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Computer simulation can be used to predict human walking motions as a tool of basic

science, device design, and for surgical planning. One the challenges of predicting human

walking is accurately synthesizing both the movements and ground forces of the stance

foot. Though the foot is commonly modeled as a viscoelastic element, rigid foot-ground

contact models offer some advantages: fitting is reduced to a geometric problem, and

the numerical stiffness of the equations of motion is similar in both swing and stance.

In this work, we evaluate two rigid-foot ground contact models: the ellipse-foot (a

single-segment foot), and the double-circle foot (a two-segment foot). To evaluate the

foot models we use three different comparisons to experimental data: first we compare

how accurately the kinematics of the ankle frame fit those of the model when it is forced to

track the measured center-of-pressure (CoP) kinematics; second, we compare how each

foot affects how accuracy of a sagittal plane gait model that tracks a subjects walking

motion; and third, we assess how each model affects a walking motion prediction. For

the prediction problem we consider a unique cost function that includes terms related

to both muscular effort and foot-ground impacts. Although the ellipse-foot is superior

to the double-circle foot in terms of fit and the accuracy of the tracking OCP solution,

the predictive simulation reveals that the ellipse-foot is capable of producing large force

transients due to its geometry: when the ankle quickly traverses its u-shaped trajectory,

the body is accelerated the body upwards, and large ground forces result. In contrast, the

two-segment double-circle foot produces ground forces that are of a similar magnitude

to the experimental subject because the additional forefoot segment plastically contacts

the ground, arresting its motion, similar to a human foot.

Keywords: foot contact, musculoskeletal model, motion prediction, optimal control, multibody dynamics

1. INTRODUCTION

Understanding the relationships between force and movement in the musculoskeletal system is
key to correcting movement pathology. Though it is possible to study muscle movement in-vivo
(Fukunaga et al., 2001; Ishikawa et al., 2003; Maganaris, 2003; Reeves and Narici, 2003) measuring
muscle force in-vivo is not possible without invasive surgery. Currently the only way to study
the motion and forces of the human musculoskeletal system is to use mathematical models and
computer methods to predict quantities that cannot easily be measured.

The mathematics of optimal control can be used to predict the movements of a model
(Ackermann and van den Bogert, 2010; Schultz andMombaur, 2010;Mordatch et al., 2013). Casting
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human motion prediction as an optimal control problem
(OCP) requires four components: a musculoskeletal model, a
cost function, problem-specific constraints, and a method to
solve for the vector of state and muscle force waveforms that
simultaneously satisfy the equations of motion and minimize the
cost function. While the underlying mathematics of multibody
dynamics and optimal control is well-developed, many tissues
and structures of the body are challenging to model. Though the
human body contains many mechanically complex structures,
it has proven particularly difficult to formulate models of foot
ground contact that are both accurate and well-suited for the
prediction of walking.

Inaccuracies in themodel of foot ground contact affect the rest
of the body because the foot forms the only boundary between
the body and the ground during typical walking. The shape that
a foot model makes during walking determines how ground
forces are transformed into ankle torques and vice-versa. Though
impressive movement predictions have been realized without an
accurate foot shape (Van den Bogert et al., 2012; Mordatch et al.,
2013; Koelewijn et al., 2018), differences in foot shape ultimately
affect the ankle kinematics, and CoP progression. Accurately
fitting the loaded shape of a foot model to experimental data
is challenging because the optical markers placed on the skin
of the foot move on the order of a centimeter with respect to
the underlying bones (Fuller et al., 1997). Both the fitting and
the simulation of viscoelastic foot models is made difficult by the
widely varying stiffness of human foot pads (Aerts et al., 1995)
which are compliant at initial contact (∼20 N/mm) and rapidly
stiffen with load (1,445 N/mm at 1 body weight). Although the
literature contains some excellent examples of fitted viscoelastic
foot models (Halloran et al., 2010; Pàmies-Vilà et al., 2014;
Shourijeh and McPhee, 2014, 2015; Millard and Kecskeméthy,
2015; Jackson et al., 2016; Brown and McPhee, 2018), rigid foot-
ground contact models are an attractive alternative: the fitting
process is strictly dependent on geometry, and the numerical
stiffness of the model does not change appreciably from swing
to stance. A reduction in the numerical stiffness of the model is
attractive because this makes the resulting optimization problem
less sensitive and therefore easier to solve.

Although rigid-foot ground contact models are common in
the passive dynamic walking literature (McGeer, 1990; Collins
and Ruina, 2005) few rigid foot-ground models exist in the
musculoskeletal modeling literature. Hansen et al. (2004) and
Srinivasan et al. (2008) modeled the lower leg and foot in two-
dimensions (2D) as a single rigid body that rolls on the ground
using a rigid cylinder-plane contact pair. While this approach
can accurately replicate the motion of the entire lower stance
leg, for many applications it is not acceptable to fix the ankle
joint. Although the foot has been modeled using point contacts
for sprinting motions (Kleesattel and Mombaur, 2018), point
contacts do not capture the rolling motion of the foot during
walking (García-Vallejo et al., 2016). The foot has been modeled
as a single convex cam (Ren et al., 2010; Römer, 2018; Römer
et al., 2018) which contacts the ground at a single point and
rolls-without-slipping across the ground plane. Ren et al. (2010)’s
planar foot model closely matched the ankle position of the 12
subjects they tested (≈1 cm on average), with the largest errors

appearing during heel strike (≈2.5 cm) and toe-off (≈1.5 cm).
It is worth noting that a certain amount of kinematic error
is expected during heel-contact and toe-off since a rigid foot
ground contact model does not capture the compression of heel
(Gefen et al., 2001) and forefoot pads (Cavanagh, 1999). Felis
and Mombaur (2016) developed a 3D rigid foot-ground contact
model using a sphere and a planar triangle to represent the
heel and forefoot, respectively, but did not fit the model to
experimental data. Though there are good examples of rigid foot
ground contact models that interact through the ground using a
single curved shape (Ren et al., 2010; Römer, 2018; Römer et al.,
2018), there are no examples of fitted rigid contact models that
treat the hind and forefoot separately.

Unfortunately a foot model that fits kinematic data isolation
does not necessarily translate into a walking prediction that
produces human-like foot ground forces. Optimal walking
solutions in the literature typically have ground force profiles
that deviate from experimental data, sometimes dramatically, at
heel contact (Ackermann and van den Bogert, 2010; Geyer and
Herr, 2010; Dorn et al., 2015) where differences between two and
three times body weight are typical. Large simulated heel contact
forces often arise from pairing a musculoskeletal model with a
viscoelastic foot and using a problem formulation that inherently
does not adjust its walking pattern in response to large contact
forces. Another common problem, in which an obvious solution
is not clear, are ground forces that have an appropriate magnitude
but a shape that differs from experimental data (Anderson and
Pandy, 2001; Ren et al., 2007; Geyer and Herr, 2010; Sreenivasa
et al., 2017). To make an improvement in prediction accuracy it
is necessary to distinguish error that is caused by the model of the
foot from error caused by other sources.

In this work we model and evaluate two planar foot-ground
contact models using three different methods in an effort to
identify differences with experimental data that are caused by the
foot model. The first of the rigid foot-ground contact models we
consider is similar to existing works in the literature because it
interacts with the ground through a single curved segment (Ren
et al., 2010; Römer, 2018; Römer et al., 2018). In contrast, the
second foot-ground contact model has separate contact shapes
for the heel and forefoot. As is typical, we evaluate how well
the kinematics of each foot model track the stance kinematics
of a subject’s foot in isolation. In addition, we consider how well
each foot model performs as part of a whole body gait model:
first, when the gait model is used as part of an optimal-control
problem (OCP) to track experimental data; and second, in an
OCP that predicts motion. The musculoskeletal model and foot
models are described in section 2 while the detailed evaluation
procedure used to assess the foot models is described in section
3. The results of the work appear in section 4 and a discussion of
the results in section 5.

