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Abstract

With increasingly “big” data available in biomedical research, deriving accurate and reproducible biology knowledge
from such big data imposes enormous computational challenges. In this paper, motivated by recently developed
stochastic block coordinate algorithms, we propose a highly scalable randomized block coordinate Frank-Wolfe
algorithm for convex optimization with general compact convex constraints, which has diverse applications in
analyzing biomedical data for better understanding cellular and disease mechanisms. We focus on implementing the
derived stochastic block coordinate algorithm to align protein-protein interaction networks for identifying conserved
functional pathways based on the IsoRank framework. Our derived stochastic block coordinate Frank-Wolfe (SBCFW)
algorithm has the convergence guarantee and naturally leads to the decreased computational cost (time and space)
for each iteration. Our experiments for querying conserved functional protein complexes in yeast networks confirm
the effectiveness of this technique for analyzing large-scale biological networks.
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1 Introduction
First-order methods in convex optimization have
attracted significant attention in statistical learning in
recent years. They are appealing to many learning prob-
lems, such as LASSO regression and matrix completion,
which have diverse applications in analyzing large-scale
biological systems and high-dimensional biomedical mea-
surement profiles [1, 2]. These first-order optimization
methods scale well with the current “big” data in many
biomedical applications due to their advantages that they
have low computation burden per iteration and they
are easy to be implemented on parallel computational
resources.
In this paper, we focus on the Frank-Wolfe algorithm,

which is also known as the conditional gradient method.
One of its advantages is that at each iteration step, it
decomposes the complex constrained optimization prob-
lem into subproblems that are easier to solve. Additionally,
it is a projection-free algorithm, which avoids solving
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the projection problem for constrained optimization as
done in many other algorithms. The original Frank-Wolfe
algorithm, developed for smooth convex optimization on
a polytope, dates back to Frank and Wolfe [3]. Dunn
and Harshbarger [4, 5] have generalized the algorithm
to solve the optimization for more general smooth con-
vex objective functions over bounded convex feasible
regions. Recently, researchers [6] have proposed stochas-
tic optimization ideas to scale up the original Frank-Wolfe
algorithm.
Based on these previous seminal efforts, our main con-

tribution in this paper is that we generalize the stochastic
block coordinate Frank-Wolfe algorithm proposed in [6],
previously with block separable constraints, to solve more
general optimization problems with any convex compact
constraints, including the problems with block insepa-
rable constraints. Such a generalized algorithm has a
broader range of biomedical applications, including bio-
logical network alignment. We prove the convergence of
our generalized stochastic block coordinate Frank-Wolfe
algorithm and evaluate the algorithm performance for
querying conserved functional protein complexes in real-
world protein-protein interaction (PPI) networks.
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In the following sections, we first describe the model
formulation of the optimization problems that we are
generally interested. Specifically, to address potential dif-
ficulty from more general convex compact constraints,
we derive a new stochastic block coordinate Frank-Wolfe
algorithm and provide the convergence proof. Then, we
formulate the IsoRank problem for network alignment [7]
as a convex programming problem and develop a stochas-
tic block coordinate Frank-Wolfe (SBCFW)-IsoRank algo-
rithm based on our new stochastic block coordinate
Frank-Wolfe algorithm. At last, in our experiments, we
show the efficiency and effectiveness of our algorithm for
solving the PPI network query problem.

2 Stochastic block coordinate descent
Frank-Wolfe algorithm

Consider the minimization problem:

min : f (x)
s.t. x ∈ D,

(1)

where the objective function f (x) is convex and differen-
tiable onRN and the domainD is a compact convex subset
of any vector space. We assume that the optimal solu-
tion x∗ to the above problem is non-empty and bounded
without loss of generality.
Assume that we can decompose the solution space RN

into n equal-size subspaces:

RN = n⊕
i=1

RNi , N =
n∑

i=1
Ni, (2)

where N1 = . . . = Ni = . . . ,Nn and RNi denotes
the ith equal-size subspace along the corresponding coor-
dinates. This decomposition enables scalable stochastic
optimization algorithms. Based on this decomposition, we
introduce matrices Ui, who sum up to an identity matrix
IN = ∑n

i=1Ui, and Ui is a N × N matrix with Ui(t, t) =
1, t ∈ RNi on its diagonal and the other entries being equal
to zero. In typical stochastic optimization algorithms
[8, 9], instead of computing the gradient ∇f (x) at each
iteration, the partial gradient of f (x) on a randomly
selected subspace RNi is used:

∇if (x) = Ui∇f (x). (3)

Now, we generalize the previous stochastic block coor-
dinate Frank-Wolfe algorithm derived in [6] to solve more
general optimization problems with any compact convex
constraints D. The new generalized SBCFW algorithm is
illustrated in Algorithm 1. In the pseudo code, the oper-
ation i = Ck randomly selects one of the n equal-size
subspaces to update the partial gradient at each iteration
with the same probability. In addition, Uj × s = Uj × xk
denotes the condition that the elements of the jth block of
s equal to the elements of the jth block of xk .

Algorithm 1 Generalized SBCFW algorithm
1 Let x0 ∈ D, k = 0.
2 While stopping criteria are not satisfied, do
3 Randomly divide RN into n blocks RN = n⊕

i=1
RNi ;

4 Choose i = Ck ;
5 Find ski such that
6 ski := arg min

Uj×s=Uj×xk ,∀j �=i;
s∈D

∇if (xk)T (s − xk);

7 Determine the step size γ

8 γ := arg min
γ ∈[0,1]

f
(
(1 − γ )xk + γ ski

)
;

9 Update xk+1 := (1 − γ )xk + γ ski ;
10 k = k + 1;
11 EndWhile

Note that our generalized SBCFW algorