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A hallmark of senescence is the acquisition of an enhanced secretome comprising
inflammatory mediators and tissue remodelling agents – the senescence-associated
secretory phenotype (SASP). Through the SASP, senescent cells are hypothesised to
contribute to both ageing and pathologies associated with age. Whilst soluble fac-
tors have been the most widely investigated components of the SASP, there is grow-
ing evidence that small extracellular vesicles (EVs) comprise functionally important
constituents. Thus, dissecting the contribution of the soluble SASP from the vesicu-
lar component is crucial to elucidating the functional significance of senescent cell
derived EVs. Here, we take advantage of a systematic proteomics based approach to
determine that soluble SASP factors co-isolate with EVs following differential ultra-
centrifugation (dUC).We present size-exclusion chromatography (SEC) as a method
for separation of the soluble and vesicular components of the senescent secretome
and thus EV purification. Furthermore, we demonstrate that SEC EVs isolated from
senescent cells contribute to non-cell autonomous paracrine senescence. Therefore,
this work emphasises the requirement for methodological rigor due to the propensity
of SASP components to co-isolate during dUC and provides a framework for future
investigations of the vesicular component of the SASP.
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 INTRODUCTION

Senescence is a permanent state of cell cycle arrest which occurs in cells exposed to a variety of potentially damaging stimuli
including: telomere attrition; DNA-damaging agents; irradiation; hydrogen peroxide (H2O2); and oncogene-expression (Gor-
goulis et al., 2019; Sharpless & Sherr, 2015). This allows senescence to act as a protective mechanism, preventing the malig-
nant transformation of cells (Munoz-Espin & Serrano, 2014). However, senescent cells also accumulate with age, and have been
demonstrated to contribute to a range of age-related diseases (e.g. Baar et al., 2017; Baker et al., 2016; Childs et al., 2016; Ogrodnik
et al., 2017; Xu et al., 2018). These pathologies are driven by the acquisition of an enhanced secretome comprising inflamma-
tory cytokines, chemokines, growth factors and proteases – the senescence-associated secretory phenotype (SASP) (Coppé et al.,
2008; Coppé et al., 2010). Through these factors, senescent cells have been demonstrated to propagate within the local microen-
vironment via the induction of senescence in neighbouring proliferating cells, in a process termed paracrine senescence (Acosta
et al., 2013). This phenomenon is hypothesised to contribute to both the accumulation of senescent cells with age, and a low level,
chronic state of inflammationwhich underpins a plethora of inflammatory age-related pathologies (Coppé et al., 2010). The SASP
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is also a heterogeneous phenotype, varying in composition between cell types and senescence triggers, as well as dynamically
changing as cells transition from proliferation to senescence (Basisty et al., 2000; Coppé et al., 2010; Hoare et al., 2016).

Adding to this complexity is recent evidence highlighting the role of extracellular vesicles (EVs) within the SASP (Takasugi,
2018). These small, lipid-bilayer bound particles represent a heterogeneous set of mediators which vary in size, biogenesis and
composition but are often defined in two major subclasses – exosomes and microvesicles (MVs) (Van Niel et al., 2018). These
principally differ in their route of biogenesis withMVs budding directly from the plasmamembrane and exosomes deriving from
intraluminal vesicles within endosomal multivesicular bodies (Colombo et al., 2014). There are currently no universally accepted
biomarkers with which to distinguish these populations, with size being the most widely used method of distinction. Exosomes
are generally considered smaller, ranging from 30 to 150 nm in dimeter, whilst MVs have a broad size-range of 50–1000 nm,
although given overlapping size profiles and heterogeneity within these two populations, confident designation is difficult. To
reflect this ambiguity, we use the recommended term ‘EVs’ throughout this manuscript (Witwer & Théry, 2019).
EV production has recently been demonstrated to increase in models of therapy-induced (Kavanagh et al., 2017; Takasugi

et al., 2017), H2O2-induced (Terlecki-Zaniewicz et al., 2018), replicative (Takasugi et al., 2017) and oncogene-induced (Borghesan
et al., 2019; Takasugi et al., 2017) senescence. Furthermore, EVs derived from senescent cells have recently been demonstrated
to have functional roles, including paracrine senescence (Borghesan et al., 2019), enhanced cancer-cell proliferation (Takasugi
et al., 2017), apoptosis resistance (Terlecki-Zaniewicz et al., 2018) and homeostatic DNA-damage responses (Takahashi et al.,
2017). These studies indicate that EVs are functionally important mediators within the SASP, giving them potential biological
significance within both ageing and pathologies associated with age (Wallis, Mizen, & Bishop, 2020).
In order to elucidate these potential roles, EVs must be separated from the soluble secretome of the producing cells. However,

many widely applied isolation techniques, including the popular differential ultracentrifugation (dUC) method, are unable to
separate EVs from soluble proteins (and has been indicated to produce minimal soluble contamination of isolated EV prepa-
rations (Foers et al., 2018, Théry et al., 2018). Size-exclusion chromatography (SEC) is an increasingly popular alternative or
complimentary method for EV isolation. This study aims to investigate the potential for EV contamination with soluble factors
when applying dUC as the sole method of isolation. We propose that co-isolation of SASP components during dUC is an under-
appreciated issue within the field, complicating compositional and functional separation of the soluble and vesicular components
of the senescent secretome. We demonstrate that SEC is efficient at minimising this issue, allowing elucidation of senescent cell
derived EV composition by removing contaminating soluble SASP factors. Furthermore, SEC allows for comparison between the
functional effects of both the soluble and vesicular SASP. We demonstrate that EVs isolated from oncogene-induced senescent
(OIS) IMR90 fibroblasts contribute to the paracrine signalling of the SASP in both proliferating IMR90 fibroblasts and MDA-
MB-468 breast cancer cells. Therefore, this study highlights the limitations of dUC as amethod of studying senescent cell derived
EVs and suggests SEC as an alternative, more stringent technique.

 MATERIALS ANDMETHODS

We have submitted all relevant data of our experiments to the EV-TRACK knowledgebase (EV-TRACK ID: EV200014) (Van
Deun et al., 2017).

. Cell culture and reagents

Unless otherwise stated, all reagents were purchased from Sigma, UK. MDA-MB-468 breast cancer cells were purchased from
ATCC and maintained in Dulbecco’s Modified Eagles Medium (DMEM; Life Technologies, UK) supplemented with 10% foetal
bovine serum (FBS, Labtech.com,UK), 2mML-glutamine (Life Technologies, UK) and 1mM sodiumpyruvate. IMR ER:STOP
(vector) or ER:RAS (OIS) foetal lung fibroblasts were produced as described in (Hari et al., 2019) and were a kind gift provided
by Juan Carlos Acosta (MRC Institute of Genetics & Molecular Medicine, Edinburgh). These were maintained in DMEM sup-
plemented with 10% FBS and 2 mM L-glutamine. Primary adult human mammary fibroblasts (HMFs) were kindly donated by
Martha Stampfer (Lawrence BerkeleyNational Laboratory, Berkeley) and cultured in the samemedium as IMR90s, with the addi-
tion of 10 μg/ml bovine pancreas insulin. All cells weremaintained at 37◦C/5%CO2, routinely tested for mycoplasma, and shown
to be negative. Cells were grown in media without antibiotics apart from during EV treatments where penicillin-streptomycin
(50 units (U)/ml and 50 μg/ml final concentration, respectively) (Life Technologies, UK) was used.

. Senescence induction

Vector and OIS IMR90 cells were seeded at 10,000 cells/cm2 and treated with 200 nM 4-hydroxytamoxifen (4-OHT) in DMEM
with 10% FBS on 1 day post seeding. On day 4, media was then changed, and cells cultured in DMEM with 4-OHT and 1%
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exosome-depleted FBS (Gibco, UK) until day 8. At this point, media was collected, and cells were passaged into 96-well plates.
These were cultured for a further 5 days at which point immunofluorescence staining and high content analysis (HCA) of senes-
cence markers was performed. This represents an optimised protocol, with alternative iterations utilising seeding densities of
2000 cells/cm2 and 4-OHT doses of 100 nM to facilitate later time points. Details are specified in figure legends.

Replicative senescence in adult HMFs was induced through serial passaging of cells for over 200 days. Cells were desig-
nated as either early (passage 10–16; EP) or late (passage ≥26; LP) passage to indicate their number of cumulative population
doublings. For senescence phenotyping by HCA, cells were seeded at 10,000 (EP) and 15,000 (LP) cells/cm2 and cultured for
5 days following by fixation and immunofluorescence staining. For EV isolation experiments, cells were seeded at 7500 (EP)
and 15,000 (LP) cells/cm2 and cultured in media containing 10% exosome-depleted FBS for 72 h between days 4 and 7 post
seeding.

. Immunofluorescence staining and high content analysis senescence phenotyping

Cells in 96-well plates were washed with PBS and fixed using 3.7% paraformaldehyde (PFA) supplemented with 5% sucrose for
15 min at room temperature. Cells were washed with PBS and permeabilised using 0.1% Triton X-100 for 15 min at room tem-
perature. Cells were washed with PBS and blocked with PBS 0.25% (w/v) bovine serum albumin (PBS/BSA) for 30 min before
incubation with primary antibody diluted in PBS/BSA overnight at 4◦C. Cells were then washed with PBS/BSA for 30 min
at room temperature and incubated with the appropriate Alexa Fluor-546 conjugated secondary antibody (1:500, Invitrogen),
4’,6-diamidino-2 phenylindole (DAPI) (Sigma UK, D8417, 1:1000) and HCS Cell Mask Deep Red (Thermo-Fisher UK, C10046,
1:50,000) for 2 h at room temperature. Cells were then washed with PBS/BSA for 30 min before three final PBS washes. Images
were acquired using the INCell 2200 automatedmicroscope (GE) andHCAwas performed using the INCell Developer software
v1.9.2 (GE). In order to characterise the induction of a senescence phenotype, a high-content analysis based assessment of estab-
lished senescence-associatedmorphological alterations was employed (Hwang et al., 2009; Neurohr et al., 2019; Sadaie et al., 2015;
Zhao & Darzynkiewicz, 2013). This lead to production of a morphological profile defined by the following measures: ‘Cell Num-
ber’, ‘Cell Area’, ‘Nuclear Area’, ‘Cytoplasmic/Nuclear Ratio’, ‘DAPIDensity’, ‘Nuclear FormFactor’, ‘Cellular Protrusions’, ‘Cellular
Form Factor ’, ‘Major Axis Length’, ‘Minor Axis Length’, ‘Cellular Elongation’. Z-scores relative to the proliferating control were
then calculated using the following equation to provide a means of data scaling: Score=mean value of three independent exper-
iments for OIS experimental condition – mean value of three independent experiments for vector control condition/standard
deviation (SD) of vector control condition. Z scores were then represented as heat maps, with maximum (+/- five Z-scores) and
minimum (+/- one Z-scores) thresholds in order to demonstrate positive or negative modulation from the control condition.
Importantly, this approach was validated in the OIS model via the use of complimentary canonical senescence markers: p21, p16,
Ki67, IL-8 and senescence-associated heterochromatin foci (SAHFs).

