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Linkages are assemblies of rigid bodies connected through joints.
They serve as the basis for force- and movement-managing
devices ranging from ordinary pliers to high-precision robotic
arms. Aside from planar mechanisms, like the well-known four-
bar linkage, only a few linkages with a single internal degree of
freedom—meaning that they can change shape in only one way
and may thus be easily controlled—have been known to date.
Here, we present “Möbius kaleidocycles,” a previously undiscov-
ered class of single-internal degree of freedom ring linkages con-
taining nontrivial examples of spatially underconstrained mecha-
nisms. A Möbius kaleidocycle is made from seven or more identical
links joined by revolute hinges. These links dictate a specific twist
angle between neighboring hinges, and the hinge orientations
induce a nonorientable topology equivalent to the topology of
a 3π-twist Möbius band. Apart from having many technolog-
ical applications, including perhaps the design of organic ring
molecules with peculiar electronic properties, Möbius kaleidocy-
cles raise fundamental questions about geometry, topology, and
the limitations of mobility for closed loop linkages.
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L inkages have been known since antiquity (1, 2). They can be
found in nature, as in the powerful jaw mechanism of the par-

rotfish and the mammalian knee joint (3), in the vertebrate skull
(4), in the raptorial appendages of the mantis shrimp (5), and in
countless gadgets and machines (6). The latter range from sim-
ple manual tools (like bolt cutters) to deployable structures (like
umbrellas, foldable camping gear, solar panels for spacecraft,
and portable architecture) to intricate components of robots and
prosthetic devices.

Designers of deployable structures have considerable inter-
est in adopting notions derived from rigid origami as described,
for example, by You (7) or Chen et al. (8). This design princi-
ple takes advantage of the folding and unfolding of structures
made from flat rigid bodies connected by revolute hinges as
exemplified by the famous folding of Miura (9). The resulting
constructions belong to the general class of mechanisms made
from rigid bodies connected by joints. You and Chen (10) note
that all such mechanisms, which they call “motion structures,”
combine a small set of fundamental building blocks: scissor-
like elements, the Sarrus linkage, the Bennett linkage, and the
Bricard linkage. Each of these linkages has one degree of free-
dom and except for the first, is overconstrained in the sense
that it can move, although a simple mobility analysis dictates
otherwise.

We present a class of ring linkages (also known as closed
loop kinematic chains) that are fundamentally different from all
previously known types. These linkages can have an unlimited
number (greater than or equal to seven) of identical rigid bodies
joined by hinges but still have only a single degree of freedom;
an example is shown in Fig. 1. Except for the one with seven
hinges, each of these objects is underconstrained, meaning that
it has fewer degrees of freedom than a simple mobility analy-
sis would suggest. Since they are rings and share the topology of
a 3π-twist Möbius band, these linkages can be called “Möbius

kaleidocycles.” They may serve as building blocks of deploy-
able structures and other machines, but beyond that, they have
fascinating properties that raise many questions in mechani-
cal engineering, physics, chemistry, and mathematics. Below, we
describe the construction of Möbius kaleidocycles, discuss their
distinct features, and sketch potential applications.

Classical and Möbius Kaleidocycles
Classical Kaleidocycles. A classical six-hinged kaleidocycle (K6) is
a closed ring of six identical tetrahedra, the opposing edges of
which serve as hinges. This object can be identified as the tri-
hedral version of a general linkage invented by Bricard (11) in
1927, which is a closed loop kinematic chain consisting of six links
connected by revolute hinges (and is known as a “6R Bricard
linkage”). Fig. 2, Upper shows a paper model of a conventional
K6 and a 3D printed realization of a 6R Bricard linkage that is
kinematically equivalent to the paper model. A K6 possesses a
single internal degree of freedom manifested by a cyclic everting
motion, during which different tetrahedral faces are periodically
exposed while a threefold rotational symmetry is preserved. In
applications, the single degree of freedom affords controllability
and is, therefore, a desirable property. Detailed kinematic anal-
yses of a K6 are in, for example, Arponen et al. (12) and Fowler
and Guest (13).

A classical eight-hinged kaleidocycle is made like six-hinged
ones but with eight tetrahedra. This object is nevertheless
markedly different from its six-hinged counterpart. It has two
internal degrees of freedom; in any configuration, it can move
in at least two independent directions as shown in Fig. 2, Lower.
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Fig. 1. Rendering of a nine-hinged Möbius kaleidocycle (MK9) made from
nine identical links connected through revolute hinges. This ring linkage
has only a single degree of freedom manifested by a cyclic everting motion
(Movie S1).

This raises a question: how many degrees of freedom does a ring
of N tetrahedra linked by N revolute hinges generally have? If
the 2N tetrahedral corners defining the ring were free points
in 3D space, then they would have 3 · 2N degrees of freedom.
However, the tetrahedral edges constitute constraints forcing
pairs of corners to be at a fixed distance. Along with the N
hinges, each of the N tetrahedra has four additional such edges,
leading to 5N constraints. Granted that only internal degrees
of freedom are of interest, it is necessary to subtract the six

Fig. 2. (Upper) A classical six-hinged kaleidocycle (K6) made from paper
(Left and Center) and a 3D-printed 6R Bricard linkage (Right) are kinemat-
ically equivalent. Both have a single internal degree of freedom and can
undergo a cyclic everting motion. The paper model consists of six tetrahe-
dra with faces that are congruent isosceles triangles, the bases of which
serve as hinges; there is a critical hinge length (namely 2/

√
5≈ 0.8944 times

the length of a leg) above which a K6 cannot undergo a full eversion due to
collisions of neighboring tetrahedra. (Lower) A classical eight-hinged paper
kaleidocycle made from eight regular tetrahedra. In any configuration, this
object can move in at least two independent directions as illustrated.

Fig. 3. (A) Convention for defining the twist angle α of a disphenoid. The
hinges (red), midaxes (cyan), and twist angles (yellow) are indicated. The
tetrahedral midaxis is orthogonal to both hinges. (Left) Regular tetrahe-
dron with orthogonal hinges. (Right) Disphenoid with twist angle π/3. (B)
A single rigid element of the 3D-printed seven-hinged Möbius kaleidocycle
(MK7) from Fig. 6 illustrating that the link may have a multitude of shapes
granted that the twist angle between the hinges is fixed.

degrees of freedom corresponding to translations and rotations
of a rigid body in space. A ring of N tetrahedra should thus have
6N − 5N − 6=N − 6 internal degrees of freedom. This raises
another question: why does a K6 possess an internal degree
of freedom? It transpires that a K6 is a nontrivial example of
an overconstrained mechanism. Its high symmetry allows for a
hidden degree of freedom.

Möbius Kaleidocycles. The counting argument above shows that
classical kaleidocycles made with more than seven tetrahedra
usually have several degrees of freedom and thus, move in var-
ious ways with no prescribed regular internal motion. What all
conventional kaleidocycles share is that the hinges of each tetra-
hedron are orthogonal. We use generalized tetrahedral shapes,
leading to an inherently different class of kaleidocycles. These
are disphenoids—or “twisted tetrahedra”—the four faces of
which are congruent acute-angled triangles. With this general-
ization, the two hinges of each tetrahedral link are twisted by a
necessarily acute “twist angle” α as illustrated in Fig. 3.

For a chain of identically twisted tetrahedra, there is a natu-
ral definition of orientation that allows the chain to be viewed as
a twisted band with two “edges” and two “sides.” Each hinge is
identified with a vector originating at one of its ends and point-
ing to the other end. The orientations of two consecutive hinge
vectors shared by a tetrahedron are chosen so that the angle
between them is the twist angle. The two edges of the twisted
band are given by the line segments connecting either the ori-
gins (one edge) or the endpoints (the other edge) of the hinge
vectors as illustrated in Fig. 4. With this notion of orientation,
the closure of the chain induces a topology. The chain can be

Fig. 4. (Left) Convention for the orientation of a chain of twisted tetrahe-
dra. Each hinge is associated with a vector (red). The line segments between
all terminal points of the hinge vectors define the two edges (black and
white) of the chain, which can then be viewed as a twisted band. (Right)
Closing the chain with the initial and final hinge vectors antiparallel gives
a nonorientable ring with a single edge and a topology equivalent to a
Möbius band. Each Möbius kaleidocycle is constructed this way.
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Table 1. Critical twist angle αc and total twist angle Nαc for a
ring of N twisted tetrahedra

N αc/π Nαc/π

7 0.4046 2.8319
8 0.3443 2.7541
9 0.3010 2.7091

10 0.2680 2.6800
11 0.2418 2.6598
12 0.2204 2.6452
15 0.1746 2.6189
21 0.1237 2.5974
33 0.0783 2.5847

closed in two ways depending on how the terminal hinges are
brought together: the corresponding vectors are either parallel
and the closed band is orientable or antiparallel and the band
is nonorientable. Hereafter, we consider the nonorientable case.
Each such ring is topologically equivalent to a Möbius band.

