

2 

3 

. 

. . 

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(16) 

The final output of prediction model was given in Fig. 13 in the companion paper [1] . The

performance of SCA-GS prediction model was improved with the highest accuracy (0.996), which 

satisfies the requirement of shield tunnelling. Therefore, the prediction model can be utilized in a

new project. 

Computational tool 

The study used Python program to establish the SCA-GS prediction model for geological 

characteristics during shield tunnelling. The pseudocode of improved stacking classification algorithm 

is listed in the Appendix. The source code of the SCA-GS includes cluster, optimization and prediction

modules. Fig. 4 shows the flowchart of geological characteristics prediction. The detailed steps of the

method application are presented as follows: 

(1) The users should prepare the dataset, which consists of the historical shield parameters (F, AR,

CRS, and T) collected from shield operational system. Then, the empty data were removed based

on Eq. (11) and (12) . 
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Fig. 4. Flowchart of geological characteristics prediction. 

 

 

 

 

 

 

 

 

 

 

 

M

 

t  

t  

t  

a

 

[  

a  

g  

i  

l  

p  

d  

s

(2) The shield parameters were calculated as FPI and TPI, which were normalized to the interval

[0, 1] and input into the first part of the source code (cluster module). The users can change

the data path of source code to input them. 

(3) The users can select the first cluster module to run the K-means ++ algorithm to give each

line a label (GC). The results of the cluster module were saved as the data set for the following

steps. 

(4) The data path was changed as the path of the results of K-means ++ . The data set was input

into the optimization module, which was used for training and testing prediction algorithms.

The optimizer (GS and K-CV) will optimize the primary learners and provide the best hyper-

parameters for prediction module. 

(5) The hyper-parameters of the prediction module were replaced based on the results of step (4).

As such, the best prediction model was established with the highest accuracy of prediction

algorithms. 

(6) The new shield parameters can be obtained during shield advance. Then, the users can set

the input data path as the processed shield parameters and run the best prediction model to

forecast real-time geological characteristics 

Readers can contact the author to apply for the source code. 

ethod validation 

To verify the advantage of the designed SCA-GS method, the existing SVM, RF, GBDT, and SCA-GS

echniques were used to recognize the relationship between GC and shield parameters in Fig. 13 in

he companion paper [1] . Based on the accuracy and performance of four classification algorithms,

he SCA-GS is the better prediction model for geological characteristics. The detailed comparison and

nalyses of prediction results can be found in the companioned research article [1] . 

Identifying geological characteristics is crucial for shield tunnelling and reducing construction risk

15–17] . However, there is no globally accepted mechanical relationship between shield parameters

nd geological characteristics. The variation of shield parameters is a gray-box process based on

eological features. Many factors, e.g., ground settlement, underground water, and lining quality, may

nfluence the tunnelling process [18–20] . Artificial intelligence, including expert systems, machine

earning, and deep learning, is an excellent technique for establishing the relationship between various

arameters and objectives [21–24] . Four shield parameters were selected in this study to classify GC

uring shield advance. Besides, more parameters, e.g., specific energy, cutter wear, and earth pressure,

hould also be considered to evaluate their contribution to the prediction of GC [25] . 
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Appendix 

Table A1 . 

Table A1 

Pseudocode of SCA-GS. 

Algorithm SCA-GS classification algorithm 

1: input: training data A = {( a 1 , b 1 ), ( a 2 , b 2 ),…, ( a m , b m )}; 

primary learner: M 1 , M 2 , …, M S ; 

meta-classifier: M. 

2. for s = 1, 2, …, S do 

Param s = { p 1 : ( a 1 , b 1 , t 1 ), p 2 : ( a 2 , b 2 , t 2 ), …p n : ( a n , b n , t n )} 

GS s = grid search (M s, Param s , K-CV) 

3:for s = 1, 2, …, S do 

for j = 1, 2, …, m do 

M s 
′ = fit(GS s ( a j )) 

M s 
′ ′ = high_accuracy(M s 

′ ) 
end for 

end for 

4. for s = 1, 2, …, S do 

r s = M s 
′ ′ ( A ); 

A ′ = ∅ ; 
end for 

5. for j = 1, 2, …, m do 

for s = 1, 2, …, S do 

u js = r s ( a j ); 

end for 

A ′ = A ′ ∪ (( u j 1 , u j 2 ,…, u jS ,), b j ) 

end for 

6. r ′ = M( A’ ) 

7. Output: R ( a ) = r ’( r 1 ( a ), r 2 ( a ),…, r S ( a )) 
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