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ABSTRACT: Nanoclusters add an additional dimension in which
to look for promising catalyst candidates, since catalytic activity of
materials often changes at the nanoscale. However, the large search
space of relevant atomic sites exacerbates the challenge for
computational screening methods and requires the development
of new techniques for efficient exploration. We present an
automated workflow that systematically manages simulations
from the generation of nanoclusters through the submission of
production jobs, to the prediction of adsorption energies. The
presented workflow was designed to screen nanoclusters of
arbitrary shapes and size, but in this work the search was restricted
to bimetallic icosahedral clusters and the adsorption was
exemplified on the hydrogen evolution reaction. We demonstrate the efficient exploration of nanocluster configurations and
screening of adsorption energies with the aid of machine learning. The results show that the maximum of the d-band Hilbert-
transform ϵu is correlated strongly with adsorption energies and could be a useful screening property accessible at the nanocluster
level.

KEYWORDS: nanoclusters, adsorption, machine learning, hydrogen evolution reaction, catalysis, workflow automation,
computational screening

■ INTRODUCTION

Excess electricity in the grid can be stored in a long-term
energy carrier such as hydrogen, via electrolysis of water.1,2

The energy is released either directly back into the electric grid
at times of high demand, in fuel cell vehicles, or through the
gas grid for heating.2−4 However, the production of hydrogen
through electrolysis is generally more expensive than from
natural gas, oil, or coal, that means it is not a competitive
energy carrier yet.2 Since the electricity accounts for 70−90%
of the cost, the situation can change in the future when more
volatile electricity prices are expected.5−7 Water splits electro-
lytically into hydrogen at the cathode via the hydrogen
evolution reaction (HER) and oxygen at the anode via the
oxygen evolution reaction (OER).8−10 Whereas OER catalysts
are mostly transition metals in oxidized states,11 HER catalysts
normally contain reduced transition metals and platinum is
often used commercially.8 Platinum plays a key role as its price
and availability can influence whether a hydrogen-based energy
carrier can be deployed at a competitive price. In order to
reduce prices, the platinum content has been minimized in the
past decade, but catalyst loading still makes up a significant
portion of the proton-exchange membrane (PEM) electrolyzer
cost.12 There is a high risk associated with the supply of
platinum due to (a) the high volatility of the price and (b) the
scarce resources being mined only in few countries world-

wide.13 Hence, its reduction or replacement remains a key
component to producing hydrogen via electrolysis compet-
itively.14

Several potential new catalysts with reduced or zero content
of platinum group metals (PGMs) are being considered,
ranging from alloys which are dispersed nanoparticles, highly
diluted (single atom alloys) or high-entropy compounds with a
nonmetallic component such as phosphides, carbides, nitrides,
and chalcogenides.15−18 When picking a new potential catalyst
one is spoilt for choice from a large array of compound classes
with varying compositions. While experimentally screening a
series of novel materials is time-consuming and expensive, their
properties can be approximated by high-throughput simu-
lations.19−22

However, in order to account for the kinetics and adsorbate
coverage of catalysts, extensive ab initio simulations are
necessary to calculate the theoretical catalytic activity.
Requiring information about transition states and adsorbate−
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adsorbate interactions, it becomes prohibitively computation-
ally demanding to screen a large data set. Instead, properties
which correlate with catalytic activity but are cheaper to
compute are preferable. Exploiting the Sabatier principle, the
adsorption energy as a surrogate property allowed scaling
relations and d-band theory to predict trends in catalytic
activity.23−26 Moreover, properties such as bond lengths, bond
angles, and (orbital-wise) coordination numbers were used to
describe catalyst structures and correlate them to adsorption
energies.27−29

However, the correlation trends between adsorption
energies and electronic descriptors have not been investigated
in the nanocluster regime. An electronic descriptor which
requires only DFT calculations of the nanocluster and
correlates linearly with the adsorption energy would drastically
reduce the computation effort to predict catalytic activity.
Trying to find such a descriptor is challenging and in this work
we explore the possibilities, starting with existing descriptors
such as ϵd, ϵd

w, and ϵu. Alternatively, adsorption energies of
nanoclusters can be obtained via machine learning at a fraction
of the computational cost. To facilitate this, we have developed
a set of open source tools that allow the generation and
analysis of large sets of nanoclusters and the prediction of
adsorption energies.
In this work, we investigate trends of HER on bimetallic

nanoclusters based on simulations of the hydrogen adsorption
energy. We generated a data set containing platinum and five
different transition metals which form icosahedra. We
restricted the search space to icosahedral structures of a fixed
size (55 atoms). We begin by describing how the screening
process is done efficiently with the aid of machine learning, and
how the automated workflow was designed. We then analyze
the nanocluster stability and report the machine learning
accuracy and computational efficiency. We further compare
electronic descriptors with each other and with adsorption
energy distributions. We conclude by comparing the
descriptors to experimental and other simulated data sets.

■ METHODS

Adsorption energy. The adsorption energy ΔEH is readily
available through total energy simulations:

Δ = − −+E E E E
1
2H cluster H cluster H2 (1)

where Ecluster+H, Ecluster, and EH2
are the total energies of the

nanocluster with one adsorbed hydrogen, the nanocluster
alone and the hydrogen molecule in the gas phase. From the
adsorption energy alone the catalytic activity via a microkinetic
model30 is not accessible. It requires additional computational
information, in particular: (i) activation energy, (ii) free energy
correction, and (iii) equilibrium adsorbate coverage. Since
these properties are orders of magnitude more expensive to
calculate, methods to circumvent them are necessary.
The activation energy can be mitigated thanks to the Bell-

Evans−Polanyi principle which states that activation energies
of the same reaction family depend linearly on the reaction
energy.31 As a direct conclusion, according to the Sabatier
principle, adsorption sites with a change in Gibbs free energy
ΔGH ≈ 0 are expected to have the highest catalytic activity.23,24

Furthermore, the free energy can be approximated with various
degrees of accuracy ranging from a constant shift to molecular
dynamics simulations.32,33 Lastly, the equilibrium adsorbate

coverage is difficult to approximate. Closing this gap via
experimental data or expensive simulations is paramount in
order to get a proper estimate of the catalytic activity.
However, given only the adsorption energy, it is at least
possible to determine trends in similar systems (under the
assumption that coverage remains similar). It is also possible to
bridge the gap by machine learning a correlation between
adsorption energies and catalytic activity.34

Density Functional Theory calculations. Ab initio
simulations were performed using the Density Functional
Theory (DFT) as implemented in the CP2K package35 using
Gaussian and planewave (GPW) basis sets and the spin-
polarized GGA-functional by Perdew−Burke−Ernzerhof
(PBE).36 All atom types had short-ranged double-ζ valence
plus polarization molecularly optimized basis sets (MOLOPT-
SR-DZVP)37 and norm-conserving Goedecker-Teter-Hutter
(GTH) pseudopotentials.38−40 The D3 method of Grimme et
al. with Becke-Johnson damping (DFT-D3(BJ))41,42 ac-
counted for Van-der-Waals interactions. The energy cutoff
for the auxiliary PW basis and the reference grid was set to 600
and 60 Ry, respectively. Atomic positions were relaxed with the
Broyden−Fletcher−Goldfarb−Shanno (BFGS) optimizer until
the maximum force component converged to 0.02 eV/Å. The
simulation box was 2.5 times the diameter of the nanocluster,
resulting in a gap of approximately 15 Å vacuum.

Descriptors. The local atomic and electronic environment
of adsorption sites are characterized using various descriptors
in this work, providing unique f ingerprints that are useful for
comparison. If the property is derived from the atomic
structure of the system, we refer to them as structural
descriptors, if the property is derived from the electron density,
we refer to them as electronic descriptors.
For structural descriptors, Smooth Overlap of Atomic

Positions (SOAP) performed best on nanoclusters in a
previous work43 and here we briefly outline its properties.
SOAP is a structural descriptor that overlaps Gaussian-smeared
atomic positions in space and maps them to coefficients of
orthonormal basis functions.44,45 Being a local descriptor,
SOAP facilitates comparing environments around an adsorp-
tion site (within a certain radial cutoff Rc) of different
nanoclusters or within the same nanocluster. SOAP can also
compare full structures for, for exaample, stability by matching
several local environments with each other.45

Since the chemical reactivity of transition metals is
determined by the d-band, electronic descriptors focus on its
position and shape. The d-band theory links the energy
distribution of the transition metal d-band with the adsorption
strength.24,46,47 The d-band center was introduced as the first
catalyst descriptor, since adsorption energies scaled linearly
with the filling of the d-band. It has exceptions in alloys with
almost filled d-orbitals (d9 or d10) where the peak of the
hydrogen-surface antibonding state traverses the Fermi-
level.46,48

Following the conclusion that mostly the shape of the d-
band at the Fermi-level would determine the position of the
hydrogen-surface antibonding state, by adding half of the d-

bandwidth Wd, the descriptor ϵ = ϵ +d
w

d
W
2

d is brought closer

to the d-band edge near the Fermi-level.49 The most recent
maximum of the Hilbert-transform ϵu as a direct measure of
the d-band edge was reported to correlate best with adsorption
energies on late transition metal alloys.50
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The above electronic descriptors are simple and intuitive, yet
are prone to information loss due to their one-dimensional
nature. In order to retain information for machine learning, an
accurate description of the local density of states (LDOS) of
the d-band of a surface atom is necessary. LDOS alone,
however, cannot compete with the accuracy of SOAP,51 since
it is a discrete representation with few features, containing only
indirect structural information. A combination of SOAP and
LDOS proved to be an effective spatial and electronic
descriptor.51 A way of describing LDOS is through its
moments, defined as

∫μ = −
−Δ

+Δ
i E E E E( ) d ( ) LDOS ( )

E

E

F
n i

n
( )F

F (2)

where Δ is the LDOS range from the Fermi energy EF. The
total kernel of SOAP plus LDOS amounts to

∏= γ μ μ

=

− −k i j k i j( , ) ( , ) exp
n

n
i j

SOAP
0

( ( ) ( ))
max

n n n
2

(3)

where kSOAP is the radial-basis-function kernel derived from the
SOAP descriptor.
Machine Learning. The relatively cheap evaluation of the

adsorption energy enables high-throughput DFT calculations
on large data sets. However, to screen even more efficiently,
DFT calculations can be supplemented by interpolating data
with machine learning.52 Since the cost of machine learning is
negligible compared to DFT calculations, it can reduce the
computational cost by an order of magnitude or more,
depending on the data set.
Input properties required for machine learning models are

ideally available without heavy computation from the relaxed
nanoclusters without adsorbates. Given such an inexpensive
property we predict more expensive ones, such as adsorption
energy distributions or catalytic activities from simulations or
experiments. The local environment around the initial guess of
the adsorbate was encoded with the SOAP descriptor,
calculated with the Dscribe package.53 The cutoff radius is
the only hyperparameter from the descriptor side. Adsorption
energies were predicted through Kernel Ridge Regression
(KRR) using the radial-basis-function kernel. Adsorption
energies of top, bridge and hollow sites were acquired in a
ML-DFT loop (see workflow below) whereas the data size
increased by 100 DFT calculations in each loop. The data set

was randomly split into 80% training and 20% test set. The
kernel hyperparameters (regularization parameter α = 0.01 and
length-scale γ = 10−6 of the kernel) alongside the cutoff radius
rc = 7.0 Å were optimized via 5-fold cross-validation grid
search.
We computed LDOS up to the sixth moment nmax = 6 (see

eq 3). The LDOS range Δ was set to 3 eV. For each adsorption
site except for top sites, the LDOS moments were averaged
over the transition metal atoms of the site. LDOS and SOAP
were combined to a descriptor using the kernel product in eq
3. As above, the same data set differing only by the enhanced
descriptor SOAP+LDOS was split with a ratio 80:20. The
hyperparameters α (regularization parameter), the kernel
length-scales γSOAP, γ2 to γ6 as well as the cutoff radius rc
were optimized via the Nelder−Mead method using the 5-fold
cross-validation MAE as its optimization target.

Workflow. Since the search space was large, it was
important to develop a repeatable and scalable workflow
which requires minimal maintenance. From the choice of
elements to the prediction of adsorption energies, the process
was automated as much as possible. The steps in the workflow
range from cluster generation, adsorption site detection, DFT
to machine learning. The full workflow is sketched in Figure 1.
The nanocluster data set is composed of binary combina-

tions of the elements Pt, Ti, Fe, Co, Ni, and Cu with
compositions of AnB55−n (n ∈ {0, 6, 13, 27, 42, 49, 55}). The
size and shape are kept constant at icosahedra of 55 atoms.
The above elements were chosen, sincewith the exception of
platinumthey form stable icosahedra at 55 atoms54 and are
studied in experiments for their catalytic potential. For
icosahedral shapes, 55 is a magic number, resulting in 2 shells
around a center atom. Upon testing 13-atom clusters (a single
shell around a center atom), we noticed a significant surface
reconstruction, which made analyses more difficult. Larger
clusters are out of the scope of this study due to computational
limitations, but also we chose nanoclusters as small as possible
in order to magnify the size effects. With the additional shape
constraint, the problem complexity was further reduced.
First, the configuration space of the bimetallic icosahedra

was sampled on a grid of different combinations of
pseudoenergies in Monte Carlo runs of 1000 steps. The

Monte Carlo-threshold was set to −eE E /0.21 0 . The pseudoenergy
was defined as

Figure 1. Workflow sketch shows the detailed steps from cluster generation to the prediction of the adsorption energy distributions. FPS stands for
farthest point sampling.
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∑ ∑ ∑= × +
>

E E c E
i

n

c i i
i

n

j i

n

x i j, , ,
(4)

where Ec characterizes the element-specific attraction to the
core and Ex stands for the interaction pseudoenergy between
atoms of the same or different types. For a binary nanocluster
the pseudoenergies amount to five parameters. Interactions
were only counted where atoms were connected through
Voronoi tesselation. For each bimetallic composition the 10
most dissimilar structures were selected from 243 gridpoints.
The clusters were compared by averaging over the atomic
environments expressed by the descriptor SOAP. The process
of cluster generation, in particular sampling configurations and
compositions of a fixed scaffold, was automated such that a
diverse set of clusters emerged ranging from core−shell, to
randomly distributed and segregated clusters. This selection
resulted in a data set of 750 bimetallic and 6 pure nanoclusters.
The selected clusters of the composition Cu13Co42 are shown
in Figure 2 as an excerpt. Before adding adsorbates to them,
the above 756 nanoclusters were relaxed by DFT.
Determining adsorption sites can be especially challenging

when a surface is irregular and requires initially determining all
the atoms that belong to the surface class. Hence, the volume
of the clusters were compartmentalized by Delaunay
tetrahedralization and, subsequently, surface atoms along the
outermost tetrahedral faces were detected. On the surface top,
bridge and hollow sites were defined as the atom position
(top), middle point (bridge), and center (hollow) of each
triangular face. The adsorption vector or the binding direction
of the initial guess of the adsorbate was set to the average of
outward-pointing normal vectors of triangles containing the
site point. This procedure depicted in Figure 3 resulted in well-
defined sites of arbitrarily shaped nanoclusters without the
requirement of visual inspection.
Even with irregular shapes or after surface reconstruction it

was still possible to identify sites consistently. Adsorption sites
were classified on the surface of DFT-relaxed clusters. Given
the most stable structures of each composition, the workflow
identified around 21 000 adsorption sites. Since those
contained many redundancies, randomly picking training
points to calculate via DFT for machine-learning is inefficient.
The sites were ranked based on similarity of their local
environment using farthest-point sampling.55 We chose kernel
ridge regression as our machine learning model because it
proved to work well in a smooth feature space such as
SOAP.43,56 The adsorption energy was predicted given the
local environment of the initial position of the adsorbate.

Starting from the relaxed nanoclusters, from adsorption site
detection via ranking to DFT calculations and machine
learning, the whole workflow was automated with the aid of
the workflow manager Fireworks.57 Upon completion of
several DFT calculations, episodically, the prediction accuracy
of the machine learning model was tested to see if the
convergence criterion was met. The workflow along with
others is available in the public domain.58 The tools for
generating clusters and detecting adsorption sites were
compounded in the python package Cluskit,59 a library devised
to build cluster-adsorbate structures.

■ RESULTS
Nanocluster Stability and Electronic Descriptors.

Except for platinum, the pure nanoclusters form stable
icosahedra.54 The excess energy of a nanocluster AnB55−n
(A,B = Fe, Co, Ni, Cu, Ti, Pt) is defined as in ref:60

=
− − −

−E
E E E

55exc
A B

n
A

n
B55

55
55n n55 55 55

(5)

where Ex denotes the total energy of the systems AnB55−n, A55,
and B55. For every composition, there are 10 nanocluster
configurations. The excess energies along with an analysis on
core−shell and segregation distribution with respect to stability
can be found in the Supporting Information (SI).
To summarize, all bimetallic systems form a convex hull

except for FeCu and CoCu, where the compositions Fe28Cu27
and Co28Cu27 were slightly above. The energy gap between the

Figure 2. Clusters of a given composition (e.g., the depicted Cu13Co42) were generated automatically by Monte Carlo assuming various
combinations of interaction and segregation energies. Experimentally observable composites such as core−shell, segregated, ordered, and random
as well as structures in-between emerged naturally.

Figure 3. Through Delaunay tetrahedralization the whole surface is
triangulated and surface atoms are detected. Adsorption vectors of
top, bridge, and hollow sites are defined as the average of outward-
pointing normal vectors of surface triangles containing the site point.
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lowest and second lowest energy structure was lower than 0.05
eV for all compositions. The gap tended to increase toward
equiatomic compositions in accordance with the total

permutations ( )n55 . The accuracy of the convex hull could

further be improved by increasing the number of maximally
different configurations for each composition (see SI).
The most stable nanoclusters were selected to determine the

adsorption energy distributions. Along with 81 lowest-energy

structures, 5 structures had a boltzmann-factor = − −e
p

p
E E /kTi i

0

0

greater than 0.01 at room temperature with respect to the
lowest-energy structure, which amounted to a total of 86
nanoclusters. The observed segregation was in good agreement
with the miscibility analysis of Zhang et al.61 In general, the
formation of core−shell structures as the most stable
configurations agreed well with the literature.62

The most successful electronic descriptors for periodic slabs
that provide an intuitive property of surface atoms are the d-
band center ϵd,

24,46,47 the d-band center plus half the d-
bandwidth ϵd

w49 and the maximum of the d-band Hilbert-
transform ϵu.

50 Examining the full set of nanoclusters, for each
composition the nanoclusters could exhibit low to high
variance in electronic descriptors. The descriptors depend on
the cluster configuration and the environment of the respective
surface atom sites. The extent of this variance as well as the
correlation with nanocluster stability is summarized in Table I.
Relative standard deviations σrel of ϵd, ϵd

w, and ϵu are
computed for each composition and then averaged. The
surface atom type (from which the LDOS and descriptor is
evaluated) constitutes the row and the other atom type
constitutes the column. For bimetallic systems with a high σrel,
for example, NiFe, NiCo, TiFe, or TiPt, a dense nanocluster
sampling could be important. To cover the range of clusters

with different electronic properties, it is important to select
multiple low-energy clusters with dissimilar configurations.
The relative standard deviations were lowest for ϵu among the
descriptors for iron and titanium sites.
The correlation coefficients R on the right side reveal a trend

between the electronic descriptors and the stability of the
nanoclusters. If the correlation coefficient R are close to 1 (−1)
and σrel is high, the property is expected to drop (rise) when
the number of sampled cluster configurations increases, since
the convex hull will lower and the descriptor will change
alongside it. In such cases, a dense sampling is important, as
too sparse sampling could introduce a systematic under- or
overestimation of the electronic descriptor. The correlation
coefficient was strong for systems containing iron, cobalt, or
nickel. The d-band center ϵd showed a trend in the sign of R. In
the series Fe-Co-Ni-Cu-Pt, elements on the left of the LDOS
atom would increase its d-band center, whereas elements on
the right would decrease it upon converging to more stable
nanoclusters. All those correlations were moderate to strong.
Titanium would fall between cobalt and nickel, but is excluded
from the list due to many nonsignificant data points. The same
picture emerges for ϵd

w although the correlation coefficients of
PtFe and PtCo were weak, whereas other combinations were
moderate to strong.
A possible explanation for the above trends was that the d-

band filling decreases when paired with an element toward the
left of the periodic table, and opposite for elements on the
right. The exception here was titanium as an early transition
metal. The consistent positive or negative correlation with
stability might stem from a larger overlap of the d-orbitals in
stable nanoclusters. The maximum of the d-band Hilbert-
transform ϵu did not seem to adhere to the above trend. Since
the correlation was not statistically significant for many

Table I. Descriptors ϵd, ϵd
w and ϵu for a Given Bimetallic Composition Depend on the Cluster Configuration and the

Environment of the Respective Surface Atom Sitesa

σrel R-value

ϵd Fe Co Ni Cu Ti Pt all Fe Co Ni Cu Ti Pt all

Fe 0.59 0.29 0.17 0.11 0.17 0.26 0.99 0.95 0.94 0.84 0.90 0.92
Co 0.52 0.22 0.14 0.11 0.13 0.22 -0.99 0.97 0.91 0.74 0.92 0.51
Ni 0.40 0.31 0.17 0.13 0.26 0.25 -0.92 -0.92 0.87 −0.69 0.98 −0.14
Cu 0.16 0.15 0.15 0.09 0.17 0.15 −0.89 −0.86 -0.94 −0.72 0.82 −0.52
Ti 0.36 0.46 0.36 0.20 0.38 0.35 −0.72 nss nss 0.82 0.86 0.32
Pt 0.34 0.29 0.44 0.29 0.20 0.31 −0.85 −0.79 -0.96 −0.89 −0.83 −0.87
ϵd
w Fe Co Ni Cu Ti Pt all Fe Co Ni Cu Ti Pt all
Fe 0.37 0.37 0.24 0.16 0.17 0.26 0.98 0.94 0.86 0.91 0.92 0.92
Co 0.36 0.29 0.20 0.11 0.14 0.22 -0.93 0.94 0.88 0.80 0.95 0.53
Ni 0.51 0.42 0.23 0.14 0.25 0.31 -0.95 -0.95 0.78 nss 0.97 −0.04
Cu 0.19 0.20 0.22 0.08 0.19 0.17 −0.86 −0.84 -0.91 nss 0.74 −0.47
Ti 0.38 0.37 0.34 0.17 0.33 0.32 −0.82 nss 0.69 0.71 0.85 0.36
Pt 0.32 0.31 0.43 0.31 0.20 0.31 −0.07 0.22 −0.84 −0.81 nss −0.38
ϵu Fe Co Ni Cu Ti Pt all Fe Co Ni Cu Ti Pt all
Fe 0.16 0.07 0.04 0.13 0.03 0.08 −0.76 −0.82 -0.93 nss nss −0.84
Co 0.22 0.27 0.03 0.12 0.03 0.13 0.88 −0.82 -0.91 0.65 0.78 0.11
Ni 0.18 0.89 0.04 0.07 0.03 0.24 0.77 nss nss 0.77 nss 0.77
Cu 0.13 0.16 0.20 0.05 0.14 0.13 −0.76 nss 0.88 nss −0.83 −0.24
Ti 0.03 0.02 0.02 0.03 0.02 0.02 nss −0.69 nss −0.88 0.67 −0.30
Pt 0.29 0.30 0.33 0.30 0.13 0.27 0.69 nss 0.72 nss 0.82 0.74

aRelative standard deviations σrel of these descriptors are computed for each composition and then averaged. The described surface atom type is
shown on the left and all bimetallic combinations are averaged on the last column. The correlation coefficients R on the right side correlate the
above descriptors with the stability of the nanoclusters in the same fashion (bold font indicating strong correlation). The short nss stands for not
statistically significant. More detailed correlation ellipses for each composition are shown in the SI.
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bimetallic systems, a detailed analysis was not possible.
However, it can be noted that the shape of the d-band near
the Fermi-level does not change smoothly with respect to
nanocluster stability. A more detailed descriptor distribution
with correlation ellipses for each composition can be found in
the SI.
Moving to the stable nanoclusters, the above d-band

properties would still vary among surface atom LDOS within
a nanocluster. Due to the small icosahedral shape, there were
only two types of surface atoms, edges and vertices. The
Figures 4, 5, and 6 depict, given a certain composition of the

86 most stable clusters, the mean and the variance w.r.t surface
atoms of ϵd, ϵd

w, and ϵu, respectively.
The error bars show the standard deviation of the descriptor

value for one element at a certain distribution. The atoms were
further split into vertex and edge atoms. Vertex and edge
descriptor values differed significantly with ϵd

w and ϵd with a
relative difference between vertex and edge values of 28% and
19%, respectively. The distribution spread tended to increase
toward equi-atomic compositions except for ϵu (Figure 6)
where the relative difference between vertex and edge values
amounted to an average of 4.5%.

Figure 4. d-band center ϵd of the 86 most stable nanoclusters. The error bars indicate the standard deviation of the distribution among surface
atoms split into edges and vertices.

Figure 5. d-band center plus half d-bandwidth ϵd
w of the 86 most stable nanoclusters. The error bars indicate the standard deviation of the

distribution among surface atoms split into edges and vertices.

ACS Combinatorial Science pubs.acs.org/acscombsci Research Article

https://dx.doi.org/10.1021/acscombsci.0c00102
ACS Comb. Sci. 2020, 22, 768−781

773

http://pubs.acs.org/doi/suppl/10.1021/acscombsci.0c00102/suppl_file/co0c00102_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00102?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00102?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00102?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00102?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00102?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00102?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00102?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00102?fig=fig5&ref=pdf
pubs.acs.org/acscombsci?ref=pdf
https://dx.doi.org/10.1021/acscombsci.0c00102?ref=pdf


Out of all electronic descriptors ϵu had the sharpest
distributions for all binary element combinations with a few
exceptions at certain compositions. The overall trends for each
bimetallic system plot of ϵd and ϵd

w were the same, but
compositions with titanium were shifted downward. The
electronic descriptor ϵu showed comparable trends to ϵd and ϵd

w

but clearer and with fewer outliers enhancing the difference
between elements and damping the difference between edges
and vertices. Since the d-bandwidth strongly fluctuated among
nanoclusters of the same composition, ϵd

w turned out not to be
as stable as the other descriptor, especially for nanoclusters
containing Pt. The SI provides an additional explanation to the
broad distribution of ϵd, most of it, but not all could be
attributed to the atom types of the nearest neighbors around a
surface atom.
Machine Learning Precision. In our previous work, we

showed that it was possible to efficiently interpolate the
potential energy surface of several nanoclusters simultaneously
with a limited number of single point calculations.43 In this
work, instead of finding the positions of the adsorbates, we
machine learn the adsorption energy of a relaxed cluster-
adsorbate structure directly from its initial guess. A similar
strategy was applied to adsorption on amorphous carbon.51

Adsorption energies for different sites on the 86 most stable
nanoclusters were predicted with a subsequently increasing
training set. Figure 7a shows the learning curve from kernel
ridge regression with features from the SOAP descriptor.
Training, validation, and test set are in blue, green, and

orange, respectively. By subsequently computing 1767
adsorption energies with DFT, an accuracy of 0.11 eV MAE
(mean absolute error) was reached. With almost DFT accuracy
we could predict the remaining adsorption energies, hence we
required DFT calculations for less than 10% of the sites. The
parity plot in Figure 7b shows outliers in the high- and low-
energy region. The few data points of low adsorption energies
(below −1.3 eV) were predicted worse than average due to
under-sampling in the low-energy region.43 Analyzing further

where the largest error contributors were, the mean absolute
errors in Table II confirmed that there were significant
differences in prediction accuracy by element combination.
The errors on copper and titanium adsorption energies were

particularly high. The bimetallic alloy CuTi had the largest
MAE with 0.28 eV. Different element combinations apparently
were machine-learned with different accuracies. Without prior
knowledge, the initial ranking of the training points did not
reflect that difference. In future studies, that could be solved by
an optimization engine, or splitting the workflow into separate
runs per bimetallic combination. We also evaluated a
combined structural and electronic descriptor of SOAP with
moments of the local density of states of a surface atom
(LDOS), as described in eq 3.51 With our labeled data (1767
DFT calculations) from the machine learning with SOAP we
were able to achieve an MAE of 0.10 eV on the test set (20%).
The validation set MAE amounted to 0.11 eV. The reduction
in error was not significant (compare Figure 7).

Figure 6. d-band maximum of the hilbert-transform ϵu of the 86 most stable nanoclusters. The error bars indicate the standard deviation of the
distribution among surface atoms split into edges and vertices.

Figure 7. (a) Learning curve of KRR. The errors are averaged over 20
randomized runs and the error bars indicate the standard deviation of
those errors. Training, validation and test set are in blue, yellow and
green, respectively. (b) Calculated vs predicted hydrogen adsorption
energy of 1767 DFT calculations.
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As possible contributors to the prediction error, we
considered the surface reconstruction, that is, changes in
local cluster geometry, when adding the adsorbate and the
movement of the adsorbate from its initial guess to a
neighboring site during structure relaxation. In Figure 8b the
effect of surface reconstruction and adsorption site drift on the
machine learning accuracy is visualized. The global SOAP
dissimilarity between the nanocluster structure before and after
the relaxation with the adsorbate acts as a metric for surface
reconstruction. If there was a significant effect of the surface
relaxation on the predictive power, one could observe the
outliers to have a high SOAP distance metric, which was not
uniformly the case. On top of that, the metric average did not
increase with increasing error (s. binned mean). Second, the
subset of data points in yellow where the adsorption site
remained the same after structure relaxation, retained a slightly
better accuracy than the full data set, with an MAE of 0.10 eV.
The other data points (purple) where the adsorption site

changed increased the MAE to 0.12 eV. Hence, surface
reconstruction had no apparent effect and adsorption site drift
had a small effect on the predictive power of the model.
Overall, machine learning systems of different elements at
different sampling densities, as well as predicting which sites
are stable, could further improve adsorption energy predic-
tions.

