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As the incidence and the mortality rate of head and neck squamous cell carcinoma

(HNSCC) is increasing worldwide, gaining knowledge about the genomic changes

which happen in the carcinogenesis of HNSCC is essential for the diagnosis and

therapy of the disease. SMAD4 (DPC4) is a tumor suppressor gene. It is located at

chromosome 18q21.1 and a member of the SMAD family. Which mediates the TGF-β

signaling pathway, thereby controlling the growth of epithelial cells. In the study presented

here, we analyzed tumor samples by multiplex PCR-based next-generation sequencing

(NGS) and found deleterious mutations of SMAD4 in 4.1% of the tumors. Knock-down

experiments of endogenous and exogenous SMAD4 expression demonstrated that

SMAD4 is involved in the migration and invasion of HNSCC cells. Functional analysis

of a missense mutation in the MH1 domain of SMAD4 may be responsible for the loss

of function in suppressing tumor progression. Missense SMAD4 mutations, therefore,

could be useful prognostic determinants for patients affected by HNSCCs. This report is

the first study where NGS analysis based on multiplex-PCR is used to demonstrate the

imminent occurrence of missense SMAD4 mutations in HNSCC cells. The gene analysis

that we performed may support the identification of SMAD4 mutations as a diagnostic

marker or even as a potential therapeutic target in head and neck cancer. Moreover, the

analytic strategy proposed for the detection of mutations in the SMAD4 gene may be

validated as a platform to assist mutation screening.
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INTRODUCTION

Head and neck squamous cell carcinomas (HNSCC), which include oral squamous cell carcinomas,
are the sixth most prevalent malignancy worldwide (1, 2). The pathogenesis of HNSCC is affected
by many molecular factors, among them e.g., mutations in TP53, and genes related to PIK3CA
and Notch family signaling (3–9). The role which these factors are playing in the progression of
the tumors remains unclear to a wide extent (3, 4, 6, 10, 11). Although the knowledge on head
and neck carcinogenesis has improved a lot in the past 40 years and many innovations in surgery
as well as chemo- and radiotherapy have been made, the survival rates for many HNSCC types
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have not improved considerably (2). Recent developments
in high-throughput, next-generation parallel sequencing
technologies are facilitating sensitive detection, and
quantification of genetic alterations. New insights in the
molecular basis of HNSCC progression have been provided
by whole-exome sequencing (WES) (8, 12, 13). The analysis
of WES data which was obtained from The Cancer Genome
Atlas (TCGA) (6, 14) pointed to novel genes with significant
mutations and underlined the complex molecular pathogenesis
of HNSCC, which includes a high degree of heterogeneity
between tumors (15).

SMAD4 is a transcription factor of the SMAD family which
takes part in TGF-β signaling. SMAD4 stands for SMA- and
MAD-related protein 4, other names are SMAD family member
4, Deleted in Pancreatic Cancer-4 (DPC4) and Mothers against
decapentaplegic homolog 4, SMAD4 is present in all metazoans
and is highly conserved between species (16). As themain effector
of TGF-β signaling, SMAD4 has been found to be non-functional
in more than half of adenocarcinomas of the pancreatic duct
(17–19), and to varying degrees, in several other types of cancers
(20–24). In many studies that have been conducted in the past
20 years it was found that the loss of SMAD4 function alone
does not initiate a tumor, but it may promote the progression
of tumors which have been initiated by other molecular defects,
like the activation of KRas activation in the case of pancreatic
duct adenocarcinoma and the inactivation of APC in colorectal
cancer (20, 24). The loss of SMAD4 is playing a crucial role in
the response to DNA damage with the consequence of increased
genomic instability. This is very prominent in skin cancer and
suggests a distinct role of SMAD4 in the progression of various
types of tumors (25).

Screening large genes with multiples exons for mutations by
traditional Sanger sequencing is slow, labor intensive and costly.
Next-generation sequencing (NGS) in contrast allows the direct
analysis of mutations in monogenic diseases at low cost without
pre-screening. Novel DNA variants that have been identified
by NGS still may be corroborated by Sanger sequencing before
reporting them.

In this study, we performed NGS analysis based on multiplex
PCR NGS for the investigation of SMAD4mutations in HNSCC.

We found that mutations of SMAD4, as well as its expression
level, are linked to the progression of HNSCC and affect
patient survival. Moreover, we investigated the role of deleterious
SMAD4mutations to elucidate their role in HNSCC neoplasms.

MATERIALS AND METHODS

Patients
This study was approved by the Institutional Review Board of
Mackay Memorial Hospital (approval number: 15MMHIS104).
All patients provided written informed consent. Tumor samples
were obtained from 122 patients undergoing HNSCC surgery
(Supplementary Table 1). Cells were isolated from tissue
sections by laser capture microdissection (LCM) following
established protocols (3, 4). Additionally, 10mL of whole
blood was collected in the morning after fasting in Vacutainer
tubes containing EDTA as the anticoagulant (Becton Dickson,

Franklin Lakes, NJ, USA) from each patient. None of the patients
included in this study had received radiotherapy or adjuvant
chemotherapy before surgery. DNA was extracted from blood
and cancerous tissue as reported previously (26).

SMAD4 Mutation Analysis by PCR-Based
NGS
Individual primer sets for 10 long PCR reactions were
designed with Primer3 (version 0.4.0) (ELIXIR, funded by the
European Commission) to amplify the entire coding sequence
(exons 2–12) for human SMAD4 (Supplementary Table 2 and
Supplementary Figure 1A). Amplicon concentrations were
determined with the Qubit dsDNA HS Assay kit on a Qubit
2.0 fluorometer (Life Technologies, Carlsbad, CA, USA). PCR
reactions were carried out using the KAPA LongRange HotStart
kit (Kapa Biosystems, Wilmington, MA, USA). For library
generation, long PCR products of each sample were pooled and
then purified using Agencourt Ampure XP beads (Beckman
Coulter, Pasadena, CA, USA). Indexed libraries of the pooled
PCR products were prepared using the Illumina Nextera XT
library preparation kit and then sequenced on the Illumina
MiSeq system, following the manufacturer’s instructions. Variant
call format files were generated using the MiSeq Reporter
software (version 2.3.32). The variants were further filtered on
the basis of the following criteria: (1) DP <30, (2) genotype
quality <30, (3) number of mismatches within a 40-bp window
≤3, (4) mutant allele frequency of at least 10% in tumors and
<1% in normal cells, and (5) MAF in the 1000 Genomes Project
and dbSNP137 > 1%. The Integrative Genomics Viewer (IGV)
was used to determine the read counts of the target amplicons
and to confirm the detected variants. The mutation spectrum and
lollipop figures for SMAD4 were generated with the OncoPrinter
and MutationMapper tools available at cBioPortal (27, 28).

Mutation Point Validation
To validate the somatic mutations which were identified
in the multiplex PCR-based NGS results, conventional
Sanger sequencing was applied. Individual primer sets were
designed in Primer3 (version 0.4.0), they have been listed in
Supplementary Table 3. For Sanger sequencing, PCR reactions
were performed with a standard hot start kit. Amplicons were
sequenced with the ABI BigDye Terminator Cycle Sequencing
kit on an ABI 3730xl DNA analyzer (Applied Biosystems, Foster
City, CA, USA).

Immunohistochemistry
SMAD4 protein was visualized in tissue sections by
immunohistochemistry, following previously reported protocols
(29). In brief, 5-µm-thick tissue sections were dewaxed,
rehydrated, and then incubated with monoclonal mouse
anti-human SMAD4 antibody (sc-7966, 1:100 dilution;
Santa Cruz Biotechnology, Santa Cruz, CA, USA) in a
humidification chamber at 4◦C overnight. After rinsing
with PBS, standard immunohistochemical staining was done
using streptavidin-biotin complex system (Dako Corp.) with
aminoethylcarbazole as the chromogen and subsequently
counterstained with hematoxylin and mounted with Clearmount
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FIGURE 1 | SMAD4 mutations in patients with HNSCC. (A) Frequency of SMAD4 LOH, mutations, or both. Each column represents one patient. Colored boxes

designate LOH status and mutation types. (B) Distribution of mutations in the sequence coding for SMAD4. Colored ovals represent mutation types, colored boxes

represent domains. Colored boxes represent mutation types.

(Zymed Laboratories, Inc.). The primary antibody used was a
Preimmune mouse IgG was used as a negative control. Normal
epithelium adjacent to the tumor served as the internal positive
control. Tumors containing ≥50% and <50% positive cancer
cells were classified to have high and low SMAD4 expression (30).

Cell Culture, Reagents, and Phenotypic
Assays
In this study, the HNSCC cell lines SAS, OECM-1, HSC3,
FaDu, SCC25, OC3, and OC4 were used. Normal human oral
keratinocytes (NOKs); served as controls. The cells were cultured
as described previously (31). Our cell lines were authenticated by
Mission Biotech (Nangang, Taipei, Taiwan) on August 8, 2017,
using the Promega StemElite ID System and analyzed on ABI
PRISM 3730 Genetic Analyzer with GeneMapper (version 3.7).
si-SMAD4 and scramble control (si-control) oligonucleotides
were purchased from Santa Cruz Biotech (Santa Cruz). For
transfection, TransFectin Lipid Reagent (BioRad Lab., Hercules,
CA, USA) was used. sh-SMAD4 vectors (TRCN0000010321)
and a sh-Luc control vector (TRCN0000072249), packaged
in lentiviruses, were purchased from National RNAi Core
(Academia Sinica, Taipei, Taiwan). The cells were infected
and selected using puromycin (Sigma-Aldrich) at 5.0µg/mL
for 7 days to establish stable subclones. Phenotypic events,
including proliferation, migration, and invasion, were analyzed
as previously described (10, 32).

Analysis of SMAD4 Mutations in HNSCC
Cell Lines
All coding exons of SMAD4 in SAS, OECM-1, HSC3, FaDu,
SCC25, OC3, and OC4 cells were amplified by PCR and then
sequenced using the ABI BigDye Terminator Cycle Sequencing
kit on an ABI 3730xl DNA analyzer (Applied Biosystems). The

variants with MAF > 1% in the 1000 Genomes Project and
dbSNP137 were filtered.

Constructs
The SMAD4 cDNA sequence was amplified from the
cDNA of SAS cells with the primers SMAD4_Forward and
SMAD4_Reverse, introducing BamHI and EcoRI sites for
directional cloning. The PCR product then was subcloned into
the pBabe puro vector. The p.H132Y, p.P296T, and p.A488V
mutations were introduced into SMAD4 cDNA with the Q5
Site-Directed Mutagenesis kit (New England BioLabs, Ipswich,
MA, USA) with the primers H132Ymut, P296Tmut, and
A488Vmut. We named the resulting mutants p.H132Y, p.P296T,
and p.A488V, respectively. Supplementary Table 3 lists the
primers used in this section.

Loss of Heterozygosity Analysis at the
SMAD4 Locus
Three polymorphic markers close to the SMAD4 locus (D18S363,
D18S474, and D18S46) were used to analyze the loss of
heterozygosity status (LOH) of SMAD4. These markers are
described in Supplementary Table 3. As templates, samples of
genomic DNA (∼100 ng) were extracted from HNSCCs and
matching normal tissues. The PCR reaction (20 µL) contained
5× Phusion HF buffer, 200µM of each dNTP, 0.25µM of
each marker, and 0.3 µl (0.6 units) of Phusion High-Fidelity
DNA Polymerase (Thermo Fisher Scientific, Vilnius, Lithuania).
Amplification was performed under the following conditions:
98◦C for 5min, followed by 35 cycles at 98◦C for 20 s, 60◦C
for 15 s, and 72◦C for 30 s. The final extension was at 72◦C
for 7min. The PCR product (0.5 µL) was mixed with 0.5 µL
of GeneScan-600 LIZ dye Size Standard (Applied Biosystems)
in 10 µL of Hi-Di formamide (Applied Biosystems), denatured
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for 3min at 95◦C, and then cooled on ice. The samples were
separated by capillary electrophoresis with an ABI PRISM
96-capillary 3730xl DNA Analyzer (Applied Biosystems) and
the results were analyzed using GeneMapper (version 3.7;
Applied Biosystems). LOH was evaluated using the following
formula: LOH = (height of tumor allele 2/height of tumor
allele 1)/(height of normal allele 2/height of normal allele 1).
As described previously (33). When the height of the tumor
alleles decreased by >40%, the calculated LOH became >1.49

or <0.5; thus, we considered this ratio to indicate LOH

positivity (Supplementary Figure 1B). Homozygous cases were

considered non-informative for LOH.