2. MODEL

We model the human body as a planar floating base rigid-body
system (Figure 1A) which interacts with the ground through one
of two different rigid foot ground contact models (Figure 1B).
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FIGURE 1 | The human body is modeled using a 9 DoF rigid body model in

which the hip, knee, and ankle are actuated by pairs of extensor and flexor

MTGs (A). The two sagittal plane models are identical except for the

foot-ground contact model. In one case foot-ground contact is modeled as a

kinematic constraint between an ellipse and a plane, in the other between a

pair of circles and a plane (B).

Foot ground interaction is modeled using contact and rolling
constraints between an ellipse and a plane, and also between a
pair of circles and a plane. The human body models used to test
each foot are identical and have seven segments, nine degrees-of-
freedom (DoF), and are driven by six pairs of agonist-antagonist
muscle-torque-generators (MTGs).

The differential-algebraic equations (DAEs) governing this
system are described as

M(q)q̈+ c(q, q̇) = τ + G(q, q̇)Tλ (1)

gV (q, q̇) = 0 (2)

where q, q̇, and q̈ are the generalized positions, velocities,
and accelerations of the model; M(q) is the mass matrix, and
c(q, q̇) is the vector of Coriolis, centripetal, and gravitational
forces. The kinematic constraints between the foot and the
ground are in the vector gV (q, q̇), while the generalized forces
these constraints apply to the system are contained in the
term G(q, q̇)Tλ where G(q, q̇) is the Jacobian of the constraint
equations gV (q, q̇) with respect to q̇ and λ is a vector of

Lagrange multipliers. The foot ground constraints, gV (q, q̇), are
described at the velocity level, index-reduced, and applied at the
acceleration level.

Throughout this work we indicate position vectors using r,
direction vectors with e, frames with K (which are composed
of a position vector to the origin and a rotation matrix), points
using letters, linear velocity with v, and angular velocities with ω.
Forces are denoted using f while functions are indicated with f
and appear with an argument. Subscripts are used with direction
vectors and frames to provide additional information, while a
more elaborate system is used with kinematic vectors: the origin
of the vector appears in the left subscript, the termination in
the right subscript, and the frame the vector is resolved into (if
necessary) is indicated in the left superscript. Thus ArH means
the position vector that begins at point A and terminates at point
H but is not yet resolved into any particular frame since the left
superscript is blank.

The constraints between the ellipse and the plane are applied
at the point-of-closest approach (nS) and are described at the
velocity-level using a contact constraint

(vA + ωA × (ArE + rS(φ)eφ))
TeZ = 0 (3)

and a rolling constraint

(vA + ωA × (ArE + rS(φ)eφ))
TeX = 0 (4)

where vA is the linear velocity of the origin of the ankle frame
KA, ωA is angular velocity of KA, ArE is the vector from KA to
the center of the ellipse, eφ the direction vector that points to nS,
and rS(φ) is the radius of the ellipse at the polar angle φ. Since
there is no closed form equation for the point of closest approach
between an ellipse and a plane, we numerically solve for φ using
first the bisection method, and finally Newton’s method to polish
the root to high accuracy. The parameters of the ellipse-foot (pE)
are defined by the offset of the ellipse from the ankle (ArE), its
relative orientation to the angle frame (AθE), and the lengths of
the major and minor axes of the ellipse (rX and rY).

The double circle foot contact model uses one of three
different sets of constraint equations depending on which circle
is in contact with the ground. During heel contact the constraint
equations are

(vA + ωA × (ArH − rHeZ))
TeZ = 0 (5)

(vA + ωA × (ArH − rHeZ))
TeX = 0 (6)

where rH is the radius of the heel circle. During forefoot contact
the constraint equations are given by

(vA + ωA × (ArF − rFeZ))
TeZ = 0 (7)

(vA + ωA × (ArF − rFeZ))
TeX = 0 (8)

where rF is the radius of the forefoot contact. These equations
are nearly identical to the constraints used for the ellipse, but
without the extra computational expense incurred in computing
the point of closest approach. To ensure that the foot is not
over-constrained when both circles touch the ground, we apply
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the contact and rolling constraints of one circle, while the other
is constrained with just a contact constraint. The parameters
of the double-circle foot (pC) are defined by the offset of each
circle from the ankle (ArH and ArF), and the radius of each circle
(rH and rF).

Themodel is actuated by six pairs of agonist-antagonist MTGs
each of which model groups of extensors and flexors that cross
the hip, knee, and ankle. The torque τ M developed by a single
MTG resembles that of a rigid-tendon Hill-type muscle model
(Zajac, 1988; Millard et al., 2013) and is given by

τ M = ±τ M
o (a fA(θ)fV(ω)) (9)

where τ M
o is the maximum active isometric torque of the MTG,

a represents the chemical activation of the MTG, fA(θ) is the
active-torque-angle characteristic, fV(ω) is the torque-angular-
velocity curve, and the sign is set to be consistent with the
anatomy of the muscle group and the generalized coordinates
used to describe the model. The parameters (τ M

o ) and curves
[fA(θ) and fV(ω)] that define the flexors and extensors of the hip,
knee, and ankle are fitted to the data of Anderson et al. (2007)
and Jackson (2010). Please see Millard et al. (2017) for a more
detailed description of the formulation and parameters of the
MTGs. Since walking does not typically stretch the leg muscles
appreciably (Arnold andDelp, 2011), we ignore the passive forces
developed by the parallel element.

Although it is conventional to describe activation dynamics
using an ordinary differential equation with a discontinuity,
this formulation is not compatible with gradient-based optimal
control methods which require C2 continuity. Here we describe
activation dynamics using a C2 approximation

ȧ =
e− a

1
2 (τA + τD)

(10)

where e is the excitation signal, a is the activation of the muscle.
The activation τA and deactivation τD time constants are 15 and
50ms, respectively (Thelen, 2003).

At each leg joint the net torque is given by

τi = τ MF
i + τ ME

i − βωi. (11)

where F and E designate the joint’s flexors and extensors, and β is
light passive damping introduced by the musculature and tissue
surrounding the joint. The damping coefficient is defined as

β = η
τ MF
o + τ ME

o

ωMF
max + ωME

max

(12)

so that the amount of damping is proportional to the strength
the musculature, the scaling factor η, and inversely proportional
to the maximum angular velocity of the musculature. We use a
value of 2.0 for η which results in damping coefficients which
range between 2.7 and 7.3 Nms/rad.

We use the open-source dynamics library Rigid Body
Dynamics Library1 (RBDL), an implementation of Featherstone’s

1https://github.com/ORB-HD/rbdl-orb

order-n dynamics methods (Featherstone, 2014), developed by
Felis (2016), to solve the forward dynamics of our model.
To simulate the MTGs, we use RBDL’s muscle model library
developed by Millard et al. (2017).

3. EVALUATION PROCEDURE

As is typical, we first evaluate each foot model in isolation by
considering how accurately each tracks the kinematics of the
ankle and CoP of a subject’s foot. Next, we pair each candidate
foot model with a musculoskeletal model and solve a tracking
OCP to determine if the experimental subject’s gait is in the
solution space of each foot model. Finally, we solve a prediction
OCP to examine how well each foot performs when it is not
guided by experimental data and is free to move.

3.1. Experimental Data
The experimental data used in this study comes from a
walking trial recorded in an experiment described in Millard
et al. (2017). Briefly, the motions and ground forces of a 35-
year old male subject (mass 81.7 kg and height of 1.72 m)
wearing light hiking shoes were recorded during level walking.
OptoTrack IRED markers clusters were used to track the 3-
dimensional (3D) movements of 14 body segments (head,
upper-torso, mid-back, pelvis, thighs, shanks, feet, upper-
arms, and lower arms) while Kistler force plates (Kistler
GmbH, Germany) were used to measure ground forces. The
recordings were conducted at Vrije Universiteit Amsterdam
according to the guidelines of the Declaration of Helsinki 2013,
approved by the ethics committee in Faculteit der Gedrags- en
Bewegingswetenschappen (Faculty of Behavioral and Movement
Sciences), and with written and informed consent from the
subject. Mass and inertia properties were computed using
Zatsiorsky’s regression equations (Zatsiorsky, 2002) while the
geometry of the human model is extracted using digitized bony
landmarks from the experimental subject.