Adsorption Energy Distribution. A summary of the
predicted adsorption energy distributions is given in Figure 8a.
They were divided into 15 bimetallic combinations and 7
compositions.
Each distribution was characterized by its mean and

standard deviation. The distribution trends were not trivial.
Some curves for a bimetallic combination, for example, CoFe
are convex upward, whereas others are convex downward. The
distribution is generally broadest at an equi-atomic ratio. The
metals platinum and copper retain their narrow distribution as
a majority component in CuFe, CuCo, CuNi, and NiPt, CuPt.
Since electronic descriptor data require fewer DFT

calculations, it would be advantageous to replace adsorption
energy distributions. A perfect linear relation would make the
latter obsolete. Figure 9 correlates the adsorption energies of
each site with its electronic descriptors ϵd, ϵu, and ϵd

w (from top
to bottom). There is a weak correlation between the
adsorption energies and the electronic descriptors ϵd and ϵd

w

(a), even after constraining the data to only top sites (b) or
sites made up of a single atomic type (c). Only by constraining
sites further to pure nanoclusters (d), the correlation increases
to moderate.
A strong linear correlation was observed with the descriptor

ϵu, but platinum and titanium were shifted downward from the
linear trend with other descriptors. Titanium as an early
transition metal is characterized by strong chemisorption
contrary to late transition metals. The unexpected downshift of
the platinum d-band center could not be explained by the fact
that platinum does not prefer icosahedral structure. Compared
to the global minimum structure with a reduced core, the

Table II. Machine Learning Accuracy by Elementa

MAE
[eV]

n Fe Co Ni Cu Ti Pt all

Fe 0.057 0.058 0.056 0.174 0.124 0.073 0.095
4 133 194 133 148 104 716

Co 0.247 0.084 0.066 0.167 0.061 0.091
2 113 140 145 99 632

Ni 0.125 0.105 0.127 0.053 0.082
5 69 121 76 578

Cu 0.148 0.276 0.093 0.134
4 78 118 542

Ti N.A 0.126 0.157
0 79 571

Pt 0.071 0.081
2 478

aThe dataset contains the elements Fe, Co, Ni, Cu, Ti, and Pt. The
total number of labeled data points n was 1767.

Figure 8. (a) Predicted hydrogen adsorption energy distribution. The mean and standard deviation is given for each composition. (b) Effect of
surface reconstruction and adsorption site drift on the machine learning accuracy. Yellow points represent adsorbates retaining their initial
adsorption site, purple points represent adsorbates which drifted to neighboring sites. The green bars average the SOAP distance metric over an
interval of 0.1 eV adsorption energy error.
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descriptor values do not change significantly (see SI).
Apparently, the above electronic descriptors could not replace
adsorption energies without loss of information, but the
descriptor ϵu prevailed as a property, against which nano-
clusters could be prescreened.
Mutual Information and Clustering of Nanocluster

LDOS. To understand this weak correlation of the adsorption
energies with the electronic descriptors, we computed the
difference of density of states (DDOS) of the nanocluster,
before and after the adsorption process. We used the different
adsorption sites on CuxPt1−x nanoclusters. The mutual
information (MI)63 between the tensor of DDOScomprising
the s, p, and d states of each atom in the nanocluster,
separatelyand the adsorption energy was calculated (see SI).
On comparison with the MI with the DDOS comprising only
the d states of each atom in the nanocluster, no significant
difference was found (MI of 0.91, in both cases). This implies
that no additional information is gained by including the s and
p states, when correlating the LDOS with the adsorption
energy, in agreement with earlier studies.50

Further, t-distributed stochastic neighbor embedding (t-
SNE)64 plots of the d-band of an element in various
nanocluster concentrations is shown in Figure 10. t-SNE
resolves the distribution of the multidimensional d-band tensor
into a 2-dimensional space. The clusters in a t-SNE plot
indicate similar LDOS shapes, and points farther apart would
be dissimilar. A color is assigned to each point, corresponding
to the color-map of the element concentration. Across all
elements in nanoclusters, a high correlation of the t-SNE
clusters with the element concentration is seen, with an
average MI of 1.39. It indicates that the LDOS of the atoms is
a substantial function of a property global to the nanocluster.
This can be attributed to the small size of these nanoclusters,
and the delocalized electrons of the transition metals in the
nanoclusters. t-SNE plots with s, p, and d states were also
plotted, but no significant change in the MI was seen (see SI
Figure S9). This MI, between t-SNE plots of the d orbitals and
the element concentration, was also compared with other
descriptors of the LDOS, εd, εd

w, and εu, as seen in Table III. It

confirms the previous discussion of comparison between the
descriptors.
Additionally, a similar t-SNE plot of the d-band is compared

with the site of the atomcore, edge, or vertexin the
nanocluster (see SI Figure S8). A low average MI of 0.68 is
seen across all the elements in the nanoclusters. It further lends
credence to the substantial global influence on the LDOS. This
global influence on LDOS would also explain their weak
correlation with the adsorption energies, that are local to a site.
This could be remedied with future descriptors, which are a
combination of descriptors with longer range, and the ones
that describe the entire nanocluster.

Comparison with Experiments. Platinum is known for
its unrivalled catalytic activity and acts as the reference catalyst,
so we compared its descriptor values to other nanoclusters to
indicate good catalyst candidates. We compared it to three
references with consistent series of experiments on HER. Table
IV lists the catalytic activities from references10 (A),65 (B),
and66 (C) as specific current density js or exchange current
density j0.
Since none of the above series of experiments were done on

nanoparticles of controlled size, the results could deviate from
theoretical predictions. Hidden variables in experiments as well
as approximations in the theoretical model could also play a
role here. Catalytic activity followed the trends (A) NiCo > Ni
> Co > NiFe, (B) NiTi > Ni ≈ Co, and (C) Ni ≈ Co > Fe >
Cu > Ti. The d-band centers in Figure 4 of NiTi, NiFe, and
NiCo drop closer to the d-band center of platinum compared
to pure Ni and Co. This agrees with (B) but disagrees partly
with (A). The ordering of catalytic activity of pure elements in
(C) was also not reflected by the d-band center of nanoclusters
with titanium having a similar d-band center as platinum. Upon
adding half the d-bandwidth, ϵd

w in Figure 5 the picture changes
slightly. Similar to the d-band center, NiTi, NiFe, and NiCo ϵd

w

get closer to platinum. Again, this agrees with (B) but disagrees
partly with (A). The ϵd

w values are similar for Ni, Co, Fe, and
Cu; hence, could not discriminate between the catalytic
activities in (C). Only Ti no longer had a value comparable to
platinum. The descriptor ϵu disagrees at least partly with all
observed catalytic activities. This is due to copper and NiTi

Figure 9. Electronic descriptors of surface atoms which form the adsorption site against the adsorption energy. From left to right, the columns show
(a) all adsorption sites, (b) all top sites, (c) only pure adsorption sites (top, bridge, and hollow sites made up of a single atomic type), and (d) only
adsorption sites from pure nanoclusters. Each subplot has its own correlation coefficient R.
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having a too low ϵu and NiFe having a value similar to
platinum. Overall, the agreement is not good, possibly for the
reasons of difference in catalytic activity of nanoclusters and/or
lower predictive power of electronic descriptors in the
nanoregime.
The adsorption energies of NiCo, NiTi, and NiFe (see

Figure 8) were shifted upward closer to platinum adsorption,

which agrees with (B) but disagrees partly with (A). The
ordering of catalytic activity of pure elements in (C) turned
out to be the same as the ordering of adsorption energy trends
of pure nanoclusters, except for copper which had a higher
adsorption energy than platinum. This was expected as copper
surfaces are usually less reactive than platinum.46 The
adsorption energy distribution could describe the trends in
catalytic activity well for the pure elements. It, however, did
not explain all activity trends of bimetallic systems. In
particular, NiFe is less active than cobalt or nickel, but
according to the adsorption energy distribution, the opposite
was expected. A possible reason for that could be that iron has
the highest magnetic moment among the studied elements.60

Apart from that, iron forms bcc crystals as opposed to hcp or
fcc for all the other elements.

Figure 10. t-SNE plots for LDOS of the d-band of an element in various nanoclusters. A colormap of the concentration of an element in a
nanocluster is added to correlate the t-SNE clusters with the concentration.

Table III. Average MI of the Descriptors over States of the d
Orbitals of an Element in Various Nanoclusters, With the
Concentration of the Elementa

LDOS εd εd
w εu

MI 1.39 0.98 0.93 0.98
aLDOS, used as is, has the highest mutual information with the
element concentration, followed by the descriptors of εu and εd.
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Comparison with Other Computed Data Sets.
Adsorption energies of nanoclusters differ from those on
periodic slabs. The structure of the slab surface is
predetermined by the crystal, since the forces exerted are
generally not large enough to induce a bulk distortion (high
bulk-to-surface ratio). In nanoclusters on the other hand, the
core structure is distorted or under strain, especially in small
icosahedral clusters. Apart from that, edges are more prevalent
in nanoclusters. In order to view how adsorption energies shift
between the two models, our nanocluster data set was
compared to two slab databases from the literature.20,67 Figure
11b shows the average adsorption energy on a pure or
bimetallic nanocluster top site with a top site on a periodic slab
from ref 67. Figure 11a shows the differences between those
models for each pure or bimetallic system.
The barchart shows that adsorption energies on nanoclusters

were shifted downward. This was due to the different model

geometries but also due to different computational methods.
The shift was, however, not constant with respect to elements.
Co and Ni, for instance were expected to have similar
adsorption energies by the slab model, but had a 0.2 eV
difference in the nanocluster model (see Figure 11b). Figure
12 adds a large database from ref 20 of adsorbates on periodic
slabs of higher Miller indices into the picture.
The downward shift of adsorption energies of nanoclusters

became also evident when looking at the lowest-energy
adsorbates on slabs (orange) or their mean (black) in Figure
12. It was most prominent in nickel and cobalt, but also
platinum and copper show a slight downward shift. Pure iron
seemed to have outliers at very low adsorption energies. All the
six outliers had low Miller indices of 100 and 110, small unit
cells and significant surface reconstruction. Only the
adsorption energy of titanium was close between the two
data sets. The periodic slab data set contained most bimetallic
data on platinum compounds. There, the curves of the lowest-
energy adsorbates on slabs (orange) as well as the mean
adsorption energies (black) followed the same trends as of the
nanocluster adsorbates, however the PtCo and PtNi curves
diverged toward the left.

■ CONCLUSIONS

We automated the procedure for creating a bimetallic data set,
from the generation of nanoclusters through adsorption site
detection to machine learning predictions of the hydrogen
adsorption onto the clusters. Given a fixed shape, namely
icosahedral, the problem of high number of configurations was
mitigated by measuring how similar configurations were to one
another. This subset was big enough to include experimentally
observable composites such as core−shell, segregated, ordered,
and random.
The d-band properties of nanoclusters correlated consis-

tently with nanocluster stability. This indicated that a dense
sampling is required to avoid systematic descriptor errors. In

Table IV. Experimental Catalytic Activities of Selected Pure
and Binary Transition Metals Given As Either Specific
Current Density js at η = 0.35V or Exchange Current
Density j0

js,η=0.35V j0

catalyst [mAcm−2] ref [mAcm−2] ref

Pt 0.54 A 0.57 B
Pt 1.0 C
Co 0.002 A 0.00094 B
Co 0.002 A 0.005 C
Fe 0.004 A 0.0025 C
Ni 0.021 A 0.0004 B
Ni 0.0056 C
Ti 0.000005 C
Cu 0.000016 C
NiCo 0.062 A
NiFe 0.002 A
NiTi 0.003 B

Figure 11. Comparison of adsorption energies of only top nanocluster adsorption sites with a periodic slab data set from ref 67. The error bars
display the standard deviation of the distribution of adsorption energies. The first element mention denotes the binding site. (a) A histogram of the
difference in adsorption energies. (b) A parity plot with the parity line y = x is shown in red.

