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Abstract

OptZyme is a new computational procedure for designing improved enzymatic activity (i.e., kcat or kcat/KM) with a novel
substrate. The key concept is to use transition state analogue compounds, which are known for many reactions, as proxies
for the typically unknown transition state structures. Mutations that minimize the interaction energy of the enzyme with its
transition state analogue, rather than with its substrate, are identified that lower the transition state formation energy
barrier. Using Escherichia coli b-glucuronidase as a benchmark system, we confirm that KM correlates (R2 = 0.960) with the
computed interaction energy between the enzyme and the para-nitrophenyl- b, D-glucuronide substrate, kcat/KM correlates
(R2 = 0.864) with the interaction energy of the transition state analogue, 1,5-glucarolactone, and kcat correlates (R

2 = 0.854)
with a weighted combination of interaction energies with the substrate and transition state analogue. OptZyme is
subsequently used to identify mutants with improved KM, kcat, and kcat/KM for a new substrate, para-nitrophenyl- b, D-
galactoside. Differences between the three libraries reveal structural differences that underpin improving KM, kcat, or kcat/KM.

Mutants predicted to enhance the activity for para-nitrophenyl- b, D-galactoside directly or indirectly create hydrogen
bonds with the altered sugar ring conformation or its substituents, namely H162S, L361G, W549R, and N550S.
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Introduction

Enzymes are highly-specific, biomolecular catalysts that cause

extraordinary reaction rate enhancements under mild conditions

[1]. Enzyme activity is of paramount importance in the economics

of cellulosic ethanol (and other biofuels) production [2,3].

Improving enzymatic activity is generally carried out using

primarily experimental techniques (i.e., directed evolution strate-

gies) relying on screening large combinatorial libraries [4].

Experiments can be synergistically coupled with efficient compu-

tational screening protocols (i.e., fine-tuning of in silico mutants

with random mutagenesis) to identify mutants within promising

regions of the sequence space for constructing enriched libraries.

Reliable computational techniques for identifying mutations that

lead to enzymatic activity improvements would have a cross-

cutting impact on many fronts ranging from biofuel production

and biomass pretreatment to pro-drug activation and the design of

new therapeutics [5–8].

Various computational tools utilizing primary, secondary, and/

or tertiary protein structural information have been tested to

discover promising enzyme redesigns. These approaches range

from relatively simple (e.g., comparative modeling [9–12] and

scoring-based methods [13–19]) to complex (e.g., molecular

mechanics force fields [20–26] and hybridized quantum mechan-

ics/molecular mechanics (QM/MM) techniques [1,27–33]). As

the degree of complexity increases, there are often accuracy

improvements at the expense of greater computational time. Even

with all of these available methods, the computational design of

enzymes remains a formidable task with only isolated successes

[1,23,25,26,28–35] verified by experiment. A number of review

articles [36,37] highlight recent progress and remaining challenges

in computational enzyme design.

Here, we introduce a new enzyme design method, OptZyme, to

address some of these challenges. OptZyme uses transition state

analogues (TSAs) as proxies for the typically unknown rate-

limiting transition state (TS) structures. TSAs are potent inhibitors

with a stable enzyme-bound complex that closely resemble the TS

of an enzymatic reaction [38,39]. TSAs manage to interfere with

the enzyme catalytic activity by mimicking the geometry of the TS

and preferentially binding with the enzyme over the substrate, thus

preventing the reaction from proceeding. TSAs are known for

many enzymatic reactions [40–43]. Improving catalysis by

lowering the TS energy barrier can theoretically be achieved by

identifying mutations that minimize the binding energy (BE) of the

enzyme with its TSA, rather than with its substrate. We

approximate BE with interaction energy (IE) to limit the force-

field’s role in reconfiguring the free enzyme/substrate. The

developed theoretical framework assumes that solute entropic

changes and conformational changes upon binding are relatively

small and that product release after the rate-limiting step is

energetically favored. The concept of using TSAs for enzyme
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redesign has been previously explored [23,44]. However, Opt-

Zyme is unique as it provides a theoretical framework for making

use of TSA calculations to inform enzyme design while also

integrating preliminary quantum mechanics (QM) information

(e.g., rate-limiting step identification and ligand partial charge

information).

Enzyme optimization using OptZyme can be achieved by

designing libraries of mutations that raise kcat or lower KM within

the Michaelis-Menten kinetic representation. KM is related to the

IE with the substrate, while kcat/KM is expressed as a function of

the IE with the TSA. We used OptZyme to redesign Escherichia coli

b-glucuronidase (GUS) to favor the new substrate, para-nitrophe-

nyl-b, D-galactoside (pNP-GAL) in place of para-nitrophenyl- b,

D-glucuronide (pNP-GLU). pNP-GLU was used as a proxy for the

native substrate (i.e., glycosaminoglycans containing glucuronic

acid [45,46]). Separate computational library designs were

identified that optimize KM, kcat, or kcat/KM, and the observed

differences were analyzed. Mutations H162S, D163K, L361R,

L361E, W549R, and N550S were identified that optimized at the

same time KM, kcat, and kcat/KM for pNP-GAL instead of pNP-

GLU. Mutations that (either directly or indirectly) created

hydrogen bonds with the altered geometry of the TSA of the

new substrate accounted for the majority of redesigns.

Methods

Redesign of GUS
The design concept explored by OptZyme is to attempt to lower

the TS barrier by optimally redesigning the enzyme so as to

improve the binding affinity (approximated using IE) of a TSA.

The native reaction for GUS is hydrolysis of glucuronic acid from

the non-reducing end of the glycosaminoglycan [45,46] (Figure 1).

The native substrate more closely resembles pNP-GLU than pNP-

GAL as seen in the structures of their sugar moieties (see Figure 2).

pNP-GLU was used here in lieu of the native substrate as in

previous experimental work [47–49] because its para-nitropheno-

late leaving group is facile to spectrophotometric monitoring.

The structure for GUS was computationally assembled largely

from its unbound crystal structure (PDB: 3K46 [50]). A six-residue

loop was not spatially resolved in PDB 3K46. The loop had to be

modeled due to its proximity to the active site (minimum loop-

substrate interatomic distance = 7.5 Å) and interactions with the

substrate. An inhibitor-bound structure (PDB: 3LPF [50]) was

used to obtain a reasonable conformation of the six-residue loop

and pinpoint the binding site for pNP-GLU. The CHARMM [20]

force field was used during energy minimizations while Nuclear

Overhauser Effect (NOE) restraints were imposed between

important catalytic residues (Table 1, Figure 3). The restraints

were used to ensure conservation of the optimal catalytic geometry

[51].

Upon modeling the GUS structure, the next step involved

identifying a TSA. To our knowledge, the TS structure for the

glycosidic hydrolysis of pNP-GLU is unknown, but there is

information available on TSAs for GUS (i.e., 1,5-glucarolactone)

[52,53]. QM calculations were used to explore the reaction

mechanism (see Figure 4) to aid in identifying the rate-limiting TS.

We hypothesized a TS that has sp2 hybridization at the anomeric

carbon because QM calculations confirmed the carbenium nature

Figure 1. Native Reaction for GUS. GUS catalyzes the hydrolysis of a glucuronic acid-containing glycosaminoglycan to form two products,
glucuronic acid and an amino sugar (acetylglucosamine in this reaction). pNP-GLU is used as the substrate instead of a glycosaminoglycan because
para-nitrophenolate absorbance allows for spectroscopic monitoring of activity in experimental studies. Experimental activity measurements for GUS
variants are used for verifying correlations between activity and IE.
doi:10.1371/journal.pone.0075358.g001

Figure 2. Comparison between ground state, hypothetical TS,
and TSA for pNP-GLU and pNP-GAL. Differences between pNP-
GLU (A) and pNP-GAL (B) include reversal of the stereospecificity of the
C4 carbon and replacement of a carboxylic acid (pNP-GLU) at the C5
carbon with an alcohol (pNP-GAL). The previously-suggested [52,53]
TSA for pNP-GLU, 1,5-glucarolactone (D), resembles the proposed TS (C)
in terms of charge distribution and stereospecificity of the carbohy-
drate. In contrast to the proposed TS structure, the TSA lacks the para-
nitrophenyl (pNP) moiety and a hydrogen atom from the C1 carbon. In
addition, the TSA (D) differs from pNP-GLU (A) by assuming a more
flattened sugar ring geometry (see Figure S1 for dihedral angles) and
partial positive charge at the anomeric carbon. The TSA for pNP-GAL,
1,5-galactonolactone (E), is similar to 1,5-glucaronolactone (D). The
differences between 1,5-galactonolactone and 1,5-glucaronolactone are
identical to the differences between pNP-GAL and pNP-GLU.
doi:10.1371/journal.pone.0075358.g002

OptZyme: TSA-Based Enzyme Design
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of the intermediate. Vibrational confirmation of the equilibrium

states was not performed as structural constraints placed on the

GUS residues prevents vibrational confirmation of the minima (see

Text S1). The hypothetical TS structure was similar to the

independently-postulated TSA, providing further support for 1,5-

glucarolactone as an appropriate TSA. Density functional theory

calculations were performed using a cluster model that included

pNP-GLU and residues D163, E413, N466, R467, and E504. All

calculations were run using Schrödinger Jaguar [54] with the

hybrid B3LYP functional [55,56] and 6-31G**+ basis set.

The TSA resembles the proposed TS (Figure 4B) through

similar partial charges and stereochemistry within the carbohy-

drate moiety (see Figure 2). The TSA differs from the proposed TS

by the replacement of the glycosidic bond with an ester functional

group, resulting in an altered ring conformation due to the sp2-

hybridized carbonyl. The differences between the TSA for pNP-

GAL (i.e., 1,5-galactonolactone) and 1,5-glucarolactone are

equivalent to the differences between pNP-GAL and pNP-GLU.

These differences include changes in stereospecificity at the C4

carbon and the substituent at the C5 carbon (see Figure 2).

Testing of TSA-based Redesign Paradigm Using kcat and
KM Literature Data

Before proceeding with the redesign of GUS to accept the new

substrate, we used existing kcat and KM data from literature to

assess the validity of the proposed computationally-accessible

metrics [48,49,57]. Earlier engineering efforts focused on altering

GUS specificity from a substrate with a native carbohydrate

topology (i.e., pNP-GLU) to a non-native one (i.e., pNP-GAL [49]

or para-nitrophenyl- b, D-xylopyranoside [48]) or alternatively

improving GUS resistance to glutaraldehyde and formaldehyde

[57]. Therefore, the derived GUS mutants were less active towards

pNP-GLU than wild-type (WT). We used the data to first assess

Table 1. NOE restraints applied during CHARMM energy
minimization.

Atom 1 Atom 2
Minimum
(Å)

Maximum
(Å) kmin kmax

GLU 413: HE2 PNP: O6 1.7 1.8 75.0 100.0

GLU 504: OE2 PNP: C1 2.5 2.6 75.0 100.0

ARG 467: HH12 PNP: O7 1.7 1.8 75.0 100.0

ARG 467: HH22 PNP:O8 1.7 1.8 75.0 100.0

Restraints were placed on key catalytic contacts, determined from previous
experimental [51] and preliminary QM information. Distances between atoms
were selected based on typical nonbonded interaction lengths, and spring
constants were determined iteratively so that the distances were properly
restrained while not over-constraining the system. kmin was the harmonic
constant implemented if the interatomic distance was too small, and kmax was
the harmonic constant used if the interatomic distance was too large.
kmin,kmax because catalytic contacts would remain intact at smaller distances.
Entries are shown in Figure 3.
doi:10.1371/journal.pone.0075358.t001

Figure 3. Active site geometry and restrained catalytic contacts. The active site is depicted in a ball-and-stick representation (C =black,
O = red, N=blue, H=white). The nonbonded interactions seen reflect the distances restrained (as listed in Table 1). Key catalytic residues are labeled
by their one-letter amino acid abbreviation followed by their position number. para-nitrophenyl- b, D-glucuronide (pNP-GLU) is labeled by the
abbreviation ‘‘PNP’’ (see Figure 1). Atoms involved in restraints are labeled, along with interatomic distances.
doi:10.1371/journal.pone.0075358.g003

OptZyme: TSA-Based Enzyme Design
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whether the IE calculations at the ground state for the WT enzyme

and a handful of available mutants were consistent with the

experimental KM values. We subsequently tested whether the

reported kcat/KM values were consistent with the IE calculations of

the TSA with GUS.