Western Blotting
Western Blot analysis was performed as previously described
(29). Equal amounts of protein (30 µg) were loaded per lane.
As primary antibodies anti-SMAD4 (diluted 1:500, Santa Cruz)
and anti-GAPDH (diluted 1:5,000, Santa Cruz) antibodies were
employed. For detection, an HRP-conjugated horse anti-mouse
IgG was used as the secondary antibody (diluted 1:5,000; Cell
signaling; Cell Signaling Technology, Danvers, MA, USA).

Statistical Analysis
Data are presented as the mean ± SEM. Chi-square and t-tests
were used. Overall survival (OS) was defined as the time between

FIGURE 2 | SMAD4 LOH and mutations and clinical/pathological parameters. (A–E) Histograms are showing the association of SMAD4 LOH with mutation status

and clinical stages (A), tumor size (B), N stage (C), perineural invasion (D), and lymphovascular permeation (E). (F,G) Kaplan–Meier analysis according to SMAD4

LOH and mutation status for OS (F) and DFS (G).
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the date of first diagnosis and the date of death or final follow-
up. Disease-free survival (DFS) was defined as the time from
the date of first diagnosis until the date of first recurrence
or death. Patients without evidence of disease recurrence were
censored at the final follow-up or death. Kaplan–Meier analysis
was used to compare OS and DFS between the two groups.
The multivariate Cox Proportional Hazards Model was used to
assess the association of both OS and DFS with SMAD4 LOH,
mutation status, and immunoexpression. Statistical significance
was assumed to be indicated by ∗P < 0.05, ∗∗P < 0.01,
and ∗∗∗P < 0.001 respectively. Cross-comparisons showing
no statistically significant differences were not considered in
further analysis.

RESULTS

Somatic Mutations and LOH in SMAD4
For the evaluation of the performance of SMAD4 in clinical
assessments, 122 HNSCC samples were analyzed by multiplex
PCR-based NGS and LOH analysis. We identified seven
somatic mutations in the samples by NGS; of these, two were
synonymous and five were missense mutations (Figures 1A,B,
Supplementary Table 4). No hotspot region was found for
SMAD4 mutations. The missense mutation p.Ala488Val,
previously has been reported by Lee et al. (chr18:48604641)
(34). Three polymorphic biomarkers (D18S474, D18S46, and
D18S363) which are surrounding the SMAD4 locus were used
to analyze LOH status. Percent LOH was 15.57% (19/122),
13.93% (17/122), and 13.11% (16/122) in D18S363, D18S46,
and D18S474, respectively. In 28 (22.95%) patients, LOH was
detected in at least one of the three markers (Figure 1A),
whereas LOH was noted in two or all three markers in 17
(13.93%) patients.

Of the 122 patients, 32 (26.2%) had SMAD4 LOH, mutations,
or both, and the remaining 90 demonstrated no mutations or
LOH (Figure 1A). The frequency of SMAD4 LOH was higher
in patients with lymph node metastasis, mutations, or both
compared to those where no metastasis was observed (P= 0.011,
Figure 2C). No significant differences were observed in the
clinical stage, tumor size, perineural invasion, or lymphovascular
permeation (Figures 2A–E, Supplementary Table 5). The
Kaplan–Meier analysis indicated that patients with SMAD4
LOH, mutations, or both had a significantly poorer OS and
DFS than those with wild-type SMAD4 (P = 0.031 and 0.004,
respectively; Figures 2F,G, respectively). Both univariate and
adjusted multivariate Cox regression analyses revealed poor
OS and DFS in patients with SMAD4 LOH, mutations, or both
(OS hazard ratio [HR]: 1.95, P = 0.034; OS adjusted HR: 2.08,
P = 0.024; DFS HR: 2.08, P = 0.008, DFS adjusted HR: 1.97,
P = 0.016; Table 1).

SMAD4 Expression in HNSCC Patients
SMAD4 was detected in the cytoplasm and in the nuclei of
basal and parabasal cells in normal oral epithelium which
was adjacent to tumors (Figure 3A, top left). In tumor
tissues, SMAD4 immunoreactivity varied from weak (Figure 3A,
middle) to intense (Figure 3A, right). Low SMAD4 expression

significantly correlated with the clinical stage (P = 0.004),
tumor size (P = 0.020), and lymph node metastasis (P = 0.041;
Figures 3B–G and Supplementary Table 6). No differences were
observed in SMAD4 expression in association with the LOH
and mutation status, perineural invasion, and lymphovascular
permeation. The Kaplan–Meier analysis revealed significantly
poorer OS and DFS in patients when SMAD4 expression was
low, compared to those with high SMAD4 expression (P = 0.033
and P = 0.026, respectively; Figures 3H,I, respectively). DFS
was shorter in patients with when SMAD4 expression was low,
as revealed by both univariate and adjusted multivariate Cox
regression analysis. (HR: 4.43, P= 0.043 and HR: 4.54, P= 0.046,
respectively; Table 1). Univariate Cox regression analysis showed
that OS was poorer in patients with low SMAD4 expression (HR:
4.30, P = 0.047). However, after the multivariate Cox regression
analysis, the correlation between SMAD4 expression and OS
became only slightly significant (HR: 4.09, P = 0.063).

Association Between SMAD4 Knockdown
and Increased HNSCC Invasiveness
The protein levels of SMAD4 in NOKs and HNSCC cells were
determined by Western Blotting. As shown in Figure 4A, four of
the seven (57.1%) tested HNSCC cell lines had decreased or no
protein expression of SMAD4, compared to NOKs. Interestingly,
in SAS and OC3 cells the endogenous SMAD4 expression
relative to the NOKs was elevated. No SMAD4 protein could
be detected in FaDu cells (Figure 4A). These findings are in
agreement with the already described homozygous deletion of
SMAD4 in FaDu cells (35). The remaining two HNSCC cell
lines (OC3 and HSC3 cells) were sequenced and two missense
mutations were found (Supplementary Table 7) No mutation or
LOH was found in OC4, OECM1, SAS, or SCC25 cells. OC3 and
HSC3 which have missense mutation were excluded from further
phenotype studies.

To further elucidate the oncogenic role of SMAD4 in
HNSCC, we established stable SMAD4-knockdown SAS and
SCC25 subclones. The knockdown effect was confirmed
through Western blotting (Figure 4B). Cell proliferation was
not affected by the knockdown of SMAD4 (Figures 4C,F),
but HNSCC cell migration and invasion were significantly
increased (Figures 4D,E,G,H). To corroborate this result, we
transfected SAS and SCC25 cells with si-SMAD4 oligonucleotides
(Supplementary Figure 2). Western blotting confirmed
the si-SMAD4 knockdown effect on SMAD4 expression
(Supplementary Figure 2A). Migration and invasion of
HNSCC cells were significantly increased during the transient
knockdown, but their proliferation behavior did not change
(Supplementary Figures 2B–D). These results indicate that the
mobility and invasiveness of HNSCC cells were enhanced by the
knockdown of SMAD4.

Association Between Mutations of SMAD4

With Increased Invasiveness in HNSCC
To characterize the effects of SMAD4 on the phenotype, the
full-length coding region of SMAD4 was amplified from SAS
cells and cloned to generate the SMAD4 construct. In the tumor
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TABLE 1 | Univariate and Multivariate analysis of disease-free survival rate in HNSCC patients.

Variables HR (95%CI) P Adjusted HR (95%CI) P

Overall survival

SMAD4 LOH and mutations

Wild type Reference Reference

LOH and/or mutations 1.95 (1.05–3.62) 0.034* 2.08 (1.10–3.92) 0.024*

SMAD4 expression

High Reference Reference

Low 4.30 (1.02–18.15) 0.047* 4.09 (0.93–18.00) 0.063

Disease-free survival

SMAD4 LOH and mutations

Wild type Reference Reference

LOH and/or mutations 2.08 (1.21–3.57) 0.008* 1.97 (1.14–3.42) 0.016*

SMAD4 expression

High Reference Reference

Low 4.43 (1.05–18.69) 0.043* 4.54 (1.03–20.12) 0.046*

Adjusted for age, gender, and clinical stage.

HR, hazard ratio; CI, confidence interval.

samples, three missense mutations were found (p.His132Tyr,
p.Pro296Thr, and p.Ala488Val, Supplementary Table 4). These
mutations are localized in the MH1, Linker, and MH2 domains,
respectively (Figure 5A). By Sanger sequencing, we confirmed
them as somatic mutations (Supplementary Figure 1C). We
further made constructs for these mutations to be able to express
these mutant proteins for further study. FaDu and OECM1
cells (which have no or only lowSMAD4 expression) were
transfected with the SMAD4 vector and the mutant constructs.
Western blotting was used to detect SMAD4 expression levels
(Figures 5B,C). The exogenous SMAD4 expression reduced
the migration and invasion of FaDu and OECM1 cells
(Figures 5E,F,H,I). When the mutant p.H132Y was transfected,
the phenotypes repressed by SMAD4 overexpression was
abolished. The proliferation rates of the transfected cell lines were
not affected (Figures 5D,G). However, transfection with p.P296T
and p.A488V mutant constructs did not abolish the rescuing
effects of SMAD4 overexpression on invasion and migration in
HNSCC cells.

DISCUSSION

Varying rates of SMAD4 mutations have been detected in a wide
range of cancers by large-scale exome sequencing. Compared
with 35% of pancreatic cancer and 12% of colon cancer cases (20,
36–38), SMAD4 mutation in other types of cancers has occurred
at lower rates. In COSMIC cohort studies, point mutations of
SMAD4 were identified in 0.21, 2.24, 2.46, and 8.86% of kidney,
lung, esophagus, and biliary tract cancers, respectively (24, 38–
44). In general, 2.5 to 4% of the HNSCC tumors demonstrate
the somatic mutation of SMAD4, making SMAD4 the fourth
mutated gene in different types of cancers (8). In the study
presented here, somatic SMAD4mutations were found in 4.1% of
HNSCC tumors we analyzed. This study is the first where somatic
SMAD4 mutations in HNSCC were detected by multiplex PCR-
based NGS. Besides, IGV was used to reconfirm all mutations.

Sanger sequencing confirmed three specific non-sensemutations.
Thus, despite SMAD4 is a large gene that is coding for a 552-
amino acid polypeptide with amolecular weight of 60.439 Da, the
current NGS-based strategy can be a reliable method for SMAD4
screening. No hotspot for mutations in the SMAD4 gene has been
reported previously and we have not detected any was it observed
in our study (8); therefore, allele-specific approaches that are
targeting only commonmutations (45, 46) are not suitable for the
exploration of SMAD4 mutations in HNSCC. We have designed
the multiplex PCR assay to generate SMAD4 amplicon libraries
for sequencing. This includes protein-coding regions as well as
conserved splice sites. Because this approach is highly scalable,
it may provide advantages over Sanger sequencing regarding its
potential application in routine clinical diagnostics, also because
the labor required for analyzing individual samples for somatic
SMAD4mutations is low.

SMAD proteins have two evolutionarily conserved regions

separated by a linker region, MAD homology 1 and 2 (MH1

and MH2, respectively). The MH1 domain at the N/terminus is
responsible for sequence-specific DNA binding (47, 48), the roles
of the MH2 domain are heteromerization and transactivation
(49, 50). Besides, the MH2 region partially interferes with the
DNA-binding function of theMH1 region (47, 50, 51). Mutations
in the domain between L43 and R135 may reduce the ability
of SMAD4 to bind DNA considerably, as a β-hairpin protein
motif within this region is responsible for the interaction with
DNA. Our results demonstrate that the whole MH1 domain is
very sensitive to changes in its overall primary structure and that
tumorigenic mutations within the area of L43 and R135 interfere
with its capability to bind DNA (52). Kim et al. were the first
to document a non-sense mutation of SMAD4 (GAA526TAA) in
two cell lines derived from the same HNSCC patient (53). Reiss
et al. reported a homozygous deletion which includes the SMAD4
gene locus in FaDu cells (54). Others have furthermore identified
the SMAD4mutation in this HNSCC cell line (35, 55). The results
of our Western Blotting experiments verified that this mutation
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FIGURE 3 | SMAD4 immunoexpression and clinicopathological parameters. (A) Immunohistochemistry for SMAD4 in adjacent normal-appearing mucosa (left) and

HNSCC tumor tissue (middle and right), as indicated. Tumor tissue showing low (middle), and high (right) SMAD4 staining. Arrows indicate enlarged area. Inset images

enlarged by 300% relative to original image. (B–G) Histograms showing the association of SMAD4 immunoexpression with SMAD4 LOH and mutation status (B),

clinical stage (C), tumor size (D), N stage (E), perineural invasion (F), and lymphovascular permeation (G). (H,I) Kaplan–Meier analysis according to SMAD4

immunoexpression for OS (H) and DFS (I).

which results in a nonsense mutation causes the complete loss
of SMAD4 expression. This finding is consistent with previous
observations that the majority of missense mutations outside of
codons 330–370 inactivate SMAD4 through the degradation of
the protein (56). These data are pointing out the important role
SMAD4 is playing in HNSCC carcinogenesis (35). In this study,
p.P296T and p.A488V mutant constructs did not abolish the

rescuing effects of SMAD4 overexpression on the migration and
invasion in HNSCC cells, suggesting that these mutations may
have other functions, warranting further research.

The loss of SMAD4 protein contributes to an increase
in genomic instability in the tumor epithelia. This effect,
together with blocking the growth inhibition and apoptosis
which normally are induced by TGF-β but enhancing of
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FIGURE 4 | Association of SMAD4 knockdown with oncogenic phenotypes in HNSCC cells. (A) Western blotting for SMAD4 expression in NOK cells and the seven

HNSCC cell lines investigated. In SAS and SCC25 cells, SMAD4 expression levels are higher compared to other cell lines. (B) Western blotting on extracts from

sh-Luc cell subclone (control) and sh-SMA1D4 (321) cell subclone, which was established from the construct TRCN0000010321. (C–E) SAS and (F–H) SCC25 cells:

proliferation (C,F, respectively), migration (D,G, respectively), and invasion (E,H, respectively).

TGF-β-mediated inflammation, could give way to the expansion
of genetic defects cells during HNSCC tumorigenesis (57).
SMAD4 expressionmay be a determinant of sensitivity/resistance
to EGFR/MAPK or EGFR/JNK inhibition in HPV-negative
HNSCC tumors (58). However, the studies on SMAD4 loss
have reported highly inconsistent results (30, 59, 60). Hernandez
et al. developed a SMAD4 fluorescence in situ hybridization
assay to measure chromosomal SMAD4 loss at the single-
cell level in primary HNSCC samples and in and patient-
derived xenografted (PDX) HNSCC tumors (61). They found a
heterozygous loss of SMAD4 in 35% of primary HNSCCs and
41.3% of PDX tumors. Moreover, in 4.3% of the PDX tumors,
the loss of SMAD4 was homozygous. Hernandez et al. also
revealed intertumor and intratumor heterogeneities of SMAD4
chromosomal loss in HNSCCs (60, 61). In the study presented
here, LCM was used to purify the cancerous tissue because LCM
makes it possible to approximate the true gene profile of pure
cancer cell subpopulations in the context of their actual tissue
environment (3, 4). Combining LCM and NGS may be used

to detect changes in the karyotype of neoplastic lesions of the
oral epithelium.

Analyzing a region of chromosome 18q which has been found
to be frequently lost in pancreatic cancers led to the identification
of SMAD4 and the elucidation of its role in tumorigenesis (44),
which was supported by the observation that germ-line SMAD4
mutations cause juvenile polyposis (JP), a condition which is
characterized by the formation of intestinal polyps at young age
and a cumulative lifetime risk for gastrointestinal cancer of 50%
(62). Breast cancers with mutations in the SMAD4 gene (63) are
as sensitive to PARP inhibitors as BRCA-mutant breast or ovarian
cancers. Similar challenges exist for lung cancers with SMAD4
(64), but a phenotype where SMAD4 has been lost has not yet
been observed.