ACS Combinatorial Science pubs.acs.org/acscombsci Research Article

https://dx.doi.org/10.1021/acscombsci.0c00102
ACS Comb. Sci. 2020, 22, 768−781

778

https://pubs.acs.org/doi/10.1021/acscombsci.0c00102?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00102?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00102?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00102?fig=fig11&ref=pdf
pubs.acs.org/acscombsci?ref=pdf
https://dx.doi.org/10.1021/acscombsci.0c00102?ref=pdf


the future, descriptor statistics could be used to monitor and
actively modulate the extent of cluster configuration sampling.
The adsorption energy distribution on nanoclusters was

computed efficiently by simulating the most dissimilar data
points (less than 10%) and interpolating the remaining data
points with machine learning to a mean absolute error of 0.1
eV. Enhancing the structural descriptor SOAP by the LDOS of
surface atoms did not significantly improve the prediction
accuracy. That result was in contrast to the work where the
method was suggested51 where a 30% accuracy improvement
over SOAP on pure amorphous carbon surfaces was observed.
Since our systems contained both multiple elements and d-
orbitals were involved in binding, the LDOS was composed of
more multifaceted states.
Adsorption energies as a descriptor are much closer to the

actual catalytic activity than electronic descriptors. The
electronic descriptors ϵd and ϵd

w show only weak correlation
with adsorption energies. The maximum of the d-band Hilbert
transform ϵu did correlate moderately to strongly with the
adsorption energy, especially strongly on pure nanoclusters.
The results indicate that ϵu can be used semiquantitatively for
small cluster sizes, as a descriptor for prescreening at lower
computational cost than adsorption energies. Further analysis
of the LDOS showed that the contribution of s and p states to
the adsorption energy do not significantly provide additional
information to the descriptor. The similarity clustering of
LDOS with respect to nanocluster composition indicated that
an improved descriptor should incorporate global or at least
long-range information.
A qualitative comparison of electronic descriptors with

experiments showed no consistent agreement. This could have
two reasons: either the nanocluster structures were not
representative of nanoparticles in real conditions, or the
electronic descriptors lose their predictive power when applied
to the nanocluster model. The adsorption energy distribution
could describe the trends in catalytic activity better, at least for
the pure elements. It, however, did not explain activity trends
of bimetallic systems well. It is possible that the adsorption
energy does not suffice to make predictions across the board,
therefore it might be necessary to expand to more expensive
coverage simulations. Additionally, a future series of experi-

ments with controlled size and composition could help make
more substantiated comparisons. When we compared our data
to other computational data sets, there were nonconstant
shifts, likely due to structural differences between nanoclusters
and periodic slabs.
Our statistical approach yields not only descriptors but also

their distribution. This indicates how much the local properties
can change upon configurational changes. Since we selected
only the 10 most dissimilar structures, the convex hull was not
accurate. The number of sampled configurations could be
increased on-the-fly until electronic descriptors are converged.
In the future, the data could be enhanced so that it also reveals
shape changes. With the current workflow, different nano-
cluster shapes can be encompassed in the search. The
automation tools support arbitrary shapes and also molecular
adsorbates, so that more complex reactions such as the oxygen
evolution reaction can be screened.
A broader search with different sizes (up to 2 nm) and

shapes (wulff, dodecahedral, and icosahedral) could open the
door for quantitative structural effects on electronic descriptors
and adsorption energies. Comparing them to periodic slabs
could help untangle nanocluster effects and attribute them to
core strain, the finite nature of the system and contribution of
faces and edges. If we understand those contributions better,
we can explore refined descriptors, such as the incorporation of
structural effects into d-band properties, to better guide
nanocatalyst design.
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Figures for excess energies of nanoclusters and stability
change of nanoclusters with respect to a similarity
metric. Additionally, for each descriptor ϵd, ϵd

w and ϵu,
figures resolve the correlation with nanocluster stability
in Table I per composition. The correlation between ϵd
and the nearest and next-nearest neighbor environment
is also shown. Furthermore, descriptor values of the
reduced core Pt nanocluster are compared to the values

Figure 12. Comparison of adsorption energies of nanocluster adsorption sites (blue) with a data set of slabs with higher Miller indices from ref 20
(red). The minimum (average) of the latter data for a given composition is depicted in orange (black).
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of the icosahedral configuration. Lastly, the mutual
information between the LDOS and other properties
such as electronic descriptors is shown(PDF)
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(45) De, S.; Bartoḱ, A. P.; Csańyi, G.; Ceriotti, M. Comparing
molecules and solids across structural and alchemical space. Phys.
Chem. Chem. Phys. 2016, 18, 13754−13769. 1601.04077.
(46) Hammer, B.; Nørskov, J. K. Why gold is the noblest of all the
metals. Nature 1995, 376, 238−240.
(47) Hammer, B.; Nørskov, J. Theoretical Surface Science and
Catalysis  Calculations and Concepts. Adv. Catal. 2000, 45, 71−
129.

(48) Xin, H.; Linic, S. Communications: Exceptions to the d-band
model of chemisorption on metal surfaces: The dominant role of
repulsion between adsorbate states and metal d-states. J. Chem. Phys.
2010, 132, 221101.
(49) Vojvodic, A.; Nørskov, J. K.; Abild-Pedersen, F. Electronic
Structure Effects in Transition Metal Surface Chemistry. Top. Catal.
2014, 57, 25−32.
(50) Xin, H.; Vojvodic, A.; Voss, J.; Nørskov, J. K.; Abild-Pedersen,
F. Effects of d-band shape on the surface reactivity of transition-metal
alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 115114.
(51) Caro, M. A.; Aarva, A.; Deringer, V. L.; Csańyi, G.; Laurila, T.
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