The IE calculation included bond, angle, dihedral, improper

dihedral, van der Waal, Urey-Bradley, electrostatic, NOE, and

Generalized Born using Molecular Volume solvation energy terms

under a single step CHARMM minimization. BE (Equation 1,

where G is the Gibb’s free energy, E?S is the Michaelis complex, E

is the unbound enzyme, S is the substrate, and min indicates that

the structure is at the energy minimum) is here approximated by

IE (Equation 2) for the enzyme-substrate complex.

BES~Gmin
E:S{Gmin

E {Gmin
S ð1Þ

IES~Gmin
E:S{GE{GS ð2Þ

Figure 4. Proposed catalytic reaction mechanism of GUS from in vacuo QM calculations (Text S1). In the first step, substrate binds to the
active site of GUS. Next, the lone pair on the glycosidic bond attacks the proton of E413 (A). This forms a hypothetical TS (B) with the glycosidic bond
partially broken. The glycosidic bond is fully cleaved, releasing para-nitrophenolate and forming a carbocation intermediate (C). The electrons on the
anionic E504 then attack the anomeric carbon, resulting in a hypothetical TS (D) where the carbocation and E504 are electrostatically attractive. A
covalent intermediate (E) is formed between the carbohydrate moiety of pNP-GLU and E504. Presumably, in the next step, the basic E413 attacks a
proton of a water molecule. The resulting hydroxide anion attacks the anomeric carbon to yield the product of the reaction. The two catalytic
residues are regenerated for further turnover.
doi:10.1371/journal.pone.0075358.g004

OptZyme: TSA-Based Enzyme Design
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The entropic component of the free energy of solvation is

accounted for by using an accessible area solvent model [58]. The

change in solute entropy upon binding is assumed to be negligible

relative to the other terms [59]. IE is a good surrogate for BE in

cases where binding is not conditional on significant conformation

rearrangements (no induced fit [60]). In addition, IE is less

dependent on the force field as the energetics of any conforma-

tional rearrangements do not need to be tracked. IEs were

calculated using the iterative protein redesign and optimization

procedure (IPRO) [61]. IPRO iteratively randomly perturbs the

protein backbone, subsequently assigns optimal rotamers for all

design positions (mutable amino acid positions), and then executes

an energy relaxation step. Different IPRO trajectories may

converge in alternate low energy conformations. To remedy the

run-dependent nature of the results, 25 separate IPRO trajectories

were generated. The final IE was calculated as the average over

the best IE for each one of the 25 trajectories (see Figures S2, S3,

and S4 for distribution of IEs). In general, the energy distribution

of the top 25 generated IEs followed trends that were consistent

with a normal distribution. However, deviations away from a

normal distribution are observed in some instances as a result of

the small sample size. The calculated IE values were then related

to KM values obtained from literature as follows.

Michaelis-Menten kinetics for GUS enzymatic catalysis (based

on the mechanism shown in Figure 4) is depicted through

Equation 3, where E is GUS, S is pNP-GLU, E?S is GUS bound to

pNP-GLU, E?I1 is the bound carbocation intermediate, E?I2 is the

E504- covalent adduct, E?P is bound glucuronic acid, P is the

product of the reaction (glucuronic acid), and k represents a

reaction rate constant.

EzS
�?
k1

/�
k{1

E:S
�?
k2

/�
k{2

E:I1
�?
k3

/�
k{3

E:I2
�?
k4

/�
k{4

E:P
�?
k5

/�
k{5

EzP ð3Þ

QM calculations in vacuo identified E?S, E?I1, and E?I2 and

found only a slight barrier between E?I1 and E?I2. A TS for the E?S

to E?I1 step was not successfully located (see Text S1). Based on the

QM calculations, it is unclear whether the rate-limiting step for

GUS is E?S to E?I1 or E?I2 to E?P. However, both of these TSs are

expected to closely resemble the carbocation intermediate (i.e.,

E?I1), which is consistent with the adopted TSA. By assuming a

fast rate of hydrolysis of the covalent adduct (i.e., E?I2) and that the

equilibrium constant of product release (i.e., E+P) after the rate-

limiting step lies far to the right E½ � P½ �= E:I1½ �ww1, Equations 4

and 5 describe the enzyme catalytic parameters of the overall

reaction (see Text S2 for detailed discussion of how these equations

are arrived at from Equation 3).

KM~
k{1

k1
ð4Þ

kcat~k2 ð5Þ

Gmin
E:I1

{Gmin
E {Gmin

P ww0 is an alternate way of expressing that

the equilibrium of product release lies far to the right. Gmin
P must

Figure 5. Ground state computational IES for pNP-GLU versus the natural logarithm of experimental KM. IEs were calculated using IPRO,
and experimental data was obtained from literature [48,49,57]. Each numbered label corresponds to a single variant enzyme with multiple amino acid
substitutions from wild-type (WT). Calculated IEs at the ground state are consistent with the observed changes in KM for GUS mutants (R2 = 0.960).
Figure S2 shows the distribution of the trajectory-best IEs whose average forms each data point.
doi:10.1371/journal.pone.0075358.g005
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be less than Gmin
E:I1

. Otherwise, the intermediate would be the

thermodynamically favored product, and an external energy

source would be required to drive the reaction forward. Moreover,

QM calculations (Table S1) inform us that the carbocation

intermediate (i.e., E?I1) is a relatively high-energy intermediate. In

addition, Gmin
E must assume a negative value for the enzyme to

remain folded. Since, Gmin
E:I1

{Gmin
P w0 and {Gmin

E w0, the

equilibrium following the rate-limiting step must favor product

Figure 6. Qualitative GUS free energy diagram based upon in vacuo QM calculations. The free energy of each intermediate within the
dashed box is based on its potential energy, as calculated using QM. Intermediates found using QM and proposed TSs are also labeled according to
Figure 4 (italicized, above curve). The energy barrier between states C and D is nearly barrier-less. The free energy values along the remainder of the
curve are purely hypothetical. Each intermediate is labeled according to the convention used in Equation 3. Based on the known and hypothesized
free energies, the reaction of the Michaelis complex to form the first intermediate (k2, as written in Equation 3) is rate-limiting. Thus, the proposed TS
for the entire reaction (E?TS) and its corresponding energy barrier (DG`) are labeled.
doi:10.1371/journal.pone.0075358.g006

Figure 7. Computationally-determined IETSA for pNP-GLU versus experimental ln(kcat/KM). Data was collected as described in Figure 5.
Enzyme variants with higher catalytic efficiency (kcat/KM) have a stronger affinity for 1,5-glucarolactone (R2 = 0.864). See also Figure S3.
doi:10.1371/journal.pone.0075358.g007

OptZyme: TSA-Based Enzyme Design
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release. The hypothetical rate-limiting step was used to identify the

individual rate constants in Equations 4 and 5. However, the

derivations are independent of the true rate-limiting step. The

TSA choice does depend on the rate-limiting step, but it has been

verified independently [52,53].

Using the relationship between Gibb’s free energy and

equilibrium concentrations (see Text S2, Equation S12), Equation

6 links the Michaelis constant, KM, to the BE between the

enzymatic substrate complex (E?S) and the unbound reactants,

BES (see Equation 1).

BES~RT ln KMð Þ ð6Þ

We find that the all-atom root mean square deviation (RMSD)

between unbound (E) and bound (E?S) GUS is only 0.22 Å,

implying that there is minimal conformational rearrangement in

GUS upon binding [62] with pNP-GLU, which justifies the

approximation of BES with IES (IE with the substrate, pNP-GLU)

(see Equations 1 and 2). Using Equation 6 and the assumption that

BES = IES, we find that KM and IEs for the mutant/WT enzymes

are related through Equation 7.

IES~RT ln KMð Þ ð7Þ

Equation 7 implies a linear correlation between ln(KM) and IES.

Figure 5 depicts the measured KM values [48,49,57] and

corresponding calculated IESs for the WT GUS and five mutants.

The correlation coefficient of 0.960 implies that the derived

expression (Equation 7) correctly captures the observed KM trends

for the enzyme variants. While the actual magnitude of the energy

values on the y-axis is not quantitatively accurate, the relative

ordering of the mutants in terms of their KM values is consistent

with the data.

Unlike KM, which depends on binding at the ground state, kcat

is directly related to the reaction rate. The rate constant of a

reaction is related to the change in the Gibb’s free energy between

the ground and TSs, based on the Eyring-Polanyi equation

derived from transition state theory (Equation 8) (see also Figure 6).

k~
kkBT

h
e

{DG{
RT

� �
ð8Þ

In Equation 8, k is the rate constant, h is Planck’s constant, k is

the transmission coefficient (assumed invariant among all mu-

tants), kB is the Boltzmann constant, and DG{ is the change in

Gibb’s free energy between the ground and TSs (Equation 9).

DG{~Gmin
E:TS{Gmin

E:S ð9Þ

We cannot directly computationally assess DG{ because the TS

structure is unknown. Since the structure of the TS is unavailable,

we postulate that mutations that lead to beneficial interactions of the enzyme

Figure 8. Scaled difference between IETSA and IES for pNP-GLU versus the natural logarithm of kcat. Data was obtained as detailed in the
caption of Figure 5. Scaling is required because of the non-quantitative nature of the energy calculations. With scaling, it is apparent that the turnover
number increases as the difference becomes more negative. These results suggest that as the enzyme interacts with the TS more strongly, the
turnover number increases (R2 = 0.854).
doi:10.1371/journal.pone.0075358.g008

OptZyme: TSA-Based Enzyme Design
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Figure 9. pNP-GLU IES correlation with catalytic efficiency. Data was obtained as described for Figure 5. No significant correlation is observed
(R2 = 0.545) between IE with pNP-GLU and ln(kcat/KM). If GUS catalysis was primarily achieved through reactant destabilization, a positive slope would
have been expected.
doi:10.1371/journal.pone.0075358.g009

Figure 10. Correlation between pNP-GAL IETSA and ln(kcat/KM). The correlation found here is significantly lower than the one found for pNP-
GLU (see Figure 7) primarily due to mutant T509S. See also Figure S4.
doi:10.1371/journal.pone.0075358.g010

OptZyme: TSA-Based Enzyme Design
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with its TSA should produce similar benefits with the unresolved TS.

Equation 10 expresses this postulate mathematically by implying

that the difference between the minimized free energy of the TS

and the TSA is invariant with respect to mutations introduced on

the enzyme.

Gmin
E:TS{Gmin

E:TSA~C=f (mutations) ð10Þ

The unknown (for IPRO trajectories where the TSA is the

ligand) free energy of the Michaelis complex can be eliminated by

combining Equations 1 and 9, yielding Equation 11.

BESzDG{~Gmin
E:TS{Gmin

S {Gmin
E ð11Þ

We have already shown that computationally approximated IES

provides a good approximation for BEs. In analogy, we assume

that the IE with the TSA (IETSA) is a good approximation for

BETSA. The TSA and substrate structures, and therefore energies,

remain largely unchanged during the redesign process. Since Gmin
TSA

and Gmin
S are both invariant with respect to mutations to the

enzyme and IETSA > BETSA, Equation 10 can be used to

eliminate the unknown free energy of the bound TS (Gmin
E:TS )

yielding Equation 12.

BESzDG{~Gmin
E:TSA{GTSA{GEzC1 ð12Þ

Constant C1 is a grouping of constants, including those from

Equations 8 and 10. Equation 12 is further simplified by

substituting the definition of IETSA (see Equation 2, where the

bound molecule in this case is the TSA).

BESzDG{~IETSAzC1 ð13Þ

C1 can be eliminated from Equation 13 by expressing it as the

difference in the IEs between mutant and WT enzymes,

DIETSA~DBESzDDG{ ð14Þ

where DIETSA = IETSA2IETSA,WT, DBES = BES – BES,WT, and

Table 2. Permitted amino acids at each design position.

Design Position Permitted Amino Acids

162 A, C, F, G, H, I, L, M, N, Q, S, T, V, Y

163 C, D, F, G, K, M, Q, R, S, T, W

164 F, M, Q, W, Y

355 A, C, E, F, H, I, K, L, M, R, V, W, Y

356 A, C, D, E, F, G, H, I, L, M, N, Q, R, S, T, W, Y

361 A, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, Y

362 A, D, F, G, I, K, M, N, R, S, T, V

549 A, C, G, K, L, R, T, W, Y

550 A, E, F, G, I, L, N, Q, S, T, V, Y

This table contains the list of permitted amino acids (using one-letter
abbreviations) at each design position. Amino acids were permitted if they
appeared at least once in the b-glucuronidase alignment or observed in at least
5% of the glycosyl hydrolases family 2.
doi:10.1371/journal.pone.0075358.t002

Figure 11. Distribution of amino acids in a sequence alignment for all b-glucuronidases. The sequence alignment was performed over all
b-glucuronidases (as identified using BRENDA) using the Clustal-Omega algorithm. 181 unique sequences were used during the alignment. Design
position numbers indicate the position within GUS, and the one-letter abbreviation for WT E. coli b-glucuronidase is provided at each position. Only
amino acids observed .1% of the time at a given position are shown since smaller bars were difficult to decipher. With the exception of H162, the
E. coli WT residue is the amino acid most frequently observed in the alignment.
doi:10.1371/journal.pone.0075358.g011
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DDG{=DG{ 2DG{
WT. DBES and DDG{ can be recast using

Equations 6 and 8 (at constant temperature).

DBES~RT ln KMð Þ{ ln KWT
M

� �� �
ð15Þ

DDG{~{RT ln kcatð Þ{ ln kWT
cat

� �� �
(16)

Substituting DBES from Equation 15 and DDG{ from Equation

16 into Equation 14 yields.

DIETSA~{RT ln
kcat

KM

� �
{ ln

kWT
cat

KWT
M

� �	 

ð17Þ

Equation 17 can be used to relate computationally accessible

metrics to kcat/KM, which dictates the catalytic efficiency of the

enzyme under substrate limiting conditions ([S],,KM).

Equations 7 and 17 can be combined to directly link kcat to

computationally accessible metrics (Equation 18):

DIETSA

RTð ÞTSA
{

DIES

RTð ÞS
~ ln kWT

cat

� �
{ ln kcatð Þ ð18Þ

In Equation 18, DIES = IES – IES,WT, (RT)TSA is the RT term in

Equation 17, and (RT)S is the RT term in Equation 7. As an

example, for GUS/pNP2GLU, (RT)TSA = 15.3 kJ/mol (T = 4.65

104 K) while (RT)S = 386.7 kJ/mol (T = 1840 K). These temper-

ature values were obtained through correlation analysis of

Table 3. Top 10 mutants identified using OptZyme for optimizing KM, kcat/KM, and kcat for pNP-GLU.

Design Positions

Parameter Rank Energy 162 163 164 355 356 361 362 549 550

KM WT 2489.4 H D F V G L G W N

1 21548.7 Q D Q A A G D R G

2 21513.6 A D Q A G G R R A

3 21509.8 G S Q A G K D A S

4 21482.6 Q D Q A A G D A G

5 21477.6 A S Q A G G D A A

6 21455.9 S S Q A A G D A G

7 21454.6 A S F A A G D A G

8 21440.0 A S Q A G G R A S

9 21434.1 S D Q A G G R R A

10 21429.9 A S Q C G K D A G

kcat/KM WT 2377.8 H D F V G L G W N

1 21570.6 N D Q A G G D A A

2 21561.4 N D Q A G G K A A

3 21560.2 A D Q A G G K A A

4 21551.4 G K Q A G S K A A

5 21531.3 A R Q A G S G A A

6 21520.8 Q D Q A G G D A A

7 21518.3 A D Q A G K D A G

8 21514.2 A D Q A G G D A A

9 21502.9 S D Q A G G S A A

10 21495.3 S S Q E G K G A A

kcat WT 2129.7 H D F V G L G W N

1 2380.6 G D Q A G R D A A

2 2375.1 G D Q A G K D A A

3 2374.5 Q D Q A G G R A A

4 2361.0 G D Q A G E K A A

5 2355.5 N D Q V G S G A A

6 2349.3 C D Q V G S G A A

7 2346.7 G K Q E G S R A A

8 2341.3 G K Q A G A K A A

9 2340.8 Q D Q A G G K A A

10 2336.1 L D Q A G G K A A

One-letter amino acid abbreviations for each design position and WT residue. Energy values are in kJ/mol.
doi:10.1371/journal.pone.0075358.t003
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Figure 12. Distribution of amino acids for top 50 GUSmutants enhancing enzyme catalytic parameters of pNP-GLU. The libraries were
designed to optimize (A) KM, (B), kcat/KM, and (C) kcat. Design position numbers indicate the position within GUS, and the one-letter abbreviation for
WT GUS is provided.
doi:10.1371/journal.pone.0075358.g012
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Equations 17 and 7, respectively. Note that experimental and

correlating temperatures do not match. Similarly high tempera-

tures were seen in the quantification of RNA-ribosome binding

calculations in the RBSCalculator [63].