. Extracellular vesicle isolation

.. Differential ultracentrifugation

Senescence induction procedures were performed according to the protocols described above and final mean cell numbers are
indicated in figure legends. During conditioning, cells were switched to media containing exosome-depleted FBS. This was
demonstrated to contain undetectable levels of EVs and did not alter the proliferation of HMFs seeded at 10,000 cell/cm2, when
treated for 48 h between day 4 and 6 post seeding (Figure S1). Conditionedmedia was then collected and centrifuged at 2,000 x g
for 10 min at 4◦C to remove dead cells, apoptotic bodies and cellular debris. The supernatant was then transferred to 50 ml
polypropylene tubes (Nalgene UK, 3118-0050) and centrifuged at 10,000 x g for 30 min at 4◦C (Sorvall RC6+High Speed Rotor:
SS-34, RPM: 9130, k-factor: 3,598.4). The supernatant was then transferred to 30ml Oak Ridge polycarbonate tubes (Thermo
Scientific, UK) and ultracentrifuged at 100,000 x g for 1 h 30 min at 4◦C (Sorvall Discovery 100 SE Rotor: T-865, RPM: 31,300,
k-factor: 223.1). The supernatant was discarded and the pellet resuspended in 250 μl PBS (Sigma, UK) which had been filtered
through a 0.22 μm sterile filter (VGR UK, 514-0061). These preparations were stored at -80◦C.

. Size-exclusion chromatography

Differential centrifugation was carried out as above with the final resuspension volume adjusted to 500 μl. This was then loaded
on to qEV original SEC columns (Izon Science, UK). Twenty sequential fractions of 500 μl were collected as per manufacturer’s
instructions. Characterisation was then performed by nanoparticle tracking analysis (NTA), microBCA and immunoblotting.
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.. Nanoparticle Tracking Analysis (NTA)

NTAwas performed usingNS300 (Malvern-Panalytical, UK). EVs were diluted in 0.22 μmsterile filtered PBS to a volume of 1ml.
This dilution was appropriate to achieve a final particles per frame of between 15 and 80, as recommended by the manufacturer.
However, where samples had a low particle concentration, a maximum dilution of 1:50 was used in order to facilitate other
methods of analysis. Camera level 15 and detection threshold 3 in software version NTA 3.2 were used.

. MicroBCA

EV preparation protein concentrations were determined viamicroBCAprotein assay kit according to themanufacturer’s instruc-
tions (Thermo-Fisher, UK). Samples were read at an absorbance of 562 nm using a Synergy HT plate reader (Bio-Tek, UK).

. Immunoblotting

Cells were lysed in RIPA buffer supplemented with 4% protease cocktail inhibitor (Roche) and protein concentration was deter-
mined using the Bio-Rad Protein Assay kit (Bio-Rad). Lysates were re-suspended in 6X Laemmli Sample Buffer (0.1 M Tris
pH 6.8, 20% glycerol, 1% β-mercaptoethanol, 1% sodium dodecyl sulphate (SDS), 0.01% bromophenol blue). EV samples were
loaded according to either particle number (3e9 particles; ultracentrifugation only) or volume (25 ul; SEC) alongwith 6x Laemmli
Sample Buffer but were not lysed. Gels were prepared and run using the Bio-Rad Mini-PROTEAN III system (Bio-Rad, UK).
Membranes were then blocked for 1 h in 0.05% (v/v) Tween-20, 5% (w/v) Marvel semi-skimmed milk in PBS (PBS-T-milk)
at room temperature. The primary antibody was diluted in PBS-T-milk and incubated with the membrane overnight at 4◦C.
Primary antibodies used are listed in below. The membrane was then washed in PBS-T for 3 × 5 min. Secondary antibodies
were then prepared in PBS-T-milk and the membranes incubated for 1 h at room temperature. A further 3 × 5 min PBS-T wash
was carried out followed by Enhanced Chemiluminescence (ECL) (GE Healthcare, UK) and the membrane then exposed to a
photographic film (Hyperfilm, GE Healthcare, UK).

. Mass Spectrometry (MS) analysis

.. Sample preparation

Purified EVs were resuspended in 1:1 ratio with 8MUrea/50mMTEAB buffer supplemented with 1x Protease Inhibitor Cocktail.
Samples were sonicated using a Bioruptor for 10min at 30/30s on/off cycles and centrifuged for 15min at 20,000 x g. Supernatants
were incubatedwith 5mMDTT for 1h at 25◦C, afterwhich 40mMchloroacetamide (Merck,Germany)was added and incubation
was carried out for 30 min at 25◦C in the dark. Samples were treated with 0.1 ug/μl of Lysyl Endopeptidase (Wako, Germany) at
room temperature for 4 h and subsequently with 0.1 ug/μl of Trypsin (Serva, Germany) overnight. The next day, samples were
acidified with 1% of formic acid (FA; Honeywell, Germany) and stage tip purification was performed. Stage tips were activated
with through serial washes with 100%Methanol (VWR, Germany), 0.1% FA in 80% Acetonitrile (Merck, Germany) and 0.1% FA
in water. After sample loading, stage tips were washed with 0.1% FA in water and 0.1% FA in 80% acetonitrile. Stage tips were
air dried and stored at 4◦C. Label-free mass spectrometry was performed using a nanoHPLC coupled to a Thermo Q-exactive
MS/MS.

. Data analysis

For the initial round of MS described in Figure 2, OIS and vector EV samples were sorted based on mean label-free quantifica-
tion (LFQ) intensities. Fold change in LFQ intensities were also calculated between conditions. Gene Ontology (GO) was then
investigated with FunRich v3.1.3, using the Gene Ontology database, and cellular compartment terms ranked based upon the
percentage of genes. For the second round of MS described in Figure 4, mean LFQ intensities for all proteins in each sample
were used. Gene ontology was then investigated as above. Protein Atlas (www.proteinatlas.org) was then used to determine the
localisation of all identified proteins and classified as either intracellular, membrane or secreted. Where localisation data indi-
cated multiple categories, the protein was included in both lists. Finally, proteins were classified as canonical SASP components
through comparison to established profiles identified in (Coppé et al., 2010). HeatMaps were then generated for each localisation
category describing the mean LFQ intensity of protein for each sample.
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.. Enzyme-Linked Immunosorbent Assay (ELISA)

Conditioned media was collected as per the EV isolation procedure. After the 2000 x g spin, 100 μl conditioned media was
assessed using a commercially available Solid Phase Sandwich ELISA kit according to manufacturer’s recommendations (R&D
Systems, Human IL-8 DuoSet ELISA DY208). Samples were measured at 450 and 570 nm using a CLARIOstar Plus multi-mode
plate reader (BMG Labtech). EV fractions were assessed with the same procedure without lysis.

. Conditioned media investigations

Conditioned media was collected as per the EV isolation procedure described above. For IMR90 experiments, following the
2000 x g step, media was passed through a 0.22 μm sterile filter and supplemented in a 3:1 ratio with 40% FBS DMEM and 8 mM
L-glutamine in order to achieve final concentrations comparable to that of the standardmedia (Acosta et al., 2013). Controlmedia
was made up using serum free DMEM using the same supplement ratio. 120 μl was applied to proliferating vector cells seeded
in 96-well plates, 1 day post-seeding and again at 4 days post-seeding. Cells were then fixed, permeabilised and stained using the
immunofluorescence protocol on day 6. For MDA-MB-468 treatments, 10 μl per well of conditioned media was added following
the 2000 x g spin, to cells seeded in 96-well plates as per the IMR90 dosing schedule. Analysis was carried out using IN Cell 2200
high content microscope and analysis system as described above.

. Extracellular vesicle treatment investigations

Vector proliferating IMR90s or MDA-MB-468s were seeded in 96-well-plates and treated 1 day post-seeding with 10 μl of SEC
fractions or PBS vehicle control. Fraction 8 and 20 from OIS and fraction 8 from vector IMR90s were used. Only samples which
had been prepared on new SEC columns were used for EV treatment experiments. Media was changed and treatment repeated
on day 4, after which cells were then fixed, permeabilised and stained using the immunofluorescence protocol on day 6, with
analysis carried out using IN Cell 2200 high content microscope and analysis system as described above.

. Antibodies

For immunoblotting and immunofluorescence the following antibodies were used: p21 (12D1, Cell Signalling, UK; 1:2,000), p16
(10883-1-AP, Protein-Tech, UK; 1:2,000), Ki67 (NCL-Ki67p, Novocastra, UK;1: 1,000), IL-8 (AF-208-NA, R and D Systems, UK;
1:500), CD9 (CD9A-1, System Biosciences, UK; 1:1,000) TSG101 (ab30871, Abcam, UK; 1:1,000), Calnexin (ab22595, Abcam, UK;
1:1,000), HRP-conjugated goat anti-rabbit (Dako, UK; 1:5,000), HRP-conjugated rabbit anti-goat (Dako, UK; 1:5,000), goat anti-
rabbit-Alexa Fluor 546 (Thermo-Fisher, UK; 1:500), Rabbit anti-goat-Alexa Fluor 546 (A10040,Thermo-Fisher, UK; 1:500).

. Statistical analysis

Statistical analysis was performed using GraphPad Prism 7. An unpaired Student’s t-test was used to compare the means of two
groups unless specified. Ordinary one-way ANOVA followed by a Tukey’s post-hoc test was used for comparingmultiple groups.
P values represent the following: ∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001; ∗∗∗∗ P< 0.0001. Error bars represent SD of ≥3 independent
experiments unless otherwise stated.

 RESULTS

. Isolation and proteomic analysis of EVs isolated from senescent cells using only differential
ultracentrifugation

dUC is the most commonly applied technique for isolating EVs (Gardiner et al., 2016). However, it has previously been demon-
strated to be limited by the co-isolation of soluble protein contaminants (Foers et al., 2018). Despite this, it has been the
most widely applied method for obtaining EVs from the culture supernatant of senescent cells (Takasugi, 2018). Here, we
investigated changes in EV production in senescence through use of the well described IMR90 HRas:ER model of oncogene-
induced senescence (Serrano et al., 1997). First, we demonstrated a loss of cellular proliferation following senescence induction,
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F IGURE  Characterising oncogene-induced
senecence phenotype through High Content
Microscopy Analysis (HCA), immunoblotting and
ELISA. Senescence markers were assessed by
immunofluorescence and western blotting. (A)
Western blot analysis of whole cell lystae (WCL)
from OIS and vector cells for the cannonical
senescence markers p21 and p16. Each lane is a
sample from an independent experiment. N = 3.
(B) Western blot analysis of whole cell lystae (WCL)
from OIS and vector cells for the canonical SASP
marker IL-8. Each lane is a sample from an
independent experiment. N = 3. (C) IL-8 ELISA
analysis of conditioned media from vector control
and OIS cells. N = 3. (D) Immunofluorescence
staining for DAPI (blue) and Cell Mask (Red) in OIS
and vector control IMR90s. High content analysis
(HCA) of cellular proliferation and morphology
were quantitated. Z-scores were calculated based
upon the standard deviation in the vector (see
methods). N = 3. (E) Immunofluorescence staining
for changes in canonical senescence markers p21
(Green), p16 (Green), Ki67 (Green), IL-8 (Green)
and senescence-associated heterochromatin foci
(SAHF) (DAPI Foci) in vector and OIS cells. GαR
represents secondary only control in OIS samples.
N = 3. Scale bars: p21 = 500 μm, SAHF = 125 μm,
remaining = 250 μm.

accompanied by canonical changes in a panel of senescence markers (p21, p16, Ki67, IL-8, senescence-associated heterochro-
matin foci; SAHFs) (Figure 1A-E). These conventional senescence hallmarks were used to support the development of an HCA
based characterisation approach similar to Yin et al. (Yin et al., 2013), in which we sought to identify senescent cells accord-
ing to a panel of established morphological characteristics. Along with the intrinsic reduction in proliferation associated with
senescence, these included acquisition of enlarged and irregular cell/nuclear morphologies (Hwang et al., 2009; Sadaie et al.,
2015), increased cytoplasmic to nuclear ratios (Goldstein, 1990; Neurohr et al., 2019), and reduced DAPI intensities (Roukos
et al., 2015; Zhao et al., 2010). This approach represents a high-throughput screening tool similar to the previously described
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usage of senescence-associated beta-galactosidase (Gorgoulis et al., 2019). Through this methodology, a panel of characteristic
morphological changes were demonstrated to occur in OIS (Figure 1D). In order to provide support for this approach, a model of
replicative senescence in primary adult HMFs was established through long-term serial cell culture, in order to serve as a compli-
mentary experimental system (Figure S2A). This model has been extensively validated previously within the group with a panel
of senescence markers including expression of p16 and p21, increased levels of 8-oxoguanine, reduced BrdU incorporation and
increased senescence-associated β-galactosidase activity (Tyler et al., 2020 - preprint). Here, senescence induction was validated
through HCA assessment and production of the SASP factor IL-6 identified by western blotting (Figure S2B-C). Interestingly,
the SASP factor IL-8 was not observed in the RS SASP despite its prevalence in OIS, emphasising the heterogeneous nature of
SASP composition (Figure S2D).
Having confirmed senescence induction, we then isolated EVs fromOIS cells by dUC and analysed the 100K pellet by nanopar-

ticle tracking analysis (NTA) (Figure 2A). An increase in EV production was demonstrated following senescence induction as
compared to the proliferating control (Figure 2B). Together, these EVs had modal sizes that fell within the range typically asso-
ciated with small EVs (∼100 nm) which did not vary between conditions (Figure 2C-D). The EVs also expressed the commonly
reported biogenesis marker Tsg101 and the surface marker CD9 when assessed by immunoblotting (Figure 2E). Reduced expres-
sion of the endoplasmic reticulummarker calnexin, which has been previously reported to have reduced expression in small EVs,
was also observed (Figure 2E). Together, these data support previous investigations which demonstrated that EV production
increases in OIS (Takasugi et al., 2017; Borghesan et al., 2019). Next, proteomic analysis was performed, assessing the composi-
tion of OIS EVs compared to those from the vector control. Differential expression was observed between conditions (Figure 2F)
and GO analysis of the top 50 most abundant proteins in vector and OIS EVs suggested that, whilst EVs were enriched, soluble
extracellular proteins were likely also co-isolated (Figure 2G). Given that senescent cells have a potent secretome, it is plausible
that SASP components reflect part of this co-isolated soluble contamination. This was confirmed by ELISA, with the key SASP
marker IL-8 heavily enriched in the OIS EV samples (Figure 2H). However, dUC alone did not allow IL-8 to be considered an
EV cargo due to the issue of co-isolating contaminating soluble protein. In order to support these observations, EVs from the
RS HMFs were also isolated by dUC and assessed by NTA (Figure S3A-C). This demonstrated an increase in EV production in
late passage cells, mirroring the observations in OIS. These EVs were demonstrated to be positive for the previously reported
EV marker ADAM10 (Kowal et al., 2016), although a less comprehensive assessment was performed than in the OIS samples
(Figure S3D). Importantly, the EVs from RS HMFs also appeared to be associated with the SASP component IL-6, suggesting
that the limitations of dUC observed in OIS are likely recapitulated in RS (Figure S3E). Therefore, this emphasised the need for
application of an isolation methodology placing more emphasis on purity, in order to elucidate the composition of senescent cell
derived EVs. Because RS in HMFs requires establishment over the course of >200 days, the OIS model was selected as the more
appropriate setting in which to investigate this aim, due to a greater availability of senescent cells.