There is an N -dependent critical twist angle αc , below which
it is impossible to close a chain of N ≥ 7 identical twisted tetra-
hedra into a ring in the nonorientable way. More surprisingly,
for α=αc , all N − 6 degrees of freedom that the ring hypotheti-
cally possesses collapse to a single degree of freedom. Each ring
formed in this way has the topology of a 3π-twist Möbius band
(a shape familiar in stylized form as the recycling symbol), and it
seems reasonable to call it a Möbius kaleidocycle. It is also con-
venient to denote a Möbius kaleidocycle with N ≥ 7 hinges by
MKN and to call the class of linkages consisting of all MKN the
Möbius kaleidocycles. In contrast to the K6, each MKN comes
in left- and right-handed versions and is, therefore, chiral.

Critical Twist Angle. To show that there is a critical twist angle
αc below which a chain cannot be closed, we need a description
for a ring of N rigid bodies, each of which is connected to its
neighbors by hinges. Based on concepts laid out by Denavit and
Hartenberg (14), we follow the treatment of Bates et al. (ref. 15,
pp. 75–76) and describe the hinge orientations of the ring as unit
vectors subject to constraints requiring that neighboring hinges
have a specified twist angle α and that the ring closes in the
nonorientable way. This results in a system of coupled quadratic
equations with a real solution set that determines all possible
configurations of the ring. To obtain the critical twist angle αc

for a given N , we find solutions of the system for incrementally
smaller values of α. Eventually, we reach αc , below which no
real solution exists. Geometrically, this corresponds to a chain
that cannot be closed. In SI Appendix, section 1, we present the
full mathematical description, discuss different solution meth-
ods, and detail how we determine αc . The critical twist angle αc

and the total twist angle Nαc for selected values of N ≥ 7 are in
Table 1.

Fig. 5. Example of a trivial planar underconstrained mechanism. While the
mechanism in Left has one degree of freedom, the mechanism in Right can-
not move despite having the same number of constraints as the one in Left.
For this reason, the mechanism in Right is designated as underconstrained.

Single Degree of Freedom. One way to confirm that Möbius
kaleidocycles have only a single degree of freedom is to show
that the real solution set of the system is 1D, corresponding to
a curve in the space of all hinge orientations. The algorithm for
this is explained in detail in SI Appendix, section 1.

A different approach involves viewing kaleidocycles as assem-
blies of bars and pin joints and performing a kinematic analysis
based on Calladine’s generalization of Maxwell’s rule for the
stiffness of frames as presented by Pellegrino and Calladine
(16). The idea is nicely illustrated with a simple example involv-
ing a chain of three bars, where the end joints are connected
to the foundation as shown in Fig. 5. If the distance between
the foundation joints is less than the sum of the bar lengths,
we have a finite mechanism that can move (Fig. 5, Left). How-
ever, if the distance between the foundation joints equals the
sum of the bar lengths, this finite mechanism disappears, and
two infinitesimal mechanisms emerge that can be thought of as
small displacements of the two internal joints in the direction
orthogonal to the bars (Fig. 5, Right). Furthermore, a state of
self-stress is possible, which here corresponds to a tension in the
bars. This self-stress stiffens the two infinitesimal mechanisms. In
SI Appendix, section 3 we describe the Maxwell–Calladine analy-
sis for Möbius kaleidocycles in full detail. We find that an MKN
has N−5 mechanisms, N−6 of which are infinitesimal and can
be stiffened by a state of self-stress. The one remaining mech-
anism is not stiffened and corresponds to the single degree of
freedom. This places Möbius kaleidocycles in the class of under-
constrained “exceptional” mechanisms. Arponen et al. (17) and
Müller (18) used algebraic geometry methods to study other
simple mechanisms in that class.

Topology of a 3π-twist Möbius Band. The topology of a Möbius
kaleidocycle can be characterized by the linking number Lk,
namely the number of times that the edge (as defined in Fig. 4)
winds around the closed chain of midaxes (cyan in Fig. 4). In an
extensive search for real solutions of the system, each time with
a random initial guess, we exclusively find Lk=3 corresponding
to a 3π-twist Möbius band. The associated procedure is detailed
in SI Appendix, section 1.

Seven- and Nine-Hinged Möbius Kaleidocycles. We discuss two rep-
resentative Möbius kaleidocycle subtypes with very distinct fea-
tures. A paper model of a seven-hinged Möbius kaleidocycle
(MK7) is shown in Fig. 6. The motion of this MK7 is notably
less regular than the motion of a K6. In any of its configura-
tions, the tetrahedra appear to obstruct one another and thereby,
prevent motion. This MK7 can nevertheless undergo a complete
eversion (Movie S2). The false impression of obstruction arises,
because the hinge lengths of the tetrahedra are maximized for
the particular design shown. The hinge length is an indepen-
dent geometric design parameter that specifies the size of the
tetrahedra. The constraint forbidding collisions of the tetrahe-
dra during the motion limits the hinge length as in the case of

Fig. 6. (Left and Center) Paper and 3D-printed seven-hinged Möbius
kaleidocycles (MK7). (Right) Paper nine-hinged Möbius kaleidocycle (MK9)
(Movies S2–S5). Interactive visualizations and paper templates for Möbius
kaleidocycles are provided online (19).
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Fig. 7. Rendering of a deployable structure made from nine-hinged Möbius
kaleidocycles (MK9). Each MK9 is connected through extended hinges (yel-
low) to three other MK9 with opposite chirality (distinguished with red and
blue) to form a hexagonal lattice. If the MK9 performs the everting motion,
a contraction from the extended state (Left) to a contracted state (Center
and Right) occurs.

the K6. This leads to the existence of a maximum hinge length
for every MKN . If the hinges for the MK7 paper design in Fig. 6
were any longer, then neighboring tetrahedra would collide in
certain phases of the eversion.

An MK9 shares the threefold rotational symmetry of the K6,
as shown in Fig. 6, and thus, it differs intrinsically from an MK7.
If N is divisible by three, then an MKN also has that same sym-
metry. Due to its symmetry, the motion of an MK9 is much more
regular than that of an MK7 as Movies S1, S4, and S5 show. The
hinge length for the paper MK9 in Fig. 6 and Movie S4 is again
maximal; were the hinges any longer, triples of tetrahedra would
collide in the center during any attempted eversion.

Deployable Structures from Möbius Kaleidocycles. Möbius
kaleidocycles can be connected to make deployable structures.
To illustrate this, we combine six MK9 to form a hexagonal
ring as shown in Fig. 7. Adjacent MK9 in this elementary
unit cell have opposite chirality and are connected through a
common hinge. The hexagonal elementary cell defined in this
way can then be extended to form a 2D lattice. As all MK9
undergo an everting motion, one chiral group of MK9 moves
in front of the other group, and the lattice contracts. The two
chiral groups form individual triangular lattices that are always
parallel, such as is evident from Fig. 7. The extended and
contracted configurations of a prototypical hexagonal ring built
from six 3D-printed MK9 are shown in Fig. 8. Another idea for
a deployable structure is a tetrahedron formed by four MK9,
where in each MK9, three symmetric hinges are extended to

Fig. 8. Photograph of a deployable structure made from six 3D-printed
nine-hinged Möbius kaleidocycles (MK9). Each MK9 is connected to three
neighbors with opposite chirality through a common hinge. (Left) The
extended state. (Right) As the MK9 evert, the structure contracts, and three
MK9 of the one chirality move vertically relative to their enantiomers.

meet the corresponding hinges of the other MK9 in ball joints
positioned at the corners of a tetrahedron.

Energetics. Möbius kaleidocycles subject to internal forces that
depend on the current configuration of the cycle show inter-
esting behavior. We attach a torsional spring of stiffness B at
each hinge of an MKN , N ≥ 7, as shown for N =7 in Fig. 9.
An analysis of a K6 with various choices for the torsional springs
was conducted by Safsten et al. (20). On introducing the joint
angle θi between the midaxes of the tetrahedra adjacent to hinge
i =1, . . . ,N , the torsional springs correspond to a potential elas-
tic bending energy E and a relative energy variation VE during
eversion given by

E =
B

2

N∑
i=1

θ2i and VE =
max(E)−min(E)

mean(E)
; [1]

VE is indicative of the forces necessary to overcome the poten-
tial energy barriers. For a K6, VE is about 0.118, which is
a substantial variation. Remarkably, for MK7, VE drops to
2.57 · 10−8. Thus, if a K6 and an MK7 were endowed with iden-
tical springs, the force needed to induce an eversion of an MK7
would be smaller by a factor of more than 4 million compared
with that needed to induce an eversion of a K6. As such, an
MK7 has an essentially flat energy landscape and behaves virtu-
ally identically with or without springs. From this, we infer that,
in an MK7, an intrinsic averaging process efficiently redistributes
bending energy between the hinges during eversion. Fig. 9 shows
the relative energy variation for a K6 and Möbius kaleidocycles

Fig. 9. (Upper) Attaching torsional springs of stiffness B to the hinges of
a seven-hinged Möbius kaleidocycle (MK7) gives rise to an elastic bending
energy E [1]. (Lower) The corresponding relative energy variation VE [1] for a
K6 and Möbius kaleidocycles MKN, N = 7, . . . , 21. The force exerted during
the everting motion of an MK7 is more than 4 million times smaller than
for a K6. The solid line at VE=10−12 indicates the limiting accuracy due to
limited floating point precision of the computations; values below 10−12

present only an upper bound.
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Fig. 10. The six-hinged kaleidocycle (K6) and a sequence of Möbius kaleido-
cycles MKN with increasing number N> 7 of minimally twisted tetrahedra
together with the smooth limit surface S illustrate the limit process N→∞.
Shown are a K6 (Top Left), MK9 (Top Right), MK12 (Middle Left), MK15
(Middle Right), MK21 (Bottom Left), and the limit surface S for N→∞
(Bottom Right), a 3π-twist Möbius band. The hinges are red, and the limit
surface, viewed as a collection of infinitely many hinges, is also red. Note
that threefold symmetric rings are chosen only for aesthetic reasons; the
limit sequence consists of all natural numbers N≥ 6.

up to N =21. It is apparent that VE for threefold symmetric
cycles—namely MKN with N divisible by three—is much greater
in comparison with VE for all other MKN . This makes sense; the
aforementioned energy-averaging process cannot be as efficient
for threefold symmetric cycles, since three springs have the same
tension during any stage of an eversion.

The accurate calculation of VE hinges on a very precise rep-
resentation of the everting motion. Using a Fourier expansion,
we construct an explicit time parameterization describing the
motion while satisfying the geometric constraints with a relative
error of at most 5 · 10−14 as described in SI Appendix, section 2.
This parameterization allows us to express E as an explicit func-
tion of time and to obtain VE to extremely high precision. In SI
Appendix, section 4, we plot the energy evolution for an MK9 and
in connection with this, the corresponding input-output relations
for the kinematic variables (the joint angles θi) in the form of
compatibility paths.

Limit Surface and Limit Curve. Since the critical twist angle αc <
π/2 exists for any ring made from N tetrahedra for N ≥ 7, it is

valid to consider the limit N →∞. From Table 1, it is appar-
ent that αc and Nαc are strictly decreasing functions of N .
As N →∞, it appears that αc tends to zero and that Nαc

approaches a positive asymptotic value. For the size of the lim-
iting geometry to be finite, it is also necessary that the limiting
length of the tetrahedral midaxis vanishes. Due to the finite size
constraint, it follows that the midaxis length must scale with
1/N as N →∞. In concert with these limits, each individual
tetrahedron degenerates to a line segment with the length of
the hinges. The limiting object is, therefore, a ruled surface S
defined by those line segments as depicted in Fig. 10. This sur-
face has the topology of a 3π-twist Möbius band formed from
a rectangular strip with ends that are “glued” together after
three half-turns (in contrast to the most commonly depicted
case that arises if the ends are glued after only one half-turn).
The threefold rotational symmetry of S is traceable to the cor-
responding symmetry of all MKN for which N is divisible by
three. Although S is ruled, we note that it is not developable,
because the twist generates a negative Gaussian curvature every-
where on S.

The smooth closed midline C, shown in Fig. 11, of S is a
curve defined through the limit of the polygonal chain given by
the tetrahedral midaxes defined in Fig. 3. Let γ(σ) be an arc
length parameterization of C, where σ ∈ [0, `] is the arc length.
From the construction process leading to the limit, it is clear that
C has a uniform torsion τ = τ0. An unanticipated finding from
our numerical investigations is that the signed curvature κ of
C is of the sinusoidal form κ(σ)=κ0 sin(3πσ/`), where κ0> 0
is constant. We obtain the numerical values κ0≈ 13.023/` and
τ0≈ 8.0941/`. An introduction to signed curvature is in Fenchel
(21). Signed curvature and its usefulness is further discussed by
Bates and Melko (22), who give explicit constructions of closed
curves with constant torsion.

The edge ∂S of the limiting surface S is a trefoil knot that
winds around the unknot C as can be inferred from Fig. 11,
Bottom Right. The linking number Lk(∂S, C) determined by
the Gauss linking integral is a topological invariant that rep-
resents the number of times that ∂S and C wind around one

Fig. 11. The midline C (cyan) and edge ∂S (yellow) of the limit surface S
(for rulings shorter than those in Fig. 10); C and ∂S are smooth and nonself-
intersecting and, as indicated by the shadow cast, have threefold rotational
symmetry. The trefoil knot ∂S winds three times around the unknot C,
resulting in a linking number Lk(∂S, C) = 3.
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another. Consistent with S being a 3π-twist Möbius band, we
find that Lk(∂S, C)= 3. Establishing a connection to ribbon
theory, we identify the twist Tw(S) of S with the total twist
angle in the limit limN→∞Nαc (or equivalently, the net torsion
τ0` of C) divided by 2π to give Tw(S)≈ 1.288213. Follow-
ing a method by Klenin and Langowski (23), we calculate the
writhe Wr(C) of C to be Wr(C)≈ 0.211787 and establish a vari-
ant of Călugăreanu’s theorem Lk(∂S, C)/2=Tw(S)+Wr(C)
connecting the topological quantity Lk to the geometric quan-
tities Tw(S) and Wr(C), with the factor 1/2 being due to the
nonorientability of S.

Discussion
We have introduced a class of ring linkages made from
rigid bodies joined by revolute hinges. Each of these Möbius
kaleidocycles is made from seven or more identical links but has
only a single degree of freedom manifested by an everting motion
more intricate, by far, than that of a classical six-hinged kalei-
docycle (K6). This linkage class forms the basis for applications
in many distinct fields. As individual objects, Möbius kaleido-
cycles may be used as robotic arms or as self-propelling rings
that swim through liquids. Due to their highly irregular motions,
the smaller linkages without threefold rotational symmetry (e.g.,
MK7, MK8, MK10, and MK11) seem destined for applications
involving mixing and kneading or in light effect machines. We
reiterate that there are no limits on the shapes of the links as long
as collisions are avoided; moreover, a certain shape design may
evoke collisions that intentionally result in only limited motions.
The practically flat energy landscape of, for example, an MK7
augmented with torsional springs allows for the design of an
openable ring that is equivalent to a straight elastic rod in its
open form but in its closed form, undergoes a smooth everting
motion without any perceivable counterforce. Aside from the
two examples of deployable structures provided here, Möbius

kaleidocycles can be connected rigidly via hinges, ball joints, or
other linkages in limitless ways to create new mechanisms.

Synthetic chemistry is another field of potential applications
for Möbius kaleidocycles. Building on the seminal contributions
of Heilbronner (24), which among other things, showed that
Möbius annulenes should exhibit novel electronic properties,
Schaller et al. (25) recently synthesized an annulene with a topol-
ogy of a 3π-twist Möbius band and showed that it is energetically
preferred over its classical π-twist counterpart. In that work, a
“twist into writhe” strategy is used to produce an annulene with
a lower strain. This strategy of reducing twist is completely analo-
gous to the minimal critical twist angle of the topologically equiv-
alent Möbius kaleidocycle. The 3π-twist Möbius band, therefore,
appears to possess the topological and geometrical character-
istics necessary to minimize a homogeneously distributed twist.
We hypothesize that an annulene made from molecular building
blocks (equivalent to our tetrahedra) with a twist angle close to
the critical angle should exhibit minimal strain.

Finally, many fundamental questions in the fields of kine-
matics, geometry, and topology are prompted by Möbius
kaleidocycles. Do other ring linkages with more than seven ele-
ments with only a single degree of freedom exist? Which ring
geometries can undergo an everting motion and why? Which
topologies are possible? The limit surface and its midline raise
questions like the following. Which topologies can a closed, con-
stantly twisted band have? What is the shape of a closed curve
with constant nonzero torsion and minimal total curvature?
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