A strong correlation (R2 = 0.864) is observed between IETSA

and the natural logarithm of experimental kcat/KM values (see

Figure 7), suggesting that IETSA is a good descriptor of kcat/KM.

This observed correlation implies that the derived equations are

applicable and that the chosen TSA is suitable. However, this

trend does not necessarily prove the QM-based reaction mech-

anism. The same strong correlation (i.e., R2 = 0.854) is observed

between IETSA/(RT)TSA-IES/(RT)S and the natural logarithm of

kcat (see Figure 8). The experimental KM values vary by less than

an order of magnitude (Figure 5), while the experimental kcat/KM

values vary over several orders of magnitude (Figure 7). The

scaling differences in the experimental data and the larger weight

of 1/(RT)TSA ( = 0.06 mol/kJ), relative to 1/(RT)S ( = 0.002 mol/

kJ), in the correlating expression (Equation 18) contribute to the

similarity between Figure 7 and Figure 8. As a control, we verified

that the energy difference between the Michaelis complex and

unbound reactants shows no correlation with the catalytic

efficiency (see Figure 9).

The justification of the chosen TSA and validation of the

correlation between computationally-accessible metrics and ex-

perimental catalytic data justifies the use of IE calculations to

optimize a targeted enzyme parameter.

Table 4. Top 10 mutants identified using OptZyme for optimizing KM, kcat/KM, and kcat for pNP-GAL.

Design Positions

Parameter Rank Energy 162 163 164 355 356 361 362 549 550

KM WT 270.7 H D F V G L G W N

1 21528.8 S D Q A G G K A A

2 21514.2 S D Q A G N G R S

3 21505.0 S K Q A G E K A G

4 21472.3 A K Q A A S G A G

5 21453.1 N D Q A G N G R S

6 21442.6 S S Q A G A G A A

7 21435.5 S D Q A G D K K G

8 21423.8 S S Q A G G D A A

9 21413.7 S D Q A G N G K S

10 21408.7 G K Q E G A A A A

kcat/KM WT 90.1 H D F V G L G W N

1 21041.2 A D Q A G R G R S

2 21034.9 Q D Q A G K D R G

3 21004.4 S D Q A G G S R S

4 2975.1 A D Q A G G S R S

5 2969.7 N D Q A G G D K S

6 2956.7 N D Q A G G D R S

7 2940.8 S D Q A G G K R S

8 2931.2 Q D Q A G D K A G

9 2930.3 A D Q A G G D K S

10 2924.9 A D Q A G G K K S

kcat WT 25.4 H D F V G L G W N

1 2251.9 G D Q A G E K A A

2 2245.3 A D Q A G G R T A

3 2244.2 A D Q A G G A T A

4 2240.0 A D Q A G G K T A

5 2234.2 A D Q A G E K A A

6 2233.7 S D Q A G D K A G

7 2232.7 A D Q A G G K K S

8 2232.5 A D M A G G S R S

9 2227.9 G D Q A G E K R S

10 2220.3 S D Q A G S G K S

One-letter amino acid abbreviations for each design position and WT residue. Energy values are in kJ/mol.
doi:10.1371/journal.pone.0075358.t004
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Figure 13. Distribution of amino acids for top 50 GUSmutants enhancing enzyme catalytic parameters of pNP-GAL. The libraries were
designed to optimize (A) KM, (B), kcat/KM, and (C) kcat. Design position numbers indicate the position within GUS, and the one-letter abbreviation for
WT GUS is provided.
doi:10.1371/journal.pone.0075358.g013
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Results and Discussion

Further Validation of Correlating Expressions Using pNP-
GAL

Before implementing the OptZyme redesign approach, we first

showed that the correlating expressions derived for pNP-GLU

were transferrable to alternative substrates and their correspond-

ing TSAs. Since our overarching goal was to switch GUS

specificity from pNP-GLU to pNP-GAL, we sought to verify the

correlating expressions for KM (Equation 7) and kcat/KM

(Equation 17) using pNP-GAL and 1,5-galactonolactone, respec-

tively. pNP-GAL kcat/KM data was again obtained from literature

sources focused on altering GUS specificity from pNP-GLU to

pNP-GAL [47,49]. Accurate KM estimates were absent in the

literature. Instead, we estimated them by monitoring para-

nitrophenolate absorbance as a function of substrate concentration

and fitting to the Michaelis-Menten equation using the mutant cell

lysates (see Text S3). The KM value determined for the native

substrate analogue (i.e., pNP-GLU) using the same crude lysate of

WT GUS (0.24260.022 mM) was similar to the literature

reported value (0.183 mM [48,49,57]).

The observed kcat/KM correlation for pNP-GAL (Figure 10,

Equation 17) was similar (albeit weaker) to that for pNP-GLU (see

Figure 7), with the exception of one outlier (i.e., T509S). The

observed KM correlation for pNP-GAL (Equation 7) has a positive

slope, similar to the correlation for pNP-GLU (see Figure 5).

However, one of the three variants (i.e., T509A, D531E, S557P,

N566S) was an outlier. Considering both pNP-GLU and pNP-

GAL mutant data, D531E was the only surface point mutation

located near the center of an a-helix. Implicit solvation models

have been shown to cause inaccuracies within a-helices [64]. By

considering pNP-GAL, we demonstrated the applicability of

Equations 7 and 17 of OptZyme for non-native substrates.

Redesign of GUS for Improving Activity with pNP-GLU
OptZyme was first used to identify beneficial mutations that

improve KM, kcat/KM, and kcat with pNP-GLU by minimizing the

appropriate IE (Equations 7, 17 and 18, respectively). Constraints

that ensure that both the substrate and TSA favorably bind GUS

(i.e., IES,0, IETSA,0) were included in the OptZyme runs.

Design positions were selected in locations that are likely to impact

active site geometry and directly mediate interactions with the

substrate. The same set of design positions was chosen for all sets

of calculations (H162, D163, F164, V355, G356, L361, G362,

W549, N550).

A high frequency of mutations to glycine by OptZyme was

initially observed, presumably to avoid steric clashes within the

highly-packed active site of GUS. To remedy this bias, we first

performed multiple sequence alignments to extract natural amino

acid usage patterns. The first family alignment was performed

using PFAM [65] between GUS and the glycosyl hydrolases family

2, and the second alignment was performed between GUS and all

other b-glucuronidases (as identified in BRENDA [66]) using

Clustal-Omega [67]. Amino acids observed at least once in the

alignment of all b-glucuronidases (181 sequences, see Figure 11) or

in at least 5% of the glycosyl hydrolases family 2 (excluding gaps,

3975 sequences) were permitted for each design position (see

Table 2 for permissible mutations). In addition, the total number

of glycine residues throughout all design positions was restricted to

be at most two (matching the glycine utilization frequency in WT).

Fifty independent trajectories of OptZyme were run to optimize

KM, kcat/KM, and kcat for GUS using pNP-GLU and 1,5-

glucarolactone. NOE restraints were used to maintain the optimal

catalytic geometry of GUS (Table 1, Figure 3). Each trajectory of

OptZyme consisted of 5000 iterations, and simulated annealing

was used after 100 cycles (using constant T = 7268K, which

corresponds to an acceptance rate of about 50% of redesigns

within 10 kcal/mol, 41.9 kJ/mol, of the best mutant) to avoid

premature convergence to local minima of the GUS free energy

landscape. The CHARMM energy terms used were identical to

those used in the testing of the TSA-based redesign paradigm, and

the backbone-dependent Dunbrack rotamer library was used for

side chain optimization [68].

OptZyme was used to identify three libraries of mutants that

were computationally predicted to enhance enzyme catalytic

parameters relative to WT (see Table 3, Figure 12). The observed

mutants seemed to lower the relevant IE predominantly through

improving flexibility in the active site, increasing solvation

stabilization, or improving the electrostatic IE (including hydrogen

bonding). Many mutations were common between the KM- and

kcat/KM-optimized libraries because of the electrostatic and

structural similarity between the substrate and TSA. In the

interest of identifying mutations that primarily improve a specific

enzyme parameter, a systematic cutoff was defined for identifying

mutations that were representative of the KM- or kcat/KM-

optimized libraries. A mutation was considered representative of a

library if it occurred at least 15% of the time for a given design

position and at the same time 10% more frequently than in the

other libraries. These metrics were selected because they closely

matched the representative mutations determined by visual

inspection of Figure 12. For example, H162A and H162G (extra

flexibility of the protein backbone), D163S (enhanced solvation),

and G362R (hydrogen bonding/solvation effects) were mutations

representative of the pNP-GLU kcat/KM-optimized library (see

Figure 12).

Experimental validation of the mutants can be carried out using

a high-throughput assay, where the fluorescence of the para-

nitrophenolate leaving group is readily measured based on its high

absorbance at 405 nm [47]. The design of mutants for pNP-GLU

is handicapped as WT GUS is already very active and the scope

for identifying significantly improved mutants is limited. However,

GUS activity with pNP-GAL is ,107 lower than for pNP-GLU

[47]. Therefore, the entire gamut of beneficial interactions leading

to switch of specificity from pNP-GLU to pNP-GAL would be

detectable using a high-throughput assay.

Redesign of GUS for Introducing Catalytic Activity with
the New Substrate pNP-GAL

Three libraries were constructed that were designed to enhance

KM, kcat/KM, or kcat of GUS for pNP-GAL (see Table 4,

Figure 13). The constructed mutants were stabilized in a similar

manner as described for pNP-GLU. The only representative

mutant in the pNP-GAL KM-optimized library was L361N

(electrostatic interactions with pNP-GAL C5 substituent/solvation

enhancement). L361G (extra flexibility of GUS backbone), W549R

(hydrogen bonding with pNP-GAL C2 hydroxyl group), and

N550S (solvation enhancement) were representative mutants for

the pNP-GAL kcat/KM-optimized library.

Mutations enriched in the pNP-GAL libraries but largely absent

from all pNP-GLU libraries were also identified. The analysis

revealed only one such additional mutation, H162N (electrostatic

interaction with the C4 substituent). Structural analysis also

revealed that the backbone carbonyl of F161 (not a design

position) formed a hydrogen bond in 97.5% of the examined

structures (each mutant in Table 4) with the C5 substituent of

pNP-GAL. This interaction was absent for all of the pNP-GLU

designs in Table 3. Thus, the identity of the adjacent residue at

design position 162 may directly promote (or prevent) the
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backbone interaction with pNP-GAL. In addition, mutation

H162S is observed in 13.3% of the examined mutants (see

Table 3) for pNP-GLU but 36.7% (see Table 4) for the pNP-GAL

libraries. Therefore, H162S may be important for the interaction

of F161 with pNP-GAL.

Several mutations were found that make direct contact with the

novel ligand. Since the differences between pNP-GLU and pNP-

GAL are in the C4 and C5 substituents of the carbohydrate moiety

(Figure 2), mutations that create contacts with these substituents

are expected. Indeed, this is the case for the D163K, L361R, and

L361E mutations, as well as the contact by F161. However,

W549R forms a contact with the ligand but at the unchanged

portion of the carbohydrate. W549R was more common in the

pNP-GAL libraries because of a slightly deformed sugar ring of

pNP-GAL, relative to pNP-GLU. The results show OptZyme is

sensitive enough to detect even minor structural variances between

substrates.

Amongst the pNP-GAL libraries, the KM-optimized library is

enriched with smaller amino acids (see Text S4 for discussion on

prevalence of small amino acids). Although this observation could

be an artifact due to the larger size of pNP-GAL relative to its

TSA, the design positions were chosen at the edge of the active site

further away from the pNP substituent. Thus, the smaller side

chains in the KM-optimized library are more likely a reflection of

the chair-like conformation of the sugar ring, which has a larger

excluded volume than the planar geometry of the TSA. The

mutation of the WT side chains to the large, polarizable side

chains that are representative of the kcat/KM-optimized library

(H162Q, L361K, G362D, W549R), imply that the planar form of

the molecule is stabilized through efficient packing of the enzyme

and beneficial electrostatic interactions.

Summary
A new set of computationally accessible metrics was derived for

correlating KM, kcat/KM, and kcat between WT and mutated

enzymes. With the aid of a QM-derived reaction mechanism, we

validated that the IES correlates with KM (Equation 7), and the

IETSA correlates with kcat/KM (Equation 17). kcat can be measured

through a weighted combination of IES and IETSA (Equation 18).

It is important to note that the observed correlations are not proof

for the QM-based mechanism. OptZyme, a computational tool

used to design mutations that improve KM, kcat, or kcat/KM,

generated mutations that were predicted to enhance enzymatic

activity for pNP-GLU. OptZyme is best suited for systems where

the solute entropy change upon binding is assumed to be negligible

relative to other terms, substrate binding is not a consequence of

‘‘induced fit’’, and equilibrium following the rate-limiting step

strongly favors product release. The identified mutants stabilized

the substrate mostly through hydrogen bonding networks,

improved solvation, and efficient packing of the active site.

OptZyme was utilized to construct a library of mutants with

improved enzyme catalytic parameters for a similar substrate,

pNP-GAL. Though these substrates are similar, OptZyme was

able to identify novel contacts with the ligand in the pNP-GAL

libraries that were absent from the pNP-GLU libraries. Several

mutations were enriched in all of the pNP-GAL libraries, namely

those that interact with the distorted sugar ring conformation or its

altered substituents. In comparison of the KM- and kcat/KM-

optimized libraries for pNP-GAL, we found that large, polar side

chains were observed more often in the kcat/KM-optimized library.

This was attributed to the more planar geometry of the TSA.

These results suggest that mutants with large, polar side chains can

stabilize the TS through interactions with the hydroxyl substitu-

ents and efficient packing, thereby improving enzymatic activity.

OptZyme is available for download at maranas.che.psu.edu/

submission/OptZyme.htm.

Supporting Information

Figure S1 Dihedral angles of ground state and TSA for
pNP-GLU and pNP-GAL. The layout of this figure corresponds

to the layout of Figure 2. TS dihedral angles could not be

determined because the TS structure was never solved so its

coordinates are unknown. Dihedral angles were calculated using

only the six atoms constituting the sugar ring (five carbon atoms,

one oxygen atom). The absolute value of the dihedral angles

describing the rotation about the C6-O, C1-O, and C1–C2 bonds

are much lower for the TSAs than for the ground state molecules.

This illustrates the more planar ring geometry of the TSAs.

(TIF)

Figure S2 Distribution of individual pNP-GLU IES

values. The bins within the histogram were formed according

to Doane’s formula (Doane, 1976). A normal distribution was

included to compare against the computational data. The normal

distribution was constructed by calculating the mean and standard

deviation over the 25 individual values. The mean of the 25 values

was used in Figure 5.

(TIF)

Figure S3 Variance of individual pNP-GLU IETSA val-
ues. The figure was generated as described for Figure S2. The

mean of the 25 separate values was incorporated into Figure 7.

(TIF)

Figure S4 Distribution of pNP-GAL IETSA values. The

figure was constructed as described for Figure S2. The average

over the 25 individual IETSA values was used within Figure 10.

(TIF)

Figure S5 pNP-GAL KM Estimation for GUS R2 Variant.
The KM value was determined by fitting to the Michaelis-Menten

equation using nonlinear regression analysis. The data was

collected for the fitting procedure by monitoring pNP absorbance

as a function of substrate concentration in the cell lysate. For the

GUS R2 mutant using pNP-GAL as the substrate,

KM = 25.460.3 mM (R2 = 0.999).

(TIF)

Figure S6 pNP-GAL KM Approximation for GUS R2.8
Variant. The fitting procedure is identical to that described for

Figure S5. For the GUS R2.8 variant using pNP-GAL as the

substrate, KM = 29.062.7 mM (R2 = 0.998).

(TIF)

Figure S7 Ramachandran plot of top pNP-GALmutants.
50 of the top mutants from each of the pNP-GAL libraries were

examined. ‘‘Core’’ (white), ‘‘allowed’’ (off white), ‘‘generous’’

(gray), and ‘‘outside’’ (dark gray) regions of the Ramachandran

plot were determined by Morris et al. (1992). Results show that

glycine residues (crosses) are frequently observed in the ‘‘generous’’

or ‘‘outside’’ regions of the map. Alternatively, the other 19

standard amino acids (squares) are much less frequently observed

in the ‘‘generous’’ or ‘‘outside’’ regions. Glycine residues can avoid

some of the steric repulsion that is more difficult to avoid for

residues with a Cb. While other amino acids can undergo

contortions in their side chain to avoid a strong steric clash,

mutation to a glycine residue is more favorable.

(TIF)

Table S1 Gas phase energies from QM cluster model of
GUS active site. The gas phase energies are reported for the
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cluster model of the active site with the backbone of all residues

constrained, as well as the ASN 466 sidechain. The calculated

energies are relative to the calculated ‘‘Intermediate 2 (E)’’ energy.

Each of the three structures corresponds to structures identified in

Figures 4 and 6. This correspondence is indicated by each

structure’s one-letter label.

(DOC)

Table S2 Primers Used for Switching GUS Specificity.
(DOC)

Text S1 Detailed Discussion of QM Calculations.
(DOC)

Text S2 Derivation of Equations 4 & 5.
(DOC)

Text S3 Experimental Methods for KM Estimation from
Cell Lysates.

(DOC)

Text S4 Prevalence of Small Amino Acids in OptZyme
Results.

(DOC)
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