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In brain mapping studies of sensory, cognitive, and motor operations, specific waveforms of dynamic neural activity are predicted
based on theoretical models of human information processing. For example in event-related functional MRI (fMRI), the general
linear model (GLM) is employed in mass-univariate analyses to identify the regions whose dynamic activity closely matches the
expected waveforms. By comparison multivariate analyses based on PCA or ICA provide greater flexibility in detecting spatiotem-
poral properties of experimental data that may strongly support alternative neuroscientific explanations. We investigated conjoint
multivariate and mass-univariate analyses that combine the capabilities to (1) verify activation of neural machinery we already
understand and (2) discover reliable signatures of new neural machinery. We examined combinations of GLM and PCA that re-
cover latent neural signals (waveforms and footprints) with greater accuracy than either method alone. Comparative results are
illustrated with analyses of real fMRI data, adding to Monte Carlo simulation support.
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1. INTRODUCTION

Inferential methods used in human brain mapping span a
spectrum of experimental designs and statistical techniques.
In the broadest terms the task is to recast the predictions
of a theoretical description of neural information process-
ing into testable properties of the neuroimaging data. A log-
ical starting point is the mapping u ← F(ν, θ) in which u
represents the data of a neuroimaging study, acquired using
one of several imaging technologies; and ν represents the set
of physiological mechanisms that have potentially influenced
the measurement u. Manifest evidence that the latent pro-
cesses ν of experimental interest are the actual determinants
of the imaging data u is achieved through the activation and
modulation of the latent physiological (neural) processes by
means of parametric manipulations of the stimulus input. F
is the model of the conjoint influences of the latent physio-
logical activity on u. The vector θ quantifies both the rela-
tive strength of each mechanism’s contribution to u and the
strength of interactions among different latent mechanisms.

A current example is the acquisition of the BOLD MRI
signal (blood oxygenation-level-dependent signal), a surro-
gate measure of local neural activity, in studies involving
event-related experimental designs. In event-related func-
tional MRI (fMRI), the mapping is expressed as u(s, t) ←
F(ν(s, t), θ), in which each ν(s, t) may be thought of as a
“movie” of an aspect of information processing whose neural
signal is manifest at one or more locations s in the brain, at
one or more time points during data acquisition interval T ,
that is, for times t ∈ T . In modeling neuroimaging data, the
aim is to infer the spatiotemporal properties of the underly-
ing operations ν(s, t), and how these ν(s, t) jointly determine
the measured u(s, t).

Model construction also includes a quantitative account
of the spatiotemporal filtering of F(ν(s, t), θ) introduced by
the imaging technology. In the case of BOLD signal acquisi-
tion, F(ν(s, t), θ) must be transformed to represent the con-
volution of the hypothetical neural signal with the hemody-
namic response function. Caveats are that the hemodynamic
response may be different for different brain regions, and
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may also differ in the same brain region in different individ-
uals, for example, in individuals of different ages.

In analyzing imaging data sets, there is a plethora of dif-
ferent observation models. From the perspective of infer-
ential statistics, the choice of experimental design and ob-
servation model is dependent on both the abstract map-
ping u(s, t) ← F(ν(s, t), θ) and the spatiotemporal filtering
of F(ν(s, t), θ) introduced by the imaging technology. The
choices depend on (a) what is known a priori about ν(s, t)
and F and θ; (b) which mechanisms ν(s, t) and properties
of F(ν(s, t), θ) are of primary interest to the experimenter;
and (c) the degree to which the features of interest are resolv-
able in the filtered representation of F(ν(s, t), θ). In current
neuroscience studies of human sensory processing and cog-
nitive and motor operations, the observation models that are
ordinarily applied to the data are of two classes [1–12]: the
general linear model (GLM) used in mass-univariate analysis
and the multivariate models based on PCA or ICA decompo-
sition.

1.1. Mass-univariate analysis

In mass-univariate analyses one or more hypothetical mod-
els F(ν(s, t), θ) are used to predict the data u(s, t). For each
F(ν(s, t), θ) the observation model consists of a set of ex-
planatory variables, or design matrix, that is assumed to be a
set of known and fixed predictors, and the model is applied
identically to all voxels in the brain. In the design matrix the
primary design variables provide a detailed description of the
predictions regarding the behavior of the hypothetical oper-
ations ν(s, t) in different experimental conditions (i.e., dif-
ferent temporal epochs); and the secondary design variables
describe potential nuisance effects that, were they not taken
into account, would inflate the GLM estimate of random er-
ror. Standard linear methods are used to quantify the contri-
butions of the predictor variables to the temporal waveforms
of individual voxels. The aim is to identify voxels for which
one or more F(ν(s, t), θ) provide a plausible account of the
local temporal activity in u(s, t). Moreover, in head-to-head
comparisons of competing theoretical models the best-case
scenario would be that in which only one model provides a
high level of explanatory power.

1.2. Multivariate modeling

Multivariate models based on PCA or ICA decomposition
have a somewhat different focus—on the waveform similari-
ties in the dynamic neural activity of different brain regions.
The underlying premise of this type of multivariate model-
ing is that multiple signals are generated in response to ex-
perimental stimulus input, and each signal is manifested in
multiple brain regions. That is, similar neural trains of ac-
tivity appear at multiple brain sites—with locations not only
in sensory pathways, but also in limbic and temporoparietal
pathways and areas of prefrontal cortex.

This generally accepted premise is a corollary of neuro-
scientific theory that describes the brain’s analysis of sensory
inputs in terms of “predictive coding strategies” [13–18].

From this theoretical perspective the brain mines stimu-
lus inputs using complementary inferential modes: (a) spe-
cialized sensory coding methods, for example, the array of
feature-specific coding schemes known to be deployed in
the initial processing of visual stimuli; and (b) the contex-
tual guidance provided by working memory and executive
systems that relate immediate stimulus events to organism-
generated goals. Concretely, predictive coding models sug-
gest that signals generated in sensory pathways are likely to
be fed forward for interpretation and synthesis to limbic and
temporoparietal pathways associated with short- and long-
term memories, and to the prefrontal cortices that are in-
volved with working memory, including goal-directed re-
sponse selection, motor planning, and error checking. Like-
wise, signals containing contextual and goal-specific infor-
mation are fed back to sensory pathways, modifying sensorial
representations of external stimulus events.

The observation models used in a multivariate analy-
sis decompose the neuroimaging data u(s, t) into a series of
components, in which each component represents a tempo-
ral waveform that is expressed to a stronger or weaker de-
gree in a multiplicity of brain regions and not at all in other
brain regions. In applications of unguided PCA and ICA,
only mild constraints are imposed on the temporal wave-
forms and their respective spatial modes (i.e., topographic
patterns of nonzero signal expression). Specifically in PCA,
the series of waveforms are constrained to be mutually or-
thogonal, as are the series of spatial modes; and in ICA, ei-
ther the series of temporal waveforms or the series of spatial
modes are constrained to be maximally statistically indepen-
dent.

Indeed, in the case of unguided PCA and ICA the individ-
ual components may, or may not, be related in a one-to-one
fashion to either (a) the true neural signals ν(s, t) occurring
in one or more task conditions (temporal epochs), or (b) par-
ticular behavioral and demographic experimental variables.
On the other hand, these PCA and ICA decomposition meth-
ods are designed to provide an accurate approximation to the
brain-wide footprint of the sites associated with the aggregate
of latent neural signals ν(s, t). Ordinarily the experimental
prediction is that the brain-wide footprint will be sparse in
total anatomical extent, although spatially distributed.

Guided PCA and ICA observation models, on the other
hand, are designed to further constrain the components of
the PCA or ICA decomposition to spatiotemporal features
of the data u(s, t) that most closely match the hypothesized
neural processes ν(s, t) and their predicted activity in differ-
ent experimental conditions.

1.3. Reciprocal benefits of mass-univariate and
multivariate modeling

The practical reality is that no one modeling method alone
will provide an exact description of the physiological mech-
anisms that are the actual determinants of the imaging data:
neither the theoretical models F(ν(s, t), θ), nor their instan-
tiation in GLM, nor the major components of unguided or
guided PCA or ICA. However, there is a potential advantage
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to explore the footprint of a multivariate analysis with one or
another theoretical model F(ν(s, t), θ). A theoretical model
can provide a parsimonious account of regional activity for
some portion of the voxels within the multivariate footprint.
This account represents an implicit judgment of similarity
between theoretical neuroscientific predictions and the latent
processes actually operating within the footprint. The stan-
dard GLM calculation of goodness-of-fit represents the true
explanatory power achieved by F(ν(s, t), θ) when contrasted
with its distribution predicted by random Gaussian field the-
ory. Goodness-of-fit is calculated on a voxel-by-voxel basis,
but includes the footprint’s anatomical extent and the level
of type-I error protection as global parameters.

The practical advantage in applying the mass-univariate
analysis to a multivariate footprint—rather than brain
wide—is that the spatially constrained analysis identifies ad-
ditional voxels in which F(ν(s, t), θ) has actual explanatory
power. The greatest reciprocal benefit is afforded when (a)
the major temporal waveforms obtained from an PCA or
ICA decomposition span the fixed predictor variables of the
mass-univariate analysis; and (b) almost all, if not all regions
for which the mass-univariate analysis provides a moderate-
to-high level of explanatory power lay within the multivari-
ate footprint. Perhaps the multivariate analysis that is best
equipped to take advantage of these potential benefits is
the multivariate linear model (MLM), a guided PCA that
was among the first multivariate methods applied to event-
related fMRI data. The conjoint MLM and mass-univariate
analysis is based on a theoretical model F(ν(s, t), θ) in which
the temporal waveforms obtained from a MLM-PCA de-
composition are constrained to match the fixed predic-
tor variables of the mass-univariate analysis. MLM has the
added virtue that the GLM-type mean contrast effects be-
tween experimental conditions are computed using a proper
statistical method of whitening the data along the temporal
dimension.

The essential strength of the MLM analysis is that, like
mass-univariate analysis, it is based on our accrued knowl-
edge about human information processing and the theoret-
ical constructs derived there from. On the other hand, the
strong reliance by MLM on current theory limits its capacity
to uncover novel features of the data u(s, t) that reveal neural
machinery not heretofore anticipated.

1.4. Utility of individual differences in brain mapping

The exploration of individual differences has been a depend-
able means for discovering novel neural machinery as chron-
icled in the research findings of cognitive psychology and
clinical neuroscience [13, 19–23]. In brain mapping the main
sources of information about individual differences are the
interactions between brain regions, experimental task pa-
rameters, and endogenous variables. It is thus understand-
able that guided PCA methods were devised early on in the
development of noninvasive brain imaging technologies to
explore subject-related interaction effects. These models in-
cluded the subprofile scaling model (SSM) [3, 12, 24, 25] and
the partial least squares methods [6, 26]. These guided PCA

were originally designed for application to data acquired
with positron emission tomography (PET) with H2

15O per-
fusion and [18F]Fluorodyoxyglucose, and topographic elec-
troencephalography (EEG).

The authors and others [4, 5, 7, 8, 11, 27] have extended
these initial developments in guided PCA to take advantage
of the higher temporal resolution of event-related fMRI. The
clear benefit of higher resolution is that more experimental
tasks, and greater numbers of comparisons between experi-
mental conditions and their parametric controls, can be built
into study designs. Two of the newest guided PCA are the
generalized partial least squares (gPLS) and ordinal trends
(OrT) analyses [5, 7]. These guided PCA are designed to cap-
ture the joint influences of experimental task parameters and
endogenous factors on latent neural signals of theoretical in-
terest. In both gPLS and OrT the aim is to combine the ver-
ification of neural machinery that is reasonably well under-
stood with the discovery of reliable signatures of new neural
machinery.

1.5. Ordinal trends model

In this report we focus on the OrT analysis. The inferen-
tial strategy that is unique to OrT is its capacity to capture
the joint influence of task parameters and endogenous fac-
tors on u(s, t) without resorting to classical latent variable
modeling. In brain mapping, the latent variables are the neu-
ral processes ν(s, t) and their spatiotemporal properties; their
observable counterparts are both the experimental predictor
variables and subject variables, for example, indices of task
performance, IQ, education and age. From the perspective of
standard latent variable analysis [28], the method of estimat-
ing ν(s, t) relies on models that impose explicit constraints
on the relationships among different ν(s, t) and between in-
dividual ν(s, t) and experimental predictor variables, behav-
ioral scores and demographic factors. In contrast, an OrT
analysis is based on the experimental design variables alone,
without the use of either behavioral scores, demographic
variables, or causal models that depict the relationship be-
tween latent brain circuitry and endogenous variables.

The OrT analysis is predicated on event-related exper-
imental designs in which positive incremental changes in
task parameters are expected to produce positive monotonic
trends in the activity of individually targeted signals ν(s, t).
OrT performs a separate analysis for each ν(s, t) with the aim
of identifying one or more topographic patterns in u(s, t)
that expresses positive ordinal trends on a subject-by-subject
basis. OrT is a guided PCA: a specially designed linear trans-
formation is applied to the neuroimaging data with the ef-
fect that maximal salience is assigned to topographic patterns
whose expressions are monotonic across a specified series of
experimental conditions, corresponding to the positive in-
cremental changes expected in the level of the targeted neural
signal.

Algebraically speaking, the multiplication of the data
matrix by the OrT design matrix differentially alters the
voxel-by-condition-by-subject variance of three types of la-
tent patterns: see the appendix. First, the OrT transformation
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discriminates among patterns that expressed mean trends in
the predicted direction from patterns that expressed mean
directional changes that are different from the predicted
trend; and second, the transformation discriminates among
different types of patterns within the first category. In the
first category, the OrT design matrix discriminates among
patterns in which the direction of the trend expressed is the
same in all subjects from patterns that express condition-
by-subject interactions in which the direction of the trend
expressed is different for different subjects. Lastly, the de-
sign matrix is constructed to preserve the relative size of
the voxel-by-task-by-subject variance accounted for by topo-
graphic patterns that express ordinal trends. On this basis the
application of PCA, or singular value decomposition (SVD),
to the transformed data set can be expected to produce major
principal components that provided a good approximation
to one or more target patterns, where each expresses ordinal
trends on an individual subject basis.

Importantly, the data structure to which the OrT model
is applied is not the raw fMRI data. Initially, the spatiotem-
poral data are preprocessed to remove the normal MR ar-
tifacts, for example, susceptibility and motion artifacts and
artifacts associated with respiration and cardiac pulsations.
Subsequently, a standard method of temporal averaging is
applied to the “artifact-free” data to construct brain maps for
individual subjects that represent the BOLD activity within
different task conditions (epoch types) of the experimen-
tal design. This temporal averaging enhances the signal-to-
noise characteristics of BOLD activity that is time-locked
to stimulus-based, cue-based, and response-based epochs.
These brain maps are the data structure to which the OrT
model is applied, that is, the data consist of one brain map
per subject per task condition (or epoch). More details of the
time series modeling are provided in our example of an OrT
analysis applied to real event-related fMRI data.

Robust inferential statistical methods have been designed
for OrT applications to these types of data structures. Non-
parametric statistics are used to control type-I error rates, for
example, permutation test statistics and error statistics based
on Monte Carlo simulations of random Gaussian fields; see
the appendix. In addition, bootstrap resampling methods are
applied to OrT topographic pattern estimates to evaluate the
reliability of nonzero voxel weights. The reliability of individ-
ual voxel weights is computed as z-scores, where the higher
the z-score the less likely it is that any subject is extraordi-
narily influential in determining voxel weight. The caveat is
that in our current bootstrap procedure the areal extent of
clustered voxels is not taken into account in calculating indi-
vidual z-scores.

We suggest that OrT is likely to provide the greatest ben-
efit in experiments that admit substantial interactions be-
tween experimental task parameters and endogenous vari-
ables. On the one hand, the OrT analysis is predicated on
the notion that experimental control is sufficiently robust
that positive incremental changes in task parameters produce
positive ordinal trends in the activity of each targeted signal
ν(s, t) of the theoretical model F(ν(s, t), θ). That is, the OrT
analysis is designed to recover the footprint of each ν(s, t) for

which every subject (or almost every subject) expresses a pos-
itive ordinal trend. In particular, footprint recovery is possi-
ble in data sets in which there is substantial variation in the
trajectories of subjects’ positive ordinal trends. The worst-
case scenario for which recovery of ν(s, t) may be feasible are
data sets in which interactions between task parameters and
endogenous variables take the form of additional latent pro-
cesses that had not been included in (i.e., were not predicted
by) the theoretical model F(ν(s, t), θ). The additional latent
processes may express mean trends similar to that of a tar-
geted ν(s, t). But what distinguishes each of these latent pro-
cesses from ν(s, t) is that the directional trend in task activity
is different for different subjects. In other words, the experi-
mental control over the operation of these latter latent pro-
cesses is markedly less than that achieved with the targeted
processes ν(s, t).

In applications to real data sets, for example, H2
15O PET

data sets and event-related fMRI data sets, there are striking
examples in which the OrT analysis appeared to provide a
relatively unconfounded and unbiased estimator of a target
pattern [7, 29]. By contrast, the corresponding map of GLM
mean trend statistics deviated markedly from the OrT esti-
mate of the target footprint, suggesting that the GLM map
estimate is influenced by interactions between task parame-
ters and endogenous variables. We have implemented Monte
Carlo methods to simulate data sets that manifest similar
differences between OrT and mass-univariate analyses [7].
The simulated data sets represent the worst case scenario in
which there is substantial variation in the subject trajecto-
ries of target ν(s, t) activity plus, the superposition of several
“nuisance” latent processes. The inclusion of these interac-
tion effects in simulated data sets results in maps of GLM
mean trend statistics that contain significant contributions
from both target and nuisance processes. By contrast, the
OrT analysis provides a substantially less confounded esti-
mate of the target footprint.

In sum, OrT is likely to provide the greatest benefit in
studies in which (a) enrollment criteria create subject sam-
ples that reflect the population level of phenotypic varia-
tion, and (b) experimental control is sufficiently strong that
the latent neural processes of primary theoretical interest
exhibit positive ordinal trends. This potential advantage is
particularly relevant to studies of learning and memory for
which there are ordinarily inherited and acquired differences
among individuals.

2. EXAMPLE OF AN OrT ANALYSIS APPLIED
TO EVENT-RELATED fMRI

We demonstrate here the practical utility of an OrT analy-
sis with its application to the event-related fMRI data from
a study of visual recognition and perceptual adaptation [29].
We describe below the essential information about experi-
mental goals and design, the fMRI acquisition and prepro-
cessing steps, as well as the OrT analytic design and the
patterns of regional activations that represented experimen-
tal effects. The OrT computational methods are outlined in
the appendix that includes (a) a step-by-step recipe of the
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OrT computations, and (b) the attendant inferential statisti-
cal methods that are routinely applied.

2.1. Experimental aims

The aim of the fMRI study was to investigate the effects
of stimulus repetition on behavioral and neurophysiological
measures of adaptation. We used a modified, trial-based ver-
sion of the possible/impossible object decision (IP-OD) task
that was originally designed by Schacter et al. [30]. Unlike
the original IP-OD task, our version was designed to mea-
sure repetition effects over delays of a few seconds rather
than minutes. Our modified IP-OD task was benchmarked
with the production of significant perceptual priming effects.
Significant reaction time (RT) effects occurred for stimulus
repetitions (p < 0.0001) and object type (p < 0.005), with
a nonsignificant trend in the interaction between repetition
number and object type (p < 0.08). In this two-alternative,
forced-choice paradigm, the decision theoretic parameters of
object discrimination, d’ and bias, remained nearly constant
across successive object presentations. The minimum d’ and
maximum bias were 2.92 ± 0.56 and −0.66 ± 0.57 (mean ±
SD), recorded for initial presentations.

Ordinal trend analysis was applied to the fMRI BOLD
signal. The analytic goal was to recover a latent component
of the BOLD signal that appeared in multiple brain regions
and that, with successive exposures of a test object, exhibited
either a positive trend in every subject, or a negative trend
in every subject. OrT was applied separately to possible and
impossible objects [29]. We have limited our report here to
the analysis of possible objects with the express purpose of
illustrating the OrT methodology.

2.2. Materials and methods

2.2.1. Subjects

Fourteen healthy, right-handed subjects (age = 22.8 ± 3.8
[Mean ± SD]), recruited from the Columbia University stu-
dent population, participated in the experiment. All subjects
supplied informed consent, as approved by the Internal Re-
view Board of the College of Physicians and Surgeons of
Columbia University. Volunteers were screened for psychi-
atric and neurological illness via a questionnaire.

2.2.2. Task procedures

The stimuli used in the visuo-perceptual task consisted of
“possible” and “impossible” objects (Figure 1). Possible ob-
jects were two-dimensional renderings of three-dimensional
solid forms, where the latter are composed of a small num-
ber of intersecting planar surfaces. By contrast, the planar
surfaces rendered in impossible objects did not come to-
gether to form actual 3D solid objects. With each stimu-
lus presentation, that is, on each trial, the subject’s task was
to decide whether the visual stimulus was a possible or an
impossible object—hence the term “object decision.” Every

(a)

(b)

Figure 1: Examples of the visual stimuli used in the IP-OD task: (a)
“possible” object; and (b) “impossible” object.

trial was exactly-3000 milliseconds (ms) in duration: a trial
began with a 500-ms ITI, followed by a fixation cue for
250 ms. Fifty milliseconds after fixation offset, the stimulus
then appeared for 1000 ms; trials were terminated 1200 ms
after stimulus offset. Practice trials were administered to con-
firm that participants understood what it meant to judge ob-
ject type. Prior to commencement of fMRI scanning, subjects
were told that (a) their memory of visual objects was being
tested, (b) they would be viewing an extended series of object
presentations, and (c) they should respond as quickly and as
accurately as possible to each test object in the series.

The PI-OD task consisted of three test blocks, each with a
different set of 13 possible and 13 impossible objects. Within
a block each test object was presented four times. Altogether
a block consisted of 104 test objects. The PI-OD task design
was counterbalanced to obviate confounds between experi-
mental effects [29].

With subjects laying supine in the MR scanner, task stim-
uli were back-projected onto a screen located at the foot of
the MRI bed using an LCD projector. Subjects viewed the
screen via a mirror system located in the head coil. Responses
were made on an LUMItouch response system (Photon Con-
trol Company). PsyScope [31] was used to control task events
and collect subject responses (reaction time and accuracy).
In addition PsyScope electronically synchronized task events
with the MRI acquisition computer.
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2.2.3. fMRI data preprocessing

The several images acquired included T2∗-weighted func-
tional images, T1 “scout” images, and T2 anatomical images.
Details regarding the acquisition parameters for these differ-
ent images are reported in Habeck et al. [29]. All image pre-
processing and analysis was done using the SPM99 program
(Wellcome Department of Cognitive Neurology) and other
code written in MATLAB (Mathworks, Natick, Mass). The
following steps were taken in turn for each subject’s GE-EPI
data set: data were corrected for the timing of slice acquisi-
tion, using the first slice acquired in the TR as the reference.
All GE-EPI images were realigned to the first volume of the
first session. The T2-weighted structural image was coregis-
tered to the first EPI volume using the mutual information
coregistration algorithm implemented in SPM99. The latter
high-resolution image was then used to determine param-
eters (7 × 8 × 7 nonlinear basis functions) for transforma-
tion into Talairach standard space [32] defined by the Mon-
treal Neurologic Institute (MNI) template brain supplied
with SPM99. This transformation was then applied to the
GE-EPI data, which were resliced using sinc-interpolation to
2 mm× 2 mm× 2 mm.

2.3. Statistical Analysis

2.3.1. fMRI time-series and OrT modeling

A first-level, GLM-based, time series analysis was performed
on individual subject image data [33] from which parameter
images were constructed. A second-level OrT analysis was
applied to these latter images for the group of 14 subjects.
At the first level, the fMRI time-series analysis was applied
voxel-wise, in which linearity and time-invariance were as-
sumed in the physiological transformation of neural activity
into a fMRI BOLD signal [34]. The steps in modeling fol-
lowed the example of Friston et al. [35] and Zarahn [1, 36]:
GE-EPI time-series were simultaneously modeled with re-
gressors that represented the hypothesized BOLD response
to the individual PI-OD trial types—relative to a baseline
of intertrial intervals. The individual GLM regressors were
constructed as convolutions of an indicator sequence (i.e., a
train of discrete-time delta functions) representing delayed
trial onsets, an assumed BOLD impulse response function
(as represented by default in SPM99), and a rectangular func-
tion of trial duration. A predictor variable was created for
each of eight-trial types—two-object types times four-object
presentations; and eight images of GLM parameter estimates
were produced for a subject. Subject images were each inten-
sity normalized (via voxel-wise division by the image time
series mean) and spatially smoothed with an isotropic Gaus-
sian kernel (full-width-at-half-maximum = 8 mm).

These images of GLM parameters were subsequently sub-
mitted to an OrT analysis. An OrT analysis was performed
on the first three-object presentations, based on the informa-
tion that the largest change in RT occurred between the first
and second, or first and third presentations. OrT patterns
were constructed from the first few principal components,
and their significance was evaluated using nonparametric
test statistics (see the appendix). As a source of independent
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Figure 2: Results of an OrT guided PCA applied to the imaging
data of 14 participants in the IP-OD study, for which negative ordi-
nal trends were predicted across repeated object presentations (pre-
sentation number). A linear combination of the first two principal
components (PCs) produced significant results: (a) negative mono-
tonic trends exhibited by 12 of 14 subjects in the plot of presenta-
tion number versus pattern expression (p < 0.01); and (b) positive
correlation (p < 0.0005) between the change score in OrT pattern
expression (difference between first- and second-object presenta-
tions), and the corresponding change score in reaction time (index
of perceptual repetition suppression).

validation, change scores in OrT pattern expression were cor-
related with the perceptual measure of repetition suppres-
sion, that is, change scores in RT.

3. RESULTS

A statistically significant OrT topographic pattern was ob-
tained using the first two-principal components. All but
two of the 14 subjects expressed positive ordinal trends
(Figure 2(a)) with stimulus repetition (p < 0.01). The OrT
pattern accounted for 16% of the total voxel-by-condition-
by-subject variance in the untransformed fMRI data set. The
OrT pattern estimate identified not only areas exhibiting
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repetition suppression, but also brain areas that were posi-
tively increasing with successive presentations of each possi-
ble object, that is, “repetition augmentation.” In addition the
index of perceptual repetition suppression, that is, the change
score in the difference in reaction time between the first-
and second-object presentations, was significantly correlated
(R2 = 0.67, p < 0.0005) with the corresponding change
score in OrT pattern expression (Figure 2(b)). The one sub-
ject who did not show perceptual repetition suppression was
an outlier in this correlation analysis. Indeed, this subject was
an outlier in the OrT analysis as well—exhibiting a negative,
rather than positive OrT change score. Notwithstanding, the
correlation between OrT expression and RT was significant
without this subject outlier.

Our bootstrap resampling method confirmed that many
of the nonzero voxel weights of the OrT pattern estimate
were reliable (Table 1). Figure 3 maps the voxels with boot-
strap z-scores ≥ 3.09, which is associated with uncorrected
p-values ≤ 0.001. The bootstrapped OrT pattern revealed
experimental effects in several areas of the visual pathway,
including primary visual cortex, the precuneus and supra-
marginal gyrus, fusiform gyrus and parahippocampus, and
the inferior frontal gyrus. Areas of increasing activation with
successive object presentations populated regions predomi-
nantly in the left hemisphere, although right BA 39 exhib-
ited increasing activation as well (Figure 3(a)). In contrast,
areas of decreasing activation populated posterior dorsolat-
eral regions of both hemispheres, ventrolateral regions of the
right hemisphere, and a portion of right BA 44 (Figure 3(b)).
It is unlikely that any subject was extraordinarily influential
in determining the voxel weight of these superthreshold re-
gions.

Lastly, we also performed a mass-univariate analysis in
which the predictor variable was the mean contrast most
similar to the positive ordinal trend prediction, that is, the
linear mean trend across three-object presentations. Two
brain areas were identified with F-values > 5.61, which are
associated with uncorrected p-values < 0.001: these regions
revealed a mean repetition suppression effect, but not a com-
mon directional trend in all subjects. Moreover, no voxel
survived an SPM99 correction for multiple comparisons.
(This Bonferroni-like correction uses a random Gaussian
field adjustment that properly accounts for spatial depen-
dences in the data.)

4. DISCUSSION

In current neuroscience studies of human sensory processing
and cognitive and motor operations, the observation mod-
els that are applied to data sets have usually been one of
two kinds: the general linear model (GLM) used in mass-
univariate analysis and the multivariate models based on
PCA or ICA decomposition. Although these two modeling
strategies have an essential complementarity—in that the
strengths of the one can be used to bolster the weaknesses
of the other, it has been routine practice in brain mapping to
apply these methods in isolation. The aim of this report has
been to engender a better appreciation of the benefits of the
complementarity between brain mapping methods.

Table 1: Nearest gray-matter voxel locations assigned positive or
negative weights (|Z| > 3.09) in the bootstrapped OrT pattern,
which represents the neural effects of repeated presentations of
“possible” objects. MNI coordinates, structure name, and Brod-
mann label are tabulated for (a) brain regions in which sig-
nal strength decreases with object repetition (repetition sup-
pression); and (b) regions in which signal strength increases
with object repetition (repetition augmentation). Localization with
Talairach Demon available from http://ric.uthscsa.edu/projects/
talairachdaemon.html.

X Y Z Structure Brodmann label

Repetition suppression

28 −84 16 Middle occipital gyrus 19

−24 −82 34 Precuneus 19

−12 −84 38 Precuneus 19

−24 −73 26 Precuneus 31

42 −54 −17 Fusiform gyrus 37

34 −56 51 Superior parietal lobule 7

24 −58 56 Precuneus 7

16 −28 −2 Thalamus ∗
−26 −88 16 Middle occipital gyrus 19

51 10 22 Inferior frontal gyrus 44

28 −38 −11 Parahippocampal gyrus 36

−42 −42 38 Supramarginal gyrus 40

Repetition augmentation

44 −70 42 Inferior parietal lobule 39

−18 −38 −11 Parahippocampal gyrus 36

−8 −58 46 Precuneus 7

−12 −52 52 Precuneus 7

−38 −16 60 Precentral gyrus 4

−40 −8 56 Precentral gyrus 6

−40 −14 38 Precentral gyrus 6

−44 −72 13 Middle temporal gyrus 39

−48 −72 36 Angular gyrus 39

−54 −36 26 Inferior parietal lobule 40

−20 −54 65 Postcentral gyrus 7

−46 −56 30 Superior temporal gyrus 39

6 −44 50 Precuneus 7

−16 0 26 Caudate body ∗

It might come as a surprise that a similar kind of com-
plementarity has previously been articulated in theories of
predictive coding—as they are applied to the brain’s min-
ing of sensory inputs. Predictive coding describes a com-
plementary set of inferential methods that are employed in
human information processing to reconstruct external stim-
ulus events from sensory signals. The latter spatiotempo-
ral signals are those that are produced at the stage of sen-
sory transduction, for example, in the retinal mosaic of the
cone transduction of visual input. In the relationship be-
tween human information processing and brain mapping,
these sensory signals correspond to the neuroimaging data

http://ric.uthscsa.edu/projects/talairachdaemon.html
http://ric.uthscsa.edu/projects/talairachdaemon.html


8 International Journal of Biomedical Imaging

Saggital Coronal

R

Transverse

R

(a)

Saggital Coronal

R

Transverse

R

(b)

Figure 3: OrT pattern displayed in sagittal, coronal, and transverse projection views using SPM99 software. Voxels mapped have inverse
coefficient of variation (ICV) values that exceed an absolute threshold of 3.09. (a) Repetition augmentation—regions that increase in acti-
vation with object repetition. (b) Repetition suppression—regions that decrease in activation with object repetition. (ICV values estimated
using a bootstrap method. Anatomical designations for mapped voxel clusters are tabulated in Table 1.)

u(s, t). In human information processing, the goal is to ex-
tract information about external stimulus events that is rel-
evant to both environment-organism homoeostasis and im-
mediate goal-directed activity. Correspondingly, the goal of
neuroscience is to mine the neuroimaging data u(s, t) for
evidence that the latent processes of theoretical interest are
indeed the neural processes that have been activated and
modulated by the parametric manipulations of the stim-
ulus input. In other words, the ν(s, t) of theoretical inter-
est in brain mapping are analogous to the external stim-
ulus events that are relevant to human thought and ac-
tion.

In this analogy, the sensorial representations of external
stimulus events correspond to the features of the neuroimag-
ing data u(s, t) that are captured by the first principal compo-
nents of PCA, or the task-related components of ICA. For ex-
ample, in the simplest multivariate decomposition (e.g., un-
guided PCA), the neuroimaging data are encoded as a set of
principal components without reference to experimental de-
sign variables or theoretical constructs. This type of coding
would be analogous to sensorial representations in sensory
pathways that are not modifiable by top-down, neural sig-
nals. But actually the brain has the capacity to modify sen-
sorial representations with top-down signals: hence the bet-
ter analogy is between modifiable sensorial representations
and guided PCA and ICA, where the latter are designed to
identify features of u(s, t) that share spatiotemporal features
with the predicted neural signals ν(s, t). Theories of predic-
tive coding emphasize the need to optimize the reciprocal
flow of information between sensory pathways and brain ar-
eas associated with executive control as a means of maximiz-
ing the synthesis and interpretability of information about

external stimulus events. The analogous concept is the aspect
of brain mapping highlighted in this report, that is, conjoint
multivariate and mass-univariate analysis.

The exploitation of conjoint multivariate and mass-
univariate analyses is expected to benefit significantly from
the new developments in guided PCA that combine the ca-
pability to verify the activation of the neural machinery that
we already understand with the capability to discover reliable
signatures of new neural machinery. The OrT analysis is pre-
sented as the latest example of a guided PCA that combines
these capabilities. The means by which OrT achieves its ex-
panded capability was examined; and OrT’s practical utility
is demonstrated in a group analysis of an event-related fMRI
data from a study of visuo-perceptual adaptation.

4.1. Utility of OrT for event-related fMRI

The substantive finding of the OrT analysis was that a sta-
tistically significant OrT topographic pattern was identified
in which lateral occipital cortex was among the most salient
regions that exhibited reductions in the BOLD signal with
successive stimulus exposures. This finding is consistent with
the results of similar types of visual adaptation studies that
have reported group mean reductions in lateral occipital
functional activity—in blood flow and the BOLD signal
[30, 37]. But, the OrT pattern is also consistent with the pre-
dictions of cognitive neuroscientists who argue that the neu-
ral correlates of visual adaptation and perceptual learning are
not limited to neural response suppression in lateral occipi-
tal regions [38, 39]. Consistent with these latter predictions,
the OrT pattern revealed significant regional effects of stimu-
lus repetition in temporoparietal and prefrontal areas. These



J. R. Moeller and C. G. Habeck 9

brain regions support processing of higher-level perceptual
attributes and spatial attention, and are distinguishable from
the processes of preattentive feature extraction and visual im-
agery that take place in primary sensory pathways.

The difference between brain areas that reveal repetition
suppression and those that exhibit increased activity with ob-
ject repetition may reveal two different brain analyses that are
performed on visual stimuli. We speculate that the predom-
inantly left-hemisphere effects, which are associated with in-
creased activity with object repetition, may be associated
with analyses of intersecting curved and planar surfaces and
their assignment to the same or different 3D solid objects.
By contrast, the regions that show object suppression popu-
late posterior regions of both hemispheres and may be asso-
ciated with the operations of preattentive feature extraction
and visual imagery. This interpretation is consistent with the
Kosslyn et al. theory of object perception [40–42].

The relevance of the latent neural activity identified by
OrT to perceptual repetition suppression was further af-
firmed by a strong, significant correlation between subject
decreases in RT between the first- and second-object presen-
tations and the corresponding change score in OrT pattern
expression. On the other hand, the RT change score may have
been influenced by endogenous factors unrelated to the OrT
neural signal, as 33% of the subject variation in RT change
scores was not accounted by OrT change scores. We there-
fore performed a brain-wide, mass-univariate search to de-
tect the influence of perceptual or motor processing on RT
via neural processes other than those captured by OrT. Cor-
relations between the RT change score and regional activity
was computed on a voxel-basis with the OrT change score
partialled out. Two isolated brain areas were identified with
F-values > 6.70, which are associated with uncorrected p-
values < 0.001. However, neither region survived an SPM99
correction for multiple comparisons.

Although the correlation between OrT pattern expres-
sion and RT change scores was quite strong, its interpretation
is not altogether straightforward. There is the likelihood that
activity of latent ν(s, t) revealed in the OrT pattern is differ-
ent from the neural activity that is responsible for the per-
ceptual suppression effects manifested in RT. The physiolog-
ical events that are antecedents of response selection and re-
sponse execution may be too brief to accurately resolve in the
BOLD signal. On the other hand, the strong correlation be-
tween OrT pattern expression and RT reductions with stimu-
lus repetition might be the result of a top-down process that
operates over a more extended timeframe, for example, its
operation may extend, say, from fifty milliseconds post stim-
ulus onset to three hundred milliseconds post response ini-
tiation. In other words, the strong correlation between OrT
pattern expression and RT change scores may reflect a func-
tional coupling of two distinct aspects of learning and mem-
ory.

The question therefore remains as to whether the latent
signal associated with the OrT pattern represents a bottom-
up flow of information from sensory cortex to limbic, tem-
poroparietal and prefrontal cortices, or represents top-down
feedback to sensory pathways, or a combination of these two

signals. A more elaborate experimental design and a more
elaborate OrT analysis is needed to answer this question. In-
deed, a model of local neural processing with multiple in-
puts is needed, namely, a model that includes both bottom-
up and top-down input signals, and possibly a modulation of
these inputs by hysteresis effects associated with prior stim-
ulus events. Penny et al. [15] have described such a model,
“bilinear dynamic systems.” Were we to redesign our experi-
ment to dissociate these different signals, OrT would be ap-
plied separately to the images of GLM trial parameters asso-
ciated with the different input signals (each having first been
convolved with the local hemodynamic response function).
The resulting OrT analyses would likely provide more defini-
tive answers regarding the nature of the latent signals that ex-
hibited ordinal trends across successive stimulus repetitions.

Finally, the linear mean trend of the mass-univariate
analysis was statistically nonsignificant. Moreover, of the two
isolated regions that exhibited relatively large F-statistics nei-
ther manifested a significant correlation between RT change
scores and the corresponding difference in voxel activity. The
effect size of GLM mean contrasts appeared to have been di-
luted by features of the latent physiological (neural) processes
that were not well described by the fixed predictor variables,
including the contributions of subject-dependent factors.

4.2. Novel approaches to type-I error control

Of practical interest in inferential statistics is whether guided
PCA and ICA—and OrT in particular—can augment the
sensitivity of mass-univarate analysis while maintaining con-
trol over type-I errors. The facts are that in routine applica-
tions of mass-univariate methods, theoretical models often-
times supply only rough approximations to the architecture
of the underlying neural information processing. That is, the
level of explanatory power is only modest to moderate for
voxels containing real experimental effects. This practical re-
ality collides with the need to control type-I error rates in
brain-wide maps of GLM goodness-of-fit statistics. In order
to control the false positive detection rate, mass-univariate
analysis requires that a Bonferroni-like correction be applied.
But the outcome of Bonferroni-like corrections for multiple
comparisons is predictable, namely, a substantial portion of
voxels that contain real experimental effects will not be iden-
tified as statistically significant.

Development of inferential methods that reduce the stiff
penalty of high type-II error rates—in exchange for tight
control over type-I errors—is an ongoing project in brain
mapping, for example, type-I error control based on the
statistics of false discovery rate (FDR) [43, 44], conjunction
analysis and meta-analyses [45, 46]. But oftentimes investi-
gators resort to less formal remedial approaches to further
enhance the detection of voxels with real experimental ef-
fects: albeit they are willing to tolerate false-positive rates
higher than p = 0.05. Currently researchers report, on a rou-
tine basis, brain maps of experimental effects based on sin-
gle voxel statistics, for example, p < 0.001 for a standard
F- or t-statistic—in lieu of imposing the more stringent,
multivoxel Bonferroni-like correction.
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However we would offer as an alternative to FDR, con-
junction analysis and the informal approaches, conjoint mul-
tivariate and mass-univariate analyses. We suggest that mul-
tivariate modeling supplies essential information about la-
tent neural processing that mass-univariate modeling lacks,
namely, information about the similarities in u(s, t) activity
between brain voxels. We anticipate that conjoint multivari-
ate and mass-univariate modeling will provide real improve-
ments in the detection of voxels with real experimental ef-
fects while maintaining control of the false-positive detec-
tion rate. Moreover, we expect these improvements will be
realized in all multivariate methods including MLM, gPLS,
OrT, and other forms of guided PCA and ICA, for example,
probabilistic PCA and ICA.

Among multivariate methods the OrT analysis is unique
in its method of controlling type-I errors. By comparison,
in MLM and related PPCA and PICA, eigenvalue statistics
are used to limit the number of principal components to the
smallest set for which the complementary set of components
is not distinguishable from the statistics of random Gaussian
fields. In MLM specifically, the presumption is that on av-
erage the time-by-subject scores of the significant principal
components account for at least a modest portion of the vari-
ance in a majority of the voxels that contain real experimental
effects—specifically those effects described by the associated
theoretical model F(ν(s, t), θ) and the corresponding GLM.
Implicit in PPCA and PICA modeling—as well as in MLM—
is the presumption that all nuisance sources of region-by-
condition-by-subject variance can be accurately articulated
for inclusion in their respective observation models: of par-
ticular importance are the competing sources of variance
with effect sizes that are comparable to those of main ex-
perimental interest, including nuisance sources that are par-
tially correlated with the experimental design variables. By
contrast, in an OrT analysis it is expected that across the
spectrum of latent variable effects, the least is known about
the spatiotemporal properties of nuisance effects: indeed, less
is known about most nuisance effects than about the la-
tent neural processes of experimental interest. For these rea-
sons, OrT controls the type-I error rate using nonparametric
statistics that are different from eigenvalue statistics [7]. Fur-
ther in its applications to date, OrT analysis has appeared to
provide relatively unconfounded and unbiased estimators of
target patterns. One example of OrT pattern estimation is il-
lustrated in our review of a group analysis of event-related
fMRI data from a study of visuo-perceptual adaptation.

5. CONCLUSIONS

The aim of this report is to explicate the potential benefits of
conjoint multivariate and mass-univariate analyses in human
brain mapping. The practical reality is that neither modeling
technique alone provides an exact description of the physi-
ological mechanisms that are the actual determinants of the
imaging data. We argue that it takes conjoint mass-univariate
and multivariate analyses to determine the exactness of either
modeling approach.

We began by reviewing the benefits that are afforded by
MLM—a guided PCA approach that is strongly reliant on

theoretical constructs of neural information processing, and
speculated as to how MLM could best be combined with
mass-univariate analysis to achieve a reciprocal advantage.
On the other hand, because over reliance on conventional
neuroscientific theory has its drawbacks, additional guided
PCA methods are recommended to uncover novel features of
the data u(s, t) that are associated with neural machinery not
heretofore anticipated. The new OrT statistical analysis was
presented as the latest example of a guided PCA that com-
bines the capabilities not only to verify the activation of the
neural machinery that we already understand, but also dis-
cover reliable signatures of new neural machinery. We exam-
ined the details as to how OrT achieves its expanded capac-
ity through the exploration of individual differences and the
interactions between experimental task parameters and en-
dogenous factors. We suggest that OrT analysis, as well as
several other guided PCA and ICA, is especially relevant to
studies of memory and learning for which there are ordinar-
ily inherited and acquired differences among individuals.

Finally we argue that conjoint multivariate and mass-
univariate modeling is a novel approach that significantly en-
hances the detection of real experimental effects while main-
taining control of the false-positive detection rate. More-
over, we expect these improvements will be realized in all
multivariate methods including MLM, partial least squares
(PLS and gPLS), OrT and other forms of guided PCA and
ICA.

APPENDIX

Listed below are the six computational steps of the OrT
analysis. This computational recipe for OrT assumes that
the imaging data have undergone sufficient preprocessing to
yield one image per subject per task condition. Details are
provided below for the case in which there are three-task con-
ditions, denoted below as B, E1 and E2. However, our recipe
can be generalized to any number of task conditions (two or
greater).

Step 1. Application of a projection operator, P, by multipli-
cation from the right according to YP, to eliminate strictly
task-independent effects: P is constructed from the set of 2N
eigenimages of the Helmert-transformed data matrix H′Y,
where N is the group sample size. The Eigen decomposition
can be written as Y′HH′YW =WΛ with the Helmert matrix

H =
⎛
⎜⎝
−IN IN

IN IN

0 −2IN

⎞
⎟⎠ . (A.1)

The matrix W contains the 2N eigenimages as col-
umn vectors, and Λ is a 2N-diagonal matrix containing the
nonzero eigenvalues. The matrix WW′ corresponds to the
projection matrix P of the Helmert eigenimages. The modi-
fied data matrix YP has the same dimensions as the original
data matrix Y. However, YP contains N fewer activation pat-
terns and has rank 2N , that is, a lower rank than the matrix
Y, which has rank 3N .

Removal of the task-independent subject effects is nec-
essary in order to obviate their being confounded with
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the target patterns of experimental interest. Moreover, task-
independent subject effects are not usually of interest as they
describe effects that remained unchanged by the experimen-
tal design manipulation.

Step 2. Application of the OrT design matrix, Q, by mul-
tiplication from the left according to [Q(Q′Q)−1/2]′YP, to
increase the salience of ordinal trend effects. In the case of
three-task conditions,

Q =

⎛
⎜⎜⎝

IN 0

IN IN

0 IN

⎞
⎟⎟⎠ . (A.2)

Step 3. Singular value decomposition (SVD) is applied to the
mean centered [Q(Q′Q)−1/2]′YP matrix. This is equivalent
to applying principal components analysis (PCA), that is,

P′Y′Q(Q′Q)−1Q′YPV = VΣ (A.3)

in which V contains 2N orthogonal eigenimages as column
vectors; and Σ is a 2N-diagonal matrix of the eigenvalues.

Step 4. The first K eigenimages are tested for the presence of
an ordinal trend.

For the first K singular images, a 2N × K predictor array
is calculated according to [E1−B;E1 +B−2E2]. B is obtained
by projection of all K images onto the raw data pertaining
to condition B, that is, B = Y(1 : N , :)V(:, 1 : K). Likewise
for E1 and E2, we have E1 = Y(N + 1 : 2N , :)V(:, 1 : K),
and E2 = Y(2N + 1 : 3N , :)V(:, 1 : K). We then conduct
a linear regression to best predict the dependent variable of
the regression, which is a 2N column vector [1;−1], with the
2N × K predictor array described above,

(
1

−1

)
≈
(

E1 − B

E1 + B− 2E2

)
β. (A.4)

This linear multivariate regression analysis is a type of
discriminant analysis that produces the linear combination
of the K eigenimages, according to V(:, 1 : K)β, whose
mean expression changes maximally across task conditions.
For the test of significance of the ordinal trend, we com-
pute the task-subject scores for this new linear-combination
image according to the right-hand side of the above regres-
sion equation. The test of significance is based on the min-
imum number of exceptions to a perfect segregation of the
two contrast scores C1 and C2 that are calculated from the
resultant pattern’s expression according to C1 = E1 − B and
C2 = E1 + B − E2, respectively. The number of exceptions
is an inverse correlate to the maximum number of subjects
who exhibit monotonic task-activity curves as can be appre-
ciated from Figure 4. Monte-Carlo simulations of random
Gaussian fields provide the type-I error rate of ordinal trends
based on the minimum number of exceptions to a perfect
segregation of scores.

B E1 E2
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Subject contrast scores: E1-B

Subject contrast
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Figure 4: Sample graphic output of an OrT analysis for the imag-
ing data of 15 subjects, for which positive ordinal trends were pre-
dicted across task conditions B, E1, and E2. Statistical significance
is a function of the maximal separation achieved between subject
contrast scores C1 = E1 − B and C2 = E1 + B − E2, calculated for
arbitrary linear combinations for a fixed number of PCs. The opti-
mum segregation (horizontal line) between the two sets of contrast
values (columns of open circles) is displayed for a linear combina-
tion of the first three PCs. Level of segregation achieved with this
number of PCs is one exception, which is significant at p < 0.005.
The overlay of the B-E1-E2 trends for the 15 subjects (uniramous
line segments) identifies the exceptional individual.

Step 5. Bootstrap resampling methods [47] are applied to
OrT topographic pattern estimates to evaluate the reliability
of nonzero voxel weights. The reliability of individual voxel
weights is computed as z-scores, where the higher the z-score
the less likely it is that any subject is extraordinarily influen-
tial in determining voxel weights. In the bootstrap, Steps 1–4
that were performed on the original subject sample are re-
peated 100–1000 times on samples of subjects that have been
chosen randomly with replacement from the original subject
pool. The inverse coefficient of variation (ICV) serves as the
measure of the reliability of the regional weight at each voxel
in the topographic pattern. ICV is computed from the point
estimate of the regional weights, wvoxel, and the variability of
the resampling process around this point estimate, captured
as the standard deviation σvoxel, as

ICVvoxel = wvoxel

σvoxel
∼ N(0, 1) (A.5)

and is approximately standard-normally distributed. The
larger the absolute magnitude of ICVvoxel, the smaller the rel-
ative variability of the regional weight about its point esti-
mate value. Common benchmark thresholds are chosen as
1.64, 2.33, and 3.09, which corresponds to a one-tailed p-
level of 0.05, 0.01, and 0.001, respectively.

Step 6. Forward application of pattern estimates into new
data sets [48–53]: a pattern v from a guided PCA—in
particular an OrT analysis—can be projected into any data
matrix Y according to the algebraic rule Yv′—provided that
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the row vector v and the vectorized images in Y are all coreg-
istered to the same brain atlas; and the same voxel mask has
been applied to every image. The resulting column vector
consists of the levels of expression of v in the individual im-
ages in Y, for example, for each subject and experimental
condition.

The subject-by-condition scores v are normally used to
evaluate correlations between the regional activity associated
with a latent neural process ν(s, t) and (a) hypothetical re-
sponses of ν(s, t) to experimental task challenges, or (b) ex-
perimental relevant behavioral and demographic variables.
In addition, the OT forward application is a useful tool for
testing whether the topographic footprint of a latent process
found in one parametric series of experimental conditions is
also evident in the images of other task conditions within the
same experiment, or in the images obtained in independent,
but theoretically related experimental studies.
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[53] M. Trošt, S. Su, P. Su, et al., “Network modulation by the sub-
thalamic nucleus in the treatment of Parkinson’s disease,” Neu-
roImage, vol. 31, no. 1, pp. 301–307, 2006.

James R. Moeller received an M.A. degree
in mathematics in 1974 and a Ph.D. degree
in mathematical and experimental psychol-
ogy in 1976 from the University of Michi-
gan. In 1977, he joined the division of
human visual psychophysics at the David
Sarnoff Research Center/RCA in Prince-
ton, New Jersey. He contributed to research
on computational theories of visual psy-
chophysics and neural modeling applied to
image understanding. He subsequently joined the Department of
Neurology, Sloan-Kettering Institute, Division of Neuroimaging, in
1984, and in 1989 moved to Columbia University, joining the De-
partment of Psychiatry. He has authored or coauthored more than
80 refereed journal articles. At Columbia his initial research inter-
ests included novel applications of multivariate analysis and pat-
tern recognition methods to functional neuroimaging. His research
projects have included the development of neuroimaging biomark-
ers for use in the diagnosis of specific CNS disease, as well as assess-
ments of disease progression and treatment efficacy. His original
work in Parkinson’s and Alzheimer’s diseases expanded to include
hereditable disorders, thereby applying neurogenomics to the study
of prodromal states of CNS disease. His research today is focused
on developments in electromagnetic brain stimulation and com-
putational methods of human brain mapping, with applications to
H2

15O PET, functional MRI, and topographic electroencephalog-
raphy.

Christian G. Habeck originally trained as a
Particle Physicist, and received his M.S. de-
gree from the University of Durham, UK,
in 1994 and his Ph.D. degree from the Uni-
versity of Sussex, UK, in 1998. He then
did a Postdoctoral fellowship at the Neuro-
sciences Institute in La Jolla, Calif, perform-
ing large-scale computer simulations of bio-
physically realistic neural networks. Since
2000, he has been in the Cognitive Neuro-
science Division of the Taub Institute, Department of Neurology,
Columbia University Medical Center, specializing in multivariate
approaches to neuroimaging analysis for EEG, PET, and MRI data
in close collaboration with James R. Moeller, coauthor on the cur-
rent article.


	Introduction
	Mass-univariate analysis
	Multivariate modeling
	Reciprocal benefits of mass-univariate andmultivariate modeling
	Utility of individual differences in brain mapping
	Ordinal trends model

	Example of an OrT analysis appliedto event-related fMRI
	Experimental aims
	Materials and methods
	Subjects
	Task procedures
	fMRI data preprocessing

	Statistical Analysis
	fMRI time-series and OrT modeling


	Results
	Discussion
	Utility of OrT for event-related fMRI 
	Novel approaches to type-I error control

	Conclusions
	APPENDIX
	Acknowledgments
	REFERENCES