. Isolation of EVs from senescent cells by size-exclusion chromatography allows separation
of soluble and vesicular secretome

SEC was employed as an additional purification method, following EV enrichment by dUC (Figure 3A). Manufacturer instruc-
tions indicated that EVs would be enriched into fractions 7–10, whereas contaminating soluble protein, which co-isolated during
dUC, would be confined to later fractions. NTA assessment of fraction 8 EVs from OIS and vector control cells indicated that
the increase in EV production following senescence induction (identified in Figure 2) was maintained following this isolation
procedure (Figure 3B). Once again, these EVs had a modal size broadly consistent with that anticipated for a population of
small EVs (∼100 nm) (Figure 3C-D). However, SEC sacrifices EV yield for the sake of purity and, as such, overall concentrations
were approximately only a fifth of those achieved with differential centrifugation alone. This resulted in a technical challenge to
achieve sufficiently concentrated EV samples for immunoblotting, particularly in the vector condition. Despite this, as seen with
the pre-SEC samples, EVs isolated from OIS cells by SEC demonstrated enrichment for the markers Tsg101 and CD9 along with
a reduced expression of calnexin, suggesting that SEC is an effective isolation methodology for enrichment of small EVs from
senescent cells (Figure 3E). In order to further assess SEC, protein and particle concentrations were acquired for all 20 fractions
from OIS samples. Protein concentration increased in fractions 7–10, peaking in fraction 8. From fraction 12 onwards, there was
a steady increase, peaking in fraction 20 (Figure 3F). The fraction 7–10 peak was accompanied by an increase in particle con-
centration, again peaking in fraction 8. However, despite high protein levels, low particle concentrations were observed in the
later fractions, including fraction 20 (Figure 3F-G). This suggests that SEC allows separation of the vesicular component of the
SASP from co-isolated contaminating soluble protein. OIS fractions were then probed for IL-8 by ELISA, in order to investigate
whether this SASP factor was still associated with the EVs following SEC. Whilst some IL-8 was detectable within the fraction
8 EVs, this analysis demonstrated that IL-8 was predominantly associated with later fractions, indicating that this SASP factor
did indeed co-isolate with EVs via dUC (Figure 3H-I). This data demonstrates the benefit of SEC as a means of dissecting the
vesicular and soluble components of the SASP, in a way that is not achievable with dUC alone. However, NTA profiling supported
immunoblotting data, which indicated low recovery yield to be a limitation of this technique, as reported previously (Figure 3K)
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F IGURE  Isolation and analysis of EVs isolated from oncogene-induced senescent (OIS) and vector proliferating control cells by differential ultracentrifu-
gation. Extracellular vesicles (EVs) were isolated and analysed from OIS (4.3e6 cells) and vector (6.1e6 cells) control proliferating cells. (A) Workflow schematic
of EV isolation methodology via differential ultracentrifugation. (B) Nanoparticle tracking analysis (NTA) particle concentration measurements of 100K pellet.
N = 4. (C) NTA size measurements of 100K pellet. N = 4. (D) Full NTA size-distribution plot. (E) Western blot analysis of EVs (N = 3) and whole cell lysate
(N = 1) (WCL) from OIS and vector control cells for canonical EV markers (CD9 and Tsg101) and endoplasmic reticulum marker (Calnexin). Each lane is a
sample from an independent experiment. (F) Volcano plot expressing fold change in cargo following mass spectrometry (MS) analysis between vector control
and OIS cell derived EVs. N = 3. (G) Gene ontology analysis of 50 most abundant proteins identified by MS of EVs isolated from vector control and OIS cells.
N= 3. (H) IL-8 ELISA analysis of EVs from vector control and OIS cells.N= 3. OIS induction schedule F-G: Vector: 8.9e6 cells, OIS: 1.7e6 cells, 48 h incubation
day 7–9.
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F IGURE  Isolation and analysis of EVs isolated from oncogene-induced senescent (OIS) and vector proliferating control cells by size-exclusion chro-
matography (SEC). Extracellular vesicles (EVs) were isolated and analysed from OIS (4.3e6 cells) and vector (6.1e6 cells) control proliferating cells. (A) Work-
flow schematic of EV isolation methodology via SEC. (B) Nanoparticle tracking analysis (NTA) particle concentration measurements of SEC fraction 8. N = 4.
(C) NTA size measurements of SEC fraction 8. N = 4. (D) Full NTA size-distribution plots. (E) Western blot analysis of fraction 8 EVs (N = 3) and whole cell
lysate (N = 1) (WCL) from OIS and vector control cells for canonical EV markers (CD9 and Tsg101) and endoplasmic reticulum marker (Calnexin). Each lane
is a sample from an independent experiment. (F) NTA particle (F6-20) and microBCA protein (F1-20) concentration measurements of SEC fractions from OIS
cells. N = 3 (G) NTA particle concentration measurements for fraction 8 and 20 from OIS cells. N = 3. (H) IL-8 ELISA analysis of SEC fractions (F1-F20) from
OIS Cells. N = 3. (I) IL-8 ELISA analysis measurements for fraction 8 and 20 from OIS cells. N = 3. OIS induction schedule F-K: Vector 5.1e7 cells, OIS: 1.6e7
cells, 72 h incubation day 8–11.
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(Coumans et al., 2017). Given this limitation, in order to provide further evidence to support the use of SEC in a senescence
setting, we set about further proteomic analysis of each component of the OIS secretome.

. Proteomic analysis of size-exclusion chromatography fractions demonstrates that differential
ultracentrifugation is insufficient to dissect soluble and vesicular SASP

In order to further probe the requirement for a high purity EV isolation procedure (such as SEC) in separating the vesicular
and soluble components of the SASP, proteomic analysis was performed on the conditioned media (CM; total SASP), fraction 8
(‘EV SASP’) and fraction 20 (‘co-isolated SASP’) from OIS cells (Figure 4A). GO analysis in Figure 2 indicated that pre-SEC EV
samples also contained extracellular proteins. Post-SEC GO analysis indicated that fraction 8 was enriched for EV proteins as
well as those of the plasmamembrane and cytosol (Figure 4B). By contrast, extracellular proteins were again enriched in fraction
20, although EV proteins were still represented (Figure 4B). Interestingly, the total conditioned media also appeared to have a
strong EV component, further supporting the importance of this relatively underappreciated fraction of the SASP (Figure 4B).
In order to support GO analysis, protein localisation was further investigated using Protein Atlas. Intracellular and membrane
proteins were, again, highly enriched into fraction 8, with themajority being present only in this fraction (Figure 4C-D). Secreted
proteins, by contrast, were present across all fractions with far less enrichment (Figure 4E). This was supported by a comparable
profile observed for secreted factors canonically considered components of the SASP (Figure 4F) (Coppé et al., 2010). Taken
together, these data suggest that SEC is an efficient method for isolating small EVs from senescent cells and provides a means of
confidently profiling the proteomic composition of senescent cell derived EVs. Furthermore, the methodology described here
provides a framework that can be applied to other senescence models, which is important given the previously reported hetero-
geneity between SASPs (Basisty et al., 2020). Overall, this proteomic assessment highlights the need for rigor and stringency in
separating the vesicular and soluble fractions of the SASP. In order to provide evidence for this requirement beyond composi-
tional analysis, we then sought to investigate whether SEC allowed functional discrimination between these components of the
senescent secretome.

. EVs isolated from senescent cells contribute to the paracrine effects of the SASP

A key role of the SASP is the ability to confer senescence upon neighbouring proliferating cells in the local microenvironment,
so called paracrine senescence (Acosta et al., 2013). As described in Figure 1, we were able to unbiasedly quantitate senescence
induction throughmorphological analysis, thusmaximising the additional potential phenotypic readouts that could be generated
following a single EV treatment regime. This approach demonstrated a potent paracrine senescence response through use of
conditioned media from OIS cells upon both proliferating IMR90 fibroblasts and MDA-MB-468 basal like breast cancer cells
(Figure 5A-B) supporting previous observations (Acosta et al., 2013). In order to assess the potential contribution of EVs to
this effect, fraction 8 (EVs) and fraction 20 (co-isolated SASP) were also investigated. These were compared to a vehicle only
control, as the dUC product had been comprehensively demonstrated to be an inappropriate means of EV preparation due
to soluble contamination, whilst this investigation was specifically concerned with determining the utility of SEC fractions in
functional experiments. In line with the results generated following treatment with vector conditioned medium (Figure 5A-B),
fraction 8 from vector control cells did not significantly alter cellular proliferation or morphology. By contrast, fraction 8 from
OIS cells produced a significant reduction in cellular proliferation andmorphological changes indicative of paracrine senescence
in both IMR90 fibroblasts (Figure 5C) and MDA-MB-468s (Figure 5D). This was not recapitulated with fraction 20, indicating
a distinct role for OIS EVs in mediating paracrine senescence, beyond the soluble SASP. It is important to emphasise that given
the differences in EV concentrations between the vector and OIS fraction 8 samples, it is not possible to distinguish if the effect
of OIS fraction 8 is due to the ‘dose’ of EVs applied or the EV cargo per se without further work. However, what these results
illustrate is the need for methodological rigour in EV isolation, in order to elucidate the distinct functional role of EVs isolated
from the secretome of senescent cells.

 DISCUSSION

The biological significance of EVs as intercellular communicators is a relatively new concept. Following the demonstration that
EVs could deliver functional mRNA to recipient cells, they have received widespread attention as potential novel mediators in a
variety of cell types and disease settings (Valadi et al., 2007). This rapid rise to prominence resulted in a lack of standardisation
in fundamental EV researchmethodologies, including nomenclature, isolation techniques and characterisationmethods (Gould
& Raposo, 2013; Lötvall et al., 2014; Tkach & Théry, 2016). This was compounded by the technical challenges of EV research,
which stem primarily from their small size and the lack of universal markers (Van Niel et al., 2018). Given this, efforts by the
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F IGURE  Mass Spectrometry (MS) proteomic analysis of
Conditioned Media (Total SASP), SEC Fraction 20 (Co-Isolated SASP)
and SEC Fraction 8 (EV SASP) from OIS cells. (A) Venn diagrams
displaying number of unique and shared proteins identified by MS
between Conditioned Media (‘Total SASP’), SEC fraction 20
(‘Co-Isolated SASP’) and SEC fraction 8 (‘EV SASP’) from OIS cells.
N = 3. (B) Gene ontology analysis of proteins identified by MS.
(C-D) Heat Maps displaying protein localisation as either Intracellular,
Membrane or Secreted and canonical SASP factors. N = 3. OIS
induction schedule A-F: Vector 5.1e7 cells, OIS: 1.6e7 cells, 72 h
incubation day 8–11.
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F IGURE  Functional Analysis of Conditioned Media and EVs to the Non-Cell Autonomous Effect of Paracrine Senescence. (A) Proliferating fibroblasts
treated with conditioned media from OIS or vector proliferating control cells. N = 3. (B) MDA-MB-468 basal like breast cancer cells treated with conditioned
media from OIS or vector control cells. N = 3. (C) Proliferating fibroblasts treated with fraction 8 and fraction 20 from OIS and fraction 8 from vector control
cells. N = 3. (D) MDA-MB-468 basal like breast cancer cells treated with fraction 8 and fraction 20 from OIS and fraction 8 from vector control cells. Relative
cell numbers based upon the control per experiment are presented. Z-scores were calculated based upon the standard deviation in the vector (see Methods).
N = 3. Scale bars = 250 μm. Controls: CM, unconditioned media; EV, PBS vehicle.
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International Society for Extracellular Vesicles (ISEV) to achieve rigour and standardisation are ongoing and havemade progress
in harmonising the field under the MISEV guidelines (Lötvall et al., 2014; Théry et al., 2018).

Mirroring the EV field, senescence research is also hindered by a lack of universal markers, as well as heterogeneity between
cell types and senescence triggers (Gorgoulis et al., 2019). This is particularly true of the SASP, which also varies in composition
throughout the course of senescence induction and between specific cellular contexts (Hoare et al., 2016; Basisty et al., 2020).
Therefore, there are significant technical challenges in marrying these two emerging fields and elucidating the composition and
functions of senescent cell derived EVs. Applying stringentmethodologies is key to overcoming these challenges, as well as laying
the foundation for studies focussing on functional cargos and mechanisms. Here, we demonstrate that SASP factors co-isolate
with EVs through dUC, making it an ineffective tool when applied alone. SEC allows separation of the vesicular and soluble
composition of the SASP, thusmaking it amore suitable technique for determining themakeup and functional role of EVs within
senescence. This has facilitated generation of a comprehensive profile of OIS EVs, which could provide a useful resource for the
selection of potential functional targets in future investigations. However, as described above, senescence reflects a diverse set of
phenomena and it would be prudent to follow up this work in additional senescence models, such as RS HMFs, as the specific
profiles generated here must be considered OIS specific. Nevertheless, we hope that the experimental approaches described may
provide a blueprint for such future profiling of senescence cell derived EVs in other settings.
Furthermore, we have demonstrated that the previously described effect of paracrine senescence can be replicated following

use of SEC in two models, providing proof-of-principle that SEC can be used to determine the distinct role of EVs within the
SASP, complimenting previous studies (Borghesan et al., 2019). This could be supported in future work, particularly in mecha-
nistic investigations, by application of additional senescence markers, in order to more comprehensively describe these effects.
However, due to the context specific nature of these so-called ‘hallmarks’, this workmade use of a high-throughput screening tool
of senescence induction, with the aim of establishing the principle that SEC does not preclude investigation of EVs in paracrine
senescence investigations (Gorgoulis et al., 2019).
As the fields of EV and senescence research develop and continue to converge, we believe the heterogeneity within sub-

populations of EVs (Kowal et al., 2016) and different senescent cell contexts (Gorgoulis et al., 2019) will add nuance to their
potential role within the SASP (Wallis et al., 2020). In order to explore this complexity, it is crucial that senescence researchers
appreciate the recent advances within the EV field and apply the same level of rigor and stringency laid out in the MISEV guide-
lines (Lötvall et al., 2014; Théry et al., 2018). Recent publications suggest that awareness of these considerations may be growing
(Borghesan et al., 2019; Alibhai et al., 2020; Mensà et al., 2020). However, given the historical nescience within the field, more
needs to be done to widen understanding of this key issue (Choi, Kil, & Cho, 2020; Riquelme et al., 2020). Therefore, we hope
this study will highlight the importance of selecting appropriatemethodologies when conducting EV research, particularly in the
senescence field, where the enhanced secretome of the soluble SASP has the potential to be a particularly potent contaminant.
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