3.2. Foot Model Fitting
As is typical in the literature, first we will fit the foot model in
isolation before proceeding to use it with the whole body model.
Since the force plates very accurately record the CoP trajectory,
we have elected to fit the foot model by precisely matching the
recorded CoP kinematics (experimental quantities are denoted
with EXP) and then measuring the error between the position and
orientation of the KA and the K

EXP
A frame (Figure 2). Prior to

fitting the foot model, the data used for fitting was segmented to
only include samples in which the normal contact force was>5%
of the peak recorded ground force (928N). To fit the model foot,
it was initially posed at the same orientation as the subject’s foot
had at toe-off (at time sample n) and offset so that the contact
point of the model rP,n coincided with the recorded CoP rEXPP,n .
Next, the model foot was rolled without slipping backwards until
the foot contact point of the model matched the recorded CoP, a
process which continued until the time of heel strike was reached
(at time sample 1). We elected to pose the model in the toe-off
position and roll it backwards because this made it easier for us to
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FIGURE 2 | The error in the geometry of each foot model is fitted by posing

the foot model so that its contact point and foot orientation matches the

subject’s at toe-off. Next the foot model is rolled backwards (without slipping)

so that it’s contact point matches the subject’s recorded CoP. This process is

continued until heel strike. The geometric error of the foot model is the

weighted sum of position and orientation errors between the model’s ankle

frame and the subject’s ankle frame.

manually find a good set of initial parameters prior to beginning
the optimization.

The geometric parameters of each foot model (pE and pC) are
fitted by minimizing the cost function

min

1
∑

i=n

(f EXPP,i )TeZ

max((f EXPP )TeZ)
(wr(rA,i − rEXPA,i )2 + wα(αA,i − αEXP

A,i )2),

(13)

where the vectors rA and αA are the origin and orientation of
the ankle frame, and f EXPP,i is ith experimentally recorded ground
reaction force vector. The cost of each sample i, is weighted by
the normalized magnitude of the contact force so that the final
fit is closest when the ground forces are highest. The weights wr

and wα are set to (1/0.01)2 and (1/( 14π))
2 so that distances on

the order of 1 cm and 1
4π , which we consider to be large errors

in this context, result in an error value of 1. We did not allow all
parameters to vary but fixed the total length of the foot model to
be 30.5 cm, which is 0.5 cm longer than the light hiking shoes
worn by the subject. This extra constraint is added to prevent
the optimization routine from converging on an unrealistically
short foot. Though a shorter foot may fit the kinematics of this
test best, it causes problems when the subject’s CoP is followed in
the tracking OCP problem (described in section 3.4).

The resulting prediction problem for the ellipse-foot has only
four optimization variables (the center and orientation of the
ellipse and the radius of the minor axis) while the double-circle
foot has five parameters (the radius of both circles, the center
location of the forefoot circle, and the height of the center of
the hind-foot circle). In each case the least squares problem is
initialized using manually and then solved using a Nelder-Mead
simplex method (Nelder and Mead, 1965; Lagarias et al., 1998) to
a tolerance of 10−6 (MATLABR2018a). Each model is evaluated
based on the how closely the ankle frame of the model tracks the
subject’s ankle movements.

3.3. Walking as an Optimal Control Problem
In this work we use two different types of OCPs: a tracking
problem which tries to follow experimental data, and a
prediction problem that tries to minimize a cost function. Both
of these OCPs define walking using the same mathematical
framework, and differ only in the cost function used and
a few constraints. Here we describe how walking is defined
as optimal control problem in general before proceeding to
describe the specific differences between the tracking and
prediction OCPs.

An OCP has the objective of identifying the vector of state x(·)
trajectories, control u(·) trajectories, and constant parameters p,
that minimize the sum of the Lagrange φL and Mayer 8M terms
in the cost function across np distinct phases

min
x(·),u(·),ν

np−1
∑

j=0

(

∫ νj+1

νj

φL
j (x(t), u(t), p)dt

)

+

np−1
∑

j=0

8M
j (x(t), u(t), p)

(14)

where j iterates sequentially across the phases that begin at time
νj and terminate at time νj+1. In addition to minimizing the cost
function, the state trajectories must satisfy the state derivatives
and impact state transitions

ẋ(t) = fj(t, x(t), u(t), p), (15)

x(t+j ) = cj(x(t
−
j )), for t ∈ [νj−1, νj], (16)

j = 1, ..., np, ν0 = 0, νnp = T.

which take the form of the DAEs in Equations (1, 2), and
activation dynamics of the MTGs in Equation (10). In this
work, state transitions from foot impacts cause discrete changes
in the generalized velocities of the model but affect no
other states.

The state vector, x = (q, q̇, a), of the musculoskeletal model
has 30 states, 18 of which correspond to generalized positions and
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velocities while the additional 12 come from the vector of muscle
activations. The vector of control signals, u(·), is composed of the
twelve excitation signals that affect the activation dynamics of the
MTGs as described in Equation (10). The vector of generalized
forces has 6 non-zero elements, τ = (0, 0, 0, τ4, τ5, τ6, τ7, τ8, τ9),
corresponding to torques that the MTGs and passive damping
apply to each joint. The leading three entries in τ are zero
because there are no generalized forces acting between the inertial
frame and the pelvis. The number of kinematic constraints
applied to the model ranges between 2 and 6 depending on
the foot-model being simulated and the constraint set that
is active.

We formulate walking as a multi-phase OCP that has four
phases for the ellipse-foot (Figure 3A), and seven phases with
the double-circle foot (Figure 3B). To distinguish between the

FIGURE 3 | We model walking as a multi-phase process. The ellipse-foot

results in a four-phase definition of walking (A), while the double-circle foot

(with its separate hind and forefoot contacts) results in a 7 phase definition of

walking (B). For brevity we refer to the ellipse model with an “e”, the double

circle model with a “c”, double stance with (DS), and single-stance with (SS).

Black chevrons indicate an impact occurs. An “*” indicates that the phase is

instantaneous.

various phases and foot model we introduce a number of short
forms: ellipse-foot (e), double-circle foot (c), double-stance (DS),
single-stance (SS), and instantaneous phases are marked with an
“*.” Walking using the ellipse-foot consists of two continuous
phases and two instantaneous phases:

• 1e*. DSa occurs when the left foot touches the ground;
• 2e. DSb: is a double stance phase;
• 3e. SSa: is a continuous single-stance phase that begins when

the right foot’s ground force goes to zero;
• 4e. DSa: is identical to 1e* but with the left and right

legs mirrored.

The double-circle foot requires four continuous phases and three
instantaneous phases to describe walking:

• 1c*. DSa: occurs when the left heel circle touches the ground;
• 2c. DSb: a double-stance phase between the right forefoot and

left heel;
• 3c*. DSc: occurs when the left forefoot touches the ground;
• 4c. DSd: a double-stance phase between the right forefoot, left

heel, and left forefoot;
• 5c. SSa: a single-stance phase with left heel and forefoot on the

ground;
• 6c. SSb: a single-stance phase with the left forefoot on the

ground;
• 7c*. DSa: is identical to 1c* but with the left and right

legs mirrored.

In both cases the foot-ground impulse are stored in the
vector 1. Note that these specific phase descriptions match the
experimental subject’s gait, but there are many other possible
phase descriptions for the double-circle foot.

We use continuous constraints

0 ≤ gj(t, x(t), u(t), p) for t ∈ [νj−1, νj] (17)

on state and control bounds, as well as using phase specific
constraints. The bounds on q are set to be at least ±1m and
(for the linear coordinates) and ±1 radian (for the angular
coordinates) larger than the experimental measurements (except
in knee extension where 0.1 radian of hyper-extension is
permitted). Similarly the bounds on q̇ are set to be at least±1m/s
and ±1 rad./s larger than the experimental measurements. The
vectors a(·) and u(·) are constrained to be between zero and one.
Phases which begin with an impact include equality constraints at
the position level so that the respective foot-ground constraints
begin on the constraint manifold. During swing phases an
inequality constraint is used to ensure that the swing foot does
not touch the ground. All ground forces and impulses are
constrained act unilaterally and have tangential components that
are limited by the coefficient of friction which we assume to be
0.8. To ensure that the final solution represents periodic and
symmetric walking we apply periodicity constraints so that the
joint angles, activations, and ground forces of the right leg (left
leg) in the initial phase match the corresponding values of the
left leg (right leg) in the final phase. At the velocity level we
apply periodicity constraints to the linear and angular velocity
of the pelvis.
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3.4. Least-Squares Tracking Problem
To determine if the subject’s gait is within the solution space of
the model we form a least-squares OCP to track the subject’s data.
As previously noted, not all of the experimental measurements
are of equal accuracy: while the CoP and ground forces are very
accuracy measured by the force plates, the kinematic data is
subject to error on the order of a centimeter or two due to skin
artifact (Fuller et al., 1997). To make the best use of the data, we
have formulated a tracking (indicated by T where appropriate)
problem which has a Lagrange φL

T and Mayer 8M
T terms of

φL
T =

9
∑

i=3

(

wθ ,i(θi − θEXPi )2 + wω,i(ωi − ωEXP
i )2

)

+ wP(rP − rEXPP )2 + wF(fP − f EXPP )2 + 10−3
nu
∑

i=0

(

u2i + a2i
)

(18)

8M
T = 10−5

n1
∑

i=0

12
i (19)

where nu and n1 are the number of control signals and the
number of impulses respectively. This cost function is applied
across all phases of the problem. Note that the Lagrange term
is an integrated quantity, as such all of the experimental data
is interpolated as a function of time prior to evaluating and
numerically integrating (Equation 18).

The Lagrange term is formulated so that the angles and
angular velocities of the pelvis and leg joints (indices for θ3 − θ9
illustrated in Figure 1) are tracked along with the CoP , and
ground forces. The weighting terms on the angles wθ ,i, and
angular velocities wω,i are set to

1
π/4 and 0.1

π/4 , respectively with

the exception of the ankle joint which is set to 1
100 of these

nominal values: kinematic error that the foot introduces will be
most readily observed at the ankle. The weighting terms wP and
wF associated with the normal components are normalized with
respect to maximum recorded contact forces. In addition, we
have introduced three regularization terms: the sum of squared
control signals u2 and activations a2 in the Lagrange term, and
the sum of squared ground impulses 12 in the Mayer term.
The coefficient on the regularization terms has been chosen so
that the terms have a similar magnitude. Here we evaluate the
Lagrange term only at the shooting nodes (making this a discrete
least-squares problem).

3.5. Minimization Prediction Problem
Inspired by the experimental work of Hoyt and Taylor (1981)
and later Farley and Taylor (1991), we formulate a prediction
(indicated with a P) cost function in with a Lagrange term on
muscle activation

φL
P =

nu
∑

i=0

a2i (20)

and a Mayer term that includes foot-ground impacts

8M
P = w1

n1
∑

i=0

12
i . (21)

Here w1 is set to 10−2, a value which found in our
preliminary simulations to be sufficient to reduce the ground
force discontinuities introduced by ground impacts to levels
consistent with the experimental data. So that the physical
demands placed on the foot models are comparable to the subject
data, in addition, we introduce two constraints: that the average
forward velocity of the solution is identical to the subject’s (1.01
m/s), and that the step length of the model matches that of the
subject (0.61m). Note that this problem formulation, while useful
for our purposes, cannot be used to predict human walking in
general because we have explicitly included a desired forward
velocity and step length.

3.6. Numerical Solution Method
To solve the tracking and prediction OCPs specified we use
a direct multiple shooting method described by Bock and Pitt
(1984) and implemented in the software package MUSCOD-
II developed by Leineweber et al. (2003). In a direct approach,
the infinite-dimensional space of control functions u(·) is
discretized in time using functions which provide only local
support. Here we use piece-wise linear functions to describe
the excitation signals to the MTGs. State parameterization is
performed by the multiple shooting technique which transforms
the OCP, together with the control discretization, from an
infinite dimensional problem into a finite dimensional problem
which is then solved iteratively using a sequential-quadratic-
programming (SQP) solver that has been tailored to exploit the
structure of the problem.

We initialize the problem with a rough initial solution:
positions and velocities are initialized using a linear interpolation
of the experimental positions which are then polished to satisfy
the foot ground constraints, activations are set to 0.01, control
signals are set to 0.025. The initial solution does not satisfy the
OCP constraints and is not a feasible motion. The OCPs using
the ellipse and double circle foot models are discretized using
25 and 31 shooting nodes and control intervals, respectively.
Each shooting interval is integrated using the Runge-Kutta-
Fehlberg method with an absolute and relative tolerance of 10−8.
Note that, in contrast to direct-collocation (Von Stryk, 1993),
the dynamics of the system are simulated using a variable-
step integrator over the entire duration of the simulation. To
reduce the drift of the foot-ground constraints, we use Baumgarte
stabilization (Baumgarte, 1972) applied to the contact constraint
position and velocity errors, and to the rolling constraint
velocity errors. The OCPs are run until the Karush-Kuhn-Tucker
condition is satisfied to a tolerance of 10−5. Each problem
required between 20 and 50 min of processing time on an Intel
i7-3630QM CPU with a clock speed of 2.40 GHz.

4. RESULTS

When forced to track the recorded CoP, both the fitted ellipse-
foot and the double-circle foot produce ankle trajectories that
differ from the subject’s on the order of one centimeter, but
have maximum errors that exceed this desired limit as shown
in Table 1. Though the fitting process restricted the length of
the foot models to have a realistic length, the height of the
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TABLE 1 | The position (rA − rEXPA ) and orientation (αA − αEXPA ) errors between the

ankle frame of each respective foot model and experimental data of a subject’s

foot during the stance phase.

Ellipse Circle-circle

ε(t) µ(|ε(t)|2) ± σ (|ε(t)|2)

rA − rEXPA 1.1 ± 1.1 cm 0.7 ± 0.9 cm

αA − αEXPA 4.7◦ ± 3.1◦ 7.1◦ ± 2.8◦

ε(t) max(|ε(t)|2)

rA − rEXPA 4.4 cm 4.3 cm

αA − αEXPA 10.6◦ 18.1◦

These differences are present when each foot model is constrained to have a CoP which

is identical to that of the subject.

TABLE 2 | The parameters of each foot model which best fit the subject’s data

are listed below.

Ellipse foot

A
ArE (4.30, −8.11)

AαE 0

rX 15.25

rY 4.03

Double circle foot

A
ArH (−6.19, −6.64)

rH 4.87

A
ArF (11.97, −6.56)

rF 7.46

As noted in section 3.2, the heel segment is placed so that the length of the foot is 30.5

cm, while all other parameters are free to vary. Note that AαE is the rotation from KA to

KE. Please see Figure 1 for a graphical depiction of the remaining parameters.

foot model shapes does exceed the size of a shoe particularly
at the forefoot of the double-circle foot as shown by the
parameter value for rF shown in Table 2. The double-circle foot
offers a slightly better tracking of the subject’s ankle position
while the ellipse-foot is slightly superior in its reproduction
of the orientation of the ankle frame. The ankle trajectory
(Figures 4, 5) traced by the two different foot models show
that the highest errors occur during heel contact: it is during
this period that the rigid approximation to the foot is worst
because the heel pad and shoe are compressing. Further, the
ankle trajectory of the two models displays a characteristic
difference: the ellipse foot produces a u-shaped ankle trajectory
(marked with a “*” in Figure 4) while the double circle produces
a v-shaped trajectory due to the forefoot circle plastically
contacting the ground.

The solution of the tracking OCP shows that the ellipse-
foot is able to reproduce the orientation of the subject’s foot
(Figure 6A), and ankle angle (Figure 6D) with better accuracy
than the double-circle foot as the summary statistics show in
Table 3. Both tracking OCPs had difficulty reproducing the
subject’s knee angle (Figure 6E) between near 75% of the stance
phase, because the foot models fail to capture the shape of the

FIGURE 4 | When the ellipse-foot is constrained to track the CoP (illustrated

with the butterfly plots for reference) from the subject’s data it is able to closely

reproduce the subject’s foot movements during mid-stance and for most of

toe-off. The initial kinematics of the foot during heel contact are not

well-captured. The continuous rolling motion of the foot forces the ankle frame

through a smoothened cusp which is annotated with an “*”. Note that the dots

which appear on each line would coincide if the foot model perfectly fit the

subject’s foot movements.

FIGURE 5 | The double-circle foot is able to capture the subjects ankle

kinematics during initial heel contact better than the ellipse-foot, though it has

difficulty tracking the points between heel contact and mid-stance. During

mid-stance both the heel and forefoot contacts touch the ground which fixes

the ankle at the same location. Note that the dots which appear on each line

would coincide if the foot model perfectly fit the subject’s foot movements.

foot at the transition between mid-stance and toe-off. The hip
angle is tracked with comparable accuracy by both foot models
(Figure 6F and Table 3). Though the double-circle foot tracks
the CoP more accurately than the ellipse-foot (Figure 6B and
Table 3), the ground forces produced by the double-circle foot
exhibit oscillations that are present to a lesser degree in the
ellipse-foot (Figure 6C).

The solutions of the prediction OCP from eachmodel deviates
from the subject’s data in general as shown in Table 4, but in
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FIGURE 6 | A comparison between the tracking OCP solutions from the ellipse-foot and double-circle foot models and the subject’s data. Transitions between

phases are indicated using a circle mark, while the labels for the continuous phases (described in section 3.3) appear at the top (ellipse-foot in red) and bottom

(double-circle foot in blue) of each plot. Note that the ankle angle (D) [and thus orientation of the foot (A)] is weakly tracked because kinematic errors at this joint are

scaled to be 1
100 the value of other tracked quantities. The ellipse-foot uniformly tracks the subject’s data with a higher degree of accuracy than the double-circle foot.

Both models have difficulty tracking the subject’s knee angle at 75% stance (E), and the subject’s ground forces near 25% and 75% of stance. During heel-only

contact the double-circle foot is not able to track the subject’s CoP movements (B), but closely follows the subject’s CoP trajectory thereafter. Due to ground impacts

both models have ground forces that begin the stance phase with finite values. The double-circle foot has an additional discontinuity in both the CoP profile (B) and

ground force profile (C) when the forefoot strikes the ground. The forefoot strike completely arrests the angular velocity of the double-circle foot (see the flat line in

phases 4c and 5c in A) while the ellipse-foot continuously rotates during stance. Both solutions are able to closely follow the subject’s hip angle trajectory (F).

different ways as observed at the kinematics of the hip, knee and
ankle (Figures 7D–F). These large differences underscore how
influential the shape of the foot is on the gait of themodel because
everything else about the two problems is identical except for
the foot model. Another difference of note is observed in the
ground forces produced by the ellipse-foot model: the normal
and tangential forces exhibit a transient that is about 13 ms in
duration that departs from the recorded ground forces by 6582.7
N and 2137.0 N (marked with a “*” Figure 7C), respectively. The
nature of the transient is not numerical (the largest Baumgarte
forces are 10.6 N), nor due to an impact, but due to an interaction
between the motion of the model and the single curved foot
segment: at precisely this moment the ankle of the ellipse-foot
is at the bottom-most part of the u-shaped trajectory it traces
(marked with a “*” in Figure 4). The ellipse-foot rotates the
ankle quickly (hitting the upper bound 14.6 rad

s ) through the u-
shaped trajectory accelerating the ankle frame upwards. Since the

knee is nearly straight at this time the entire mass of the torso
is also accelerated upwards. The brief, but rapid, acceleration
of the ankle frame of the ellipse-foot results in a brief, but
large, spike in the simulated ground reaction forces. To confirm
this suspicion we re-ran the prediction OCP with but limited
the angular velocity (from 14.6 rad

s to 3.96 rad
s ) of the ankle

joint until the peak contact forces were comparable to those of
the double-circle foot (1,444 N vs. 1,219 N). Though this extra
constraint reduced the unrealistic ground forces, the constraint
itself represents a departure from reality because the subject’s

ankle rotated at a greater velocity (4.41 rad
s > 3.96 rad

s ) during
the experiment. In contrast, the plastic impact of the forefoot
circle arrests the motion of the double-circle foot effectively
preventing the force transient produced by the ellipse-foot.
Please see the accompanying Supplementary Material section
for videos, additional plots, and code for both the models and
the OCPs.
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TABLE 3 | The average and maximum errors between the subject’s stance foot

and that of the tracking solution show that the ellipse-foot results in a better

replication of the subject’s gait than the double-circle foot, particularly at the ankle.

Ellipse Circle-circle

ε(t) µ(|ε(t)|2) ± σ (|ε(t)|2)

αA − αEXPA 3.6◦ ± 2.6◦ 5.4◦ ± 2.1◦

rP − rEXPP 1.5 ± 1.6 cm 0.8 ± 1.0 cm

(fP − fEXPP )TeX 30.0 ± 17.5 N 29.2 ± 23.7 N

(fP − fEXPP )TeZ 46.8 ± 38.1 N 69.6 ± 58.9 N

θA − θEXPA 3.1◦ ± 2.1◦ 7.3◦ ± 2.1◦

θK − θEXPK 1.6◦ ± 1.7◦ 2.2◦ ± 1.8◦

θH − θEXPH 2.9◦ ± 2.5◦ 3.0◦ ± 1.5◦

ε(t) max(|ε(t)|2)

αA − αEXPA 14.6◦ 8.5◦

rP − rEXPP 4.7 cm 5.4 cm

(fP − fEXPP )TeX 74.7 N 130.2 N

(fP − fEXPP )TeZ 128.4 N 266.1 N

θA − θEXPA 13.9◦ 12.7◦

θK − θEXPK 6.4◦ 6.9◦

θH − θEXPH 7.5◦ 6.0◦

Note that the ankle angle and foot orientation are free to vary, while all other quantities

listed below are tracked.

TABLE 4 | The difference between the results of the prediction OCP of each

model’s stance leg and that of the subject show that, when free to vary, the final

gait is quite different from that of the subject.

Ellipse Circle-circle

ε(t) µ(|ε(t)|2) ± σ (|ε(t)|2)

αA − αEXPA 9.9◦ ± 5.8◦ 10.7◦ ± 7.7◦

rP − rEXPP 5.8 ± 5.0 cm 4.1 ± 2.8 cm

(fP − fEXPP )TeX 102.2 ± 212.1 N 40.2 ± 27.5 N

(fP − fEXPP )TeZ 290.1 ± 666.2 N 105.4 ± 102.9 N

θA − θEXPA 8.2◦ ± 4.3◦ 12.8◦ ± 4.2◦

θK − θEXPK 14.6◦ ± 6.3◦ 7.5◦ ± 3.7◦

θH − θEXPH 8.5◦ ± 4.1◦ 4.2◦ ± 2.4◦

ε(t) max(|ε(t)|2)

αA − αEXPA 17.0◦ 22.9◦

rP − rEXPP 16.3 cm 12.7 cm

(fP − fEXPP )TeX 2137.0 N 144.6 N

(fP − fEXPP )TeZ 6582.7 N 595.6 N

θA − θEXPA 19.4◦ 20.7◦

θK − θEXPK 21.9◦ 17.7◦

θH − θEXPH 15.0◦ 9.6◦

Although the kinematics of the stance ankle from the ellipse-foot model more closely follow

the subject than the double-circle foot, the ellipse-foot has a large force transient (see

section 4 for details) due to its mechanics. Though the ground forces created by the

double-circle foot model differ from the subject, these errors are relatively small when

compared to similar works in the literature.

5. DISCUSSION

While there are many applications for computerized gait
prediction, few applications are possible without an accurate

model of foot-ground contact. Though much attention has
been given to modeling the foot it has proven difficult to
simultaneously achieve realistic foot-ground contact kinematics
and simulated ground forces. In this work we evaluated two
rigid foot-ground contact models in terms of how well each
replicated the kinematics of the stance foot and how each affected
a tracking OCP and a prediction OCP. The multiple layers of
evaluation proved useful. Although the ellipse foot model is
better able to fit the kinematics of the stance foot in the least
squares OCP, the prediction OCP illustrates that, because this
foot model continuously rolls at a single contact point, it is
capable of producing enormous contact forces due to the curve
it forces the ankle through. This result has a larger implication:
the accuracy displayed by a foot-ground contact model during an
isolated fitting, or a trackingOCP , does not necessarily generalize
to a prediction OCP. In addition, to our knowledge, this is the
first work in the literature which solves two prediction OCPs that
are identical in every respect except for the model of foot ground
contact. The differing predictions of the ellipse-foot and double-
circle foot models confirm a long held suspicion that the model of
foot-ground contact has a large influence on the optimal motion
of the model.

The transient present in the prediction OCP of the ellipse-foot
indicates that foot models consisting of a single roll-over shape
(Ren et al., 2007; Römer, 2018; Römer et al., 2018) should be
treated with some caution. Although the transient we observed
with the ellipse-foot does not appear in the work of Ren et al.
(2007) there are a few reasons why this might be true. First,
Ren et al. (2007) did not allow the feet to move freely during
double stance, but constrained the CoP trajectory and ground
forces under each foot to follow prescribed linear function.
Constraining the movements reduces the magnitude of the
simulated ground forces as clearly shown by the tracking solution
(Figure 6C) and the prediction OCP with the constrained ankle
angular velocity. While the constrained solutions produce more
realistic results, this is an undesirable option: it is not clear what
the constraint should be ahead of time. The second reason why
Ren et al. (2007) may not have observed this transient is because
they sampled system dynamics discretely during the solution
process: the transient could have been skipped between grid
points. Due to the brief nature of the transient, if the model
is being simulated using a grid of time points (as is typical of
direct-collocation) it is important that a final high-resolution
integration be performed to ensure that the results have not been
unduly affected.

The optimal control solutions of Römer (2018) also
have ground forces which are free of transients (personal
communication, ground forces are not reported in the thesis)
likely because of differences in the problem formulation and
solution method. We have used a forward-dynamics problem
formulation which allows the optimization routine to manipulate
the generalized forces but then integrates the dynamics of
the system forward in time. Römer (2018) made use of a
hybrid-zero-dynamic (HZD) approach developed by Westervelt
et al. (2007) which uses a mixture of an inverse- and forward-
dynamic problem formulation: all of the joints of the model are
constrained to follow polynomial functions of the whole-body
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FIGURE 7 | A comparison between the prediction OCP solutions from the ellipse-foot and double-circle foot models and the subject’s data. As in Figure 6, phase

transitions are marked with a circle, continuous phase labels appear at the top (ellipse-foot in red) and bottom (double-circle foot in blue) of each plot. Though both

solutions differ from the subject’s data, both solutions also differ from each other: the shape of the foot has a large influence on the kinematics of the ankle (D), knee

(E), and hip (F) of the stance leg. In one regard the solutions of the ellipse-foot and double-circle foot are similar: in both cases the model keeps its weight on its heel

until the last moments of the stance phase (B). Note that the double-circle foot produces ground forces that are similar in magnitude to the tracking problem while the

ellipse-foot produces a large transient ground force (C) shortly after contact within the continuous phase 2e. This transient is not due to an impact, nor constraint

stabilization, but instead due to an interaction between the walking motion and the ellipse-foot model. As with the tracking solution, the angular velocity of the

double-circle foot is arrested between phases 4c and 5c by the forefoot contact while the ellipse-foot continuously rotates during stance (A). Finally note that phase

4c, while of brief duration in the tracking solution, is of zero duration in the prediction solution.

lean angle; the entire system is reduced to a single DoF which
is integrated forward in time. The force transient we observed
required a rapid change in the angular velocity of a foot, a
rapid change which cannot be described using the polynomials
employed by Römer (2018).

The inevitable discrepancies that arise between predicted
motions and typical human movement can be illustrative of
gaps between our understanding of the mechanics of the body,
and how these structures coordinated during movement. Both
models resulted in tracking OCP solutions in which the ankle
angles which differed from the subject’s at heel contact, and the
knee angle departed from the subject’s near 75% of the stance
phase. The most likely explanation for both of these problems
is that the shapes we used to represent the foot are a poor
match at heel contact and near the transition from mid-stance
to toe-off. The large increase in error between the prediction
OCP and the experimental data show some obvious directions
for improvement. In both cases, the model kept its weight close
to its hind foot (Figure 7B) before rapidly pushing-off. This

trajectory results in a large error between the simulations and the
experimental data of the orientation of the foot (Figure 7A) and
the CoP trajectory (Figure 7B). The departure in CoP trajectory
is likely due to the fact that the MTGs we used in this work have
rigid tendons which do not offer the cost savings that a elastic
tendon can when it is loaded slowly and allowed to recoil rapidly.
The rapid force oscillations present during the stance phase of
the double-circle foot prediction OCP solution, while within the
limits of the activation model, are not present in experimental
recordings of human walking (Figure 7C). We suspect that these
oscillations may be due to the fact that a Hill-model does a poor
job of capturing the stiffness and damping properties of actively
lengthened muscle (Kirsch et al., 1994). These force oscillations
would appear larger with the double-circle foot during heel and
forefoot contact because it is constrained from moving and thus
perfectly transmits the wrench applied to the ankle to the ground.
The ellipse-foot, in contrast, is always free to rotate about its
contact point and would move, attenuating the observed ground
force oscillation.
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6. CONCLUSIONS

Single segment rigid foot ground contact models are an attractive
means to model the foot but should be treated with caution:
under the right circumstances these foot models can produce
large transient forces if the ankle rapidly moves through a u-
shaped trajectory after heel contact. In contrast, we did not
observe the same transient using the two-segment rigid foot
model because the plastic impact of the forefoot arrests the
motion of the ankle through its v-shaped trajectory. Although
the two-segmented rigid foot model results in an OCP with
substantially more phases than a single segment foot, the two-
segmented foot has a benefit: it does not require special treatment
andmay be a closermechanical analog to the human foot. Finally,
though we treated the foot as a rigid object the ground forces of
the prediction OCP are relatively smooth due to the inclusion of
the impulses in the cost function. Though the inclusion of the
impulse term improved our simulation results, the experimental
work of Hoyt and Taylor (1981) and later Farley and Taylor
(1991) suggests that terms for both muscular effort and ground
contact terms should appear in cost functions used to predict
legged locomotion.

DATA AVAILABILITY

All datasets analyzed for this study are included in themanuscript
and the Supplementary Files.

ETHICS STATEMENT

The recordings were conducted according to the guidelines of
the Declaration of Helsinki 2013 and approved by the ethics
committee of Faculteit der Gedrags-en Bewegingswetenschappen
(Faculty of Behavioral and Movement Sciences) at
Vrije Universiteit.

AUTHOR CONTRIBUTIONS

MM worked with KM to develop the proposal that funded this
work. MM undertook the work and the writing. KM provided
critical review during the preparation of the manuscript.

FUNDING

We gratefully acknowledge the financial support from the
Deutsche Forschungsgemeinschaft through grant no. MI
2109/1-1. In addition, we are grateful for the financial
support for open access publishing provided by the Deutsche
Forschungsgemeinschaft within the funding program
Open Access Publishing, by the Baden-Württemberg
Ministry of Science, Research and the Arts and by
Ruprecht-Karls-Universität Heidelberg.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Gert Faber and Axel
Koopman at the Vrije Universiteit for their help collecting the
experimental data used in this work. We also wish thank the
Simulation and Optimization research group of the IWR at
Heidelberg University for allowing us to work with the optimal
control code MUSCOD-II.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2019.00062/full#supplementary-material

Please see the supplemental data for videos, data, and code.
The data is accompanied by scripts that can be used to
generate the tables and plots that appear in the results section. In
addition, the scripts can also generate plots that show activation
profiles, constraint error profiles, Baumgarte stabilization forces,
and the phase of each OCP.

REFERENCES

Ackermann, M., and van den Bogert, A. (2010). Optimality principles

for model-based prediction of human gait. J. Biomech. 43, 1055–1060.

doi: 10.1016/j.jbiomech.2009.12.012

Aerts, P., Kerr, R., Clercq, D., Ilsley, D., and Alexander, R. (1995). The mechanical

properties of the human heel pad: a paradox resolved. J. Biomech. 28, 1299–
1308. doi: 10.1016/0021-9290(95)00009-7

Anderson, D. E., Madigan, M. L., and Nussbaum, M. A. (2007). Maximum

voluntary joint torque as a function of joint angle and angular velocity: model

development and application to the lower limb. J. Biomech. 40, 3105–3113.
doi: 10.1016/j.jbiomech.2007.03.022

Anderson, F. C., and Pandy, M. G. (2001). Dynamic optimization of human

walking. ASME J. Biomech. Eng. 123, 381–390. doi: 10.1115/1.1392310
Arnold, E. M., and Delp, S. L. (2011). Fibre operating lengths of human lower

limb muscles during walking. Philos. Trans. R. Soc. B Biol. Sci. 366, 1530–1539.
doi: 10.1098/rstb.2010.0345

Baumgarte, J. (1972). Stabilization of constraints and integrals of motion

in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16.

doi: 10.1016/0045-7825(72)90018-7

Bock, H., and Pitt, K. (1984). A multiple shooting algorithm for direct

solution of optimal control problems. IFAC Proc. Vol. 17, 1603–1608.

doi: 10.1016/S1474-6670(17)61205-9

Brown, P., and McPhee, J. (2018). A 3D ellipsoidal volumetric foot–ground

contact model for forward dynamics. Multibody Syst. Dyn. 42, 447–467.

doi: 10.1007/s11044-017-9605-4

Cavanagh, P. (1999). Plantar soft tissue thickness during ground contact

in walking. J. Biomech. 32, 623–628. doi: 10.1016/S0021-9290(99)

00028-7

Collins, S. H., and Ruina, A. (2005). “A bipedal walking robot with efficient and

human-like gait,” in Proceedings of the 2005 IEEE International Conference on
Robotics and Automation (Barcelona: IEEE), 1983–1988.

Dorn, T. W., Wang, J. M., Hicks, J. L., and Delp, S. L. (2015). Predictive simulation

generates human adaptations during loaded and inclined walking. PLoS ONE
10:e121407. doi: 10.1371/journal.pone.0121407

Farley, C. T., and Taylor, C. R. (1991). A mechanical trigger for the trot-gallop

transition in horses. Science 253, 306–308. doi: 10.1126/science.1857965
Featherstone, R. (2014).Rigid Body Dynamics Algorithms. New York, NY: Springer.

Felis, M. L. (2016). RBDL: an efficient rigid-body dynamics library using recursive

algorithms. Auton. Robots 41, 495–511. doi: 10.1007/s10514-016-9574-0
Felis, M. L., andMombaur, K. (2016). “Synthesis of full-body 3-d human gait using

optimal control methods,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA) (Stockholm: IEEE), 1560–1566.

Fukunaga, T., Kubo, K., Kawakami, Y., Fukashiro, S., Kanehisa, H., andMaganaris,

C. (2001). In vivo behaviour of human muscle tendon during walking. Proc. R.
Soc. Lond. Ser. B Biol. Sci. 268, 229–233. doi: 10.1098/rspb.2000.1361

Frontiers in Neurorobotics | www.frontiersin.org 12 August 2019 | Volume 13 | Article 62

https://www.frontiersin.org/articles/10.3389/fnbot.2019.00062/full#supplementary-material
https://doi.org/10.1016/j.jbiomech.2009.12.012
https://doi.org/10.1016/0021-9290(95)00009-7
https://doi.org/10.1016/j.jbiomech.2007.03.022
https://doi.org/10.1115/1.1392310
https://doi.org/10.1098/rstb.2010.0345
https://doi.org/10.1016/0045-7825(72)90018-7
https://doi.org/10.1016/S1474-6670(17)61205-9
https://doi.org/10.1007/s11044-017-9605-4
https://doi.org/10.1016/S0021-9290(99)00028-7
https://doi.org/10.1371/journal.pone.0121407
https://doi.org/10.1126/science.1857965
https://doi.org/10.1007/s10514-016-9574-0
https://doi.org/10.1098/rspb.2000.1361
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Millard and Mombaur Rigid Foot-Ground Contact Models

Fuller, J., Liu, L.-J., Murphy, M., and Mann, R. (1997). A comparison of lower-

extremity skeletal kinematics measured using skin-and pin-mounted markers.

Hum. Mov. Sci. 16, 219–242. doi: 10.1016/S0167-9457(96)00053-X
García-Vallejo, D., Font-Llagunes, J., and Schiehlen, W. (2016). Dynamical

analysis and design of active orthoses for spinal cord injured subjects

by aesthetic and energetic optimization. Nonlin. Dyn. 84, 559–581.

doi: 10.1007/s11071-015-2507-1

Gefen, A., Megido-Ravid, M., and Itzchak, Y. (2001). In-vivo biomechanical

behavior of the human heel pad during the stance phase of gait. J. Biomech.
34, 1661–1665. doi: 10.1016/S0021-9290(01)00143-9

Geyer, H., and Herr, H. (2010). A muscle-reflex model that encodes

principles of legged mechanics produces human walking dynamics and

muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 263–273.

doi: 10.1109/TNSRE.2010.2047592

Halloran, J., Ackermann, M., Erdemir, A., and Van den Bogert, A. (2010).

Concurrent musculoskeletal dynamics and finite element analysis predicts

altered gait patterns to reduce foot tissue loading. J. Biomech. 43, 2810–2815.
doi: 10.1016/j.jbiomech.2010.05.036

Hansen, A. H., Childress, D. S., and Knox, E. H. (2004). Roll-over shapes of human

locomotor systems: effects of walking speed. J. Clin. Biomech. 19, 407–414.
doi: 10.1016/j.clinbiomech.2003.12.001

Hoyt, D. F., and Taylor, C. R. (1981). Gait and the energetics of locomotion in

horses. Nature 292:239. doi: 10.1038/292239a0
Ishikawa, M., Finni, T., and Komi, P. V. (2003). Behaviour of vastus lateralis

muscle-tendon during high intensity SSC exercises in vivo. Acta Physiol. Scand.
178, 205–213. doi: 10.1046/j.1365-201X.2003.01149.x

Jackson, J. N., Hass, C. J., and Fregly, B. J. (2016). Development of a subject-

specific foot-ground contact model for walking. J. Biomech. Eng. 138:091002.
doi: 10.1115/1.4034060

Jackson, M. (2010). The mechanics of the table contact phase of gymnastics vaulting
(Ph.D. thesis). Leicestershire: Loughborough University.

Kirsch, R. F., Boskov, D., and Rymer, W. Z. (1994). Muscle stiffness

during transient and continuous movements of cat muscle: perturbation

characteristics and physiological relevance. IEEE Trans. Biomed. Eng. 41, 758–
770. doi: 10.1109/10.310091

Kleesattel, A., and Mombaur, K. (2018). “Inverse optimal control based

enhancement of sprinting motion analysis with and without running-specific

prostheses,” in 2018 7th IEEE International Conference on Biomedical Robotics
and Biomechatronics (Biorob) (Enschede: IEEE), 556–562.

Koelewijn, A. D., Dorschky, E., and van den Bogert, A. J. (2018). A metabolic

energy expenditure model with a continuous first derivative and its application

to predictive simulations of gait. Comput. Methods Biomech. Biomed. Eng. 21,
521–531. doi: 10.1080/10255842.2018.1490954

Lagarias, J., Reeds, J., Wright, M., and Wright, P. (1998). Convergence properties

of the nelder–mead simplex method in low dimensions. SIAM J. Optim. 9,
112–147. doi: 10.1137/S1052623496303470

Leineweber, D., Schäfer, A., Bock, H., and Schlöder, J. (2003). An efficient

multiple shooting based reduced SQP strategy for large-scale dynamic process

optimization: Part II: software aspects and applications. Comput. Chem. Eng.
27, 167–174. doi: 10.1016/S0098-1354(02)00195-3

Maganaris, C. (2003). Force-length characteristics of the in vivo human

gastrocnemius muscle. Clin. Anat. 16, 215–223. doi: 10.1002/ca.10064
McGeer, T. (1990). Passive dynamic walking. I. J. Robot. Res. 9, 62–82.

doi: 10.1177/027836499000900206

Millard, M., and Kecskeméthy, A. (2015). “A 3D foot-ground model using disk

contacts,” in Interdisciplinary Applications of Kinematics, eds K. Andrés and G.

F. Francisco (Lima: Springer), 161–169.

Millard, M., Sreenivasa, M., and Mombaur, K. (2017). Predicting the motions and

forces of wearable robotic systems using optimal control. Front. Robot. AI 4:41.
doi: 10.3389/frobt.2017.00041

Millard, M., Uchida, T., Seth, A., and Delp, S. (2013). Flexing computational

muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng.
135:021005. doi: 10.1115/1.4023390

Mordatch, I., Wang, J., Todorov, E., and Koltun, V. (2013). Animating human

lower limbs using contact-invariant optimization. ACM Trans. Graph. 32,
203:1–203:8. doi: 10.1145/2508363.2508365

Nelder, J. A., and Mead, R. (1965). A simplex method for function minimization.

Comput. J. 7, 308–313. doi: 10.1093/comjnl/7.4.308

Pàmies-Vilà, R., Font-Llagunes, J. M., Lugrís, U., and Cuadrado, J.

(2014). Parameter identification method for a three-dimensional

foot–ground contact model. Mech. Mach. Theory 75, 107–116.

doi: 10.1016/j.mechmachtheory.2014.01.010

Reeves, N. D., and Narici, M. V. (2003). Behavior of human muscle fascicles

during shortening and lengthening contractions in vivo. J. Appl. Physiol. 95,
1090–1096. doi: 10.1152/japplphysiol.01046.2002

Ren, L., Howard, D., Ren, L., Nester, C., and Tian, L. (2010). A

generic analytical foot rollover model for predicting translational

ankle kinematics in gait simulation studies. J. Biomech. 43, 194–202.

doi: 10.1016/j.jbiomech.2009.09.027

Ren, L., Jones, R. K., and Howard, D. (2007). Predictive modelling of

human walking over a complete gait cycle. J. Biomech. 40, 1567–1574.

doi: 10.1016/j.jbiomech.2006.07.017

Römer, U. (2018). Über den Einfluss der Fußgeometrie auf die Energieefizienz beim
zweibeinigen Gehen (Ph.D. thesis), Karlsruhe Institut für Technologie, KiT

Scientific Publishing, Karlsruhe, Germany.

Römer, U., Fidlin, A., and Seemann, W. (2018). Explicit analytical solutions

for two-dimensional contact detection problems between almost arbitrary

geometries and straight or circular counterparts. Mech. Mach. Theory 128,

205–224. doi: 10.1016/j.mechmachtheory.2018.05.018

Schultz, G., and Mombaur, K. (2010). Modeling and optimal control

of human-like running. IEEE/ASME Trans. Mechatron. 15, 783–792.

doi: 10.1109/TMECH.2009.2035112

Shourijeh, M., and McPhee, J. (2014). Forward dynamic optimization of human

gait simulations: a global parameterization approach. J. Comput. Nonlin. Dyn.
9:031018. doi: 10.1115/1.4026266

Shourijeh, M., and McPhee, J. (2015). Foot–ground contact modeling within

human gait simulations: from kelvin–voigt to hyper-volumetric models.

Multibody Syst. Dyn. 35, 393–407. doi: 10.1007/s11044-015-9467-6
Sreenivasa, M., Millard, M., Felis, M., Mombaur, K., andWolf, S. I. (2017). Optimal

control based stiffness identification of an ankle-foot orthosis using a predictive

walkingmodel. Front. Comput. Neurosci. 11:23. doi: 10.3389/fncom.2017.00023

Srinivasan, S., Raptis, I. A., and Westervelt, E. R. (2008). Low-dimensional sagittal

plane model of normal human walking. ASME J. Biomech. Eng. 130:051017.
doi: 10.1115/1.2970058

Thelen, D. G. (2003). Adjustment of muscle mechanics model parameters to

simulate dynamic contractions in older adults. J. Biomech. Eng. 125, 70–77.
doi: 10.1115/1.1531112

Van den Bogert, A. J., Hupperets, M., Schlarb, H., and Krabbe, B. (2012). Predictive

musculoskeletal simulation using optimal control: effects of added limb mass

on energy cost and kinematics of walking and running. Proc. Instit. Mech. Eng.
Part P 226, 123–133. doi: 10.1177/1754337112440644

Von Stryk, O. (1993). “Numerical solution of optimal control problems by direct

collocation,” in Optimal Control, eds R. Bulirsch, A. Miele, J. Stoer, and K. Well

(Basel: Springer; Birkhäuser Basel), 129–143.

Westervelt, E., Grizzle, J., Chevallereau, C., Choi, J., and Morris, B.

(2007). Feedback Control of Dynamic Bipedal Robot Locomotion, Vol. 28.
Boca Raton, FL: CRC Press.

Zajac, F. (1988). Muscle and tendon: properties, models, scaling, and application

to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17, 359–411.
Zatsiorsky, V. (2002).Kinetics of HumanMotion. Champaign, IL: Human Kinetics.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Millard and Mombaur. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Neurorobotics | www.frontiersin.org 13 August 2019 | Volume 13 | Article 62

https://doi.org/10.1016/S0167-9457(96)00053-X
https://doi.org/10.1007/s11071-015-2507-1
https://doi.org/10.1016/S0021-9290(01)00143-9
https://doi.org/10.1109/TNSRE.2010.2047592
https://doi.org/10.1016/j.jbiomech.2010.05.036
https://doi.org/10.1016/j.clinbiomech.2003.12.001
https://doi.org/10.1038/292239a0
https://doi.org/10.1046/j.1365-201X.2003.01149.x
https://doi.org/10.1115/1.4034060
https://doi.org/10.1109/10.310091
https://doi.org/10.1080/10255842.2018.1490954
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1016/S0098-1354(02)00195-3
https://doi.org/10.1002/ca.10064
https://doi.org/10.1177/027836499000900206
https://doi.org/10.3389/frobt.2017.00041
https://doi.org/10.1115/1.4023390
https://doi.org/10.1145/2508363.2508365
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1016/j.mechmachtheory.2014.01.010
https://doi.org/10.1152/japplphysiol.01046.2002
https://doi.org/10.1016/j.jbiomech.2009.09.027
https://doi.org/10.1016/j.jbiomech.2006.07.017
https://doi.org/10.1016/j.mechmachtheory.2018.05.018
https://doi.org/10.1109/TMECH.2009.2035112
https://doi.org/10.1115/1.4026266
https://doi.org/10.1007/s11044-015-9467-6
https://doi.org/10.3389/fncom.2017.00023
https://doi.org/10.1115/1.2970058
https://doi.org/10.1115/1.1531112
https://doi.org/10.1177/1754337112440644
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	A Quick Turn of Foot: Rigid Foot-Ground Contact Models for Human Motion Prediction
	1. Introduction
	2. Model
	3. Evaluation Procedure
	3.1. Experimental Data
	3.2. Foot Model Fitting
	3.3. Walking as an Optimal Control Problem
	3.4. Least-Squares Tracking Problem
	3.5. Minimization Prediction Problem
	3.6. Numerical Solution Method

	4. Results
	5. Discussion
	6. Conclusions
	Data Availability
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