A convenient tool to confirm the oncogenic effects of
mutated genes in question is the controlled expression of mutant
constructs. The current study revealed that mutant SMAD4 can
promote HNSCC tumorigenesis via cell migration and invasion.
These data are concordant with the results of our clinical analysis,
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FIGURE 5 | Association of SMAD4 expression with oncogenic phenotypes in HNSCC cells. (A) Illustration of various SMAD4 constructs. Vertical arrows indicate the

position of various mutations that were generated for this study. (B,D–F) FaDu and (C,G–I) OECM1 cells. Results of the Western blotting analysis. The cells were

transfected with the vectors, and Western blotting was performed using an anti-SMAD4 antibody to detect the expression of exogenous SMAD4 proteins (B,C,

respectively): Proliferation (D,G, respectively), migration (E,H, respectively), and invasion (F,I, respectively).

demonstrating more aggressive behavior and the potential
for nodal metastasis of tumors with SMAD4 mutations. The
mechanisms that cause diverse SMAD4 mutations, particularly
missense mutations, confer loss-of-function to SMAD4.

In HNSCC, the region on chromosome 18q where SMAD4
is located is frequently lost at the genetic level in HNSCC (65).
In esophageal cancer, the loss of SMAD4 correlates with the
invasion depth and the pathologic stage (59) as well as with
regional metastases and with decreased survival (30).In animal
models for HNSCC, SMAD4 haploid insufficiency promoted
tumor development (57). The loss of SMAD4 is contributing
to increased genomic instability in the tumor epithelia. Defects
in the signaling of SMAD family proteins are associated with
an increased tendency for metastatic spread and regional

or distant recurrence of HNSCC (66). Thus, inactivation of
TGF-β/SMAD signaling is frequently observed in HNSCC, and
the inactivation of these signaling pathways might adversely
affect patient outcomes. However, the location at which SMAD4
is downregulated in human HNSCCs and the causal role of
SMAD4 LOH HNSCC development and progression remain
unknown. We are the first to demonstrate that LOH and lower
expression of SMAD4 can cause regional nodal metastasis and
reduce the OS and DFS of HNSCC.

The inactivation of SMAD4 signaling is also associated
with poorer prognosis in patients with adenocarcinoma of the
pancreas and cancers of the esophagus (23, 43, 67). When
SMAD4 expression is lost in colorectal cancers (CRCs), it is
associated with advanced stage disease, the presence of lymph
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node metastasis, and poor prognosis (38, 67, 68). However,
Kouvidou et al. failed to illustrate this relationship in colon
cancer (69). Bacman et al. observed that missing nuclear
expression of SMAD4 does not correlate with tumor grade
or with the clinical outcome in colon cancer (70). Similar to
CRCs, poor HNSCC-related patient outcomes are associated
with 18q LOH (71, 72). SMAD4 depletion in an HNSCC
cell line induces cetuximab resistance and results in worse
survival in an orthotopic mouse model in vivo. JNK and MAPK
activation as mediators of cetuximab resistance and provide
the foundation for the concomitant EGFR and JNK/MAPK
inhibition as a potential strategy for overcoming cetuximab
resistance in HNSCCs with SMAD4 loss (58). However, in other
studies, 18q loss did not appear to affect the survival of patients
with HNSCCs (73, 74). This study indicates that LOH with
SMAD4 mutations may significantly decrease the survival of
patients with HNSCCs.

Our analysis results demonstrated an inverse correlation
between somatic SMAD4 mutations and the downregulation
of SMAD4 in HNSCCs, following other studies. Furthermore,
the results of our studies demonstrate that SMAD4 loss due
to mutations and downregulation results in increased tumor
progression and recurrence rates. Moreover, SMAD4 mutation
and loss, as well as low SMAD4 expression, worsened the OS.
These factors may have led to the substantial differences between
our and TCGA database’s mutation profiles. Although the
disparities warrant further resolution, the presented findings are
congruent with those reported for other malignancies (75–77).

To summarize, HNSCC is highly heterogeneous at both
the cellular and the genetic levels. The current findings show
clearly that SMAD4 expression is suppressing the progression
of HNSCC. Somatic mutations in SMAD4 and its expression
determine the recurrence of HNSCC and go along with poor
prognosis. Therefore, the proposed analysis of the genetic status
may facilitate the identification of mutations in the SMAD4 gene
as a novel diagnostic marker or therapeutic target in HNSCC and
other head and neck cancers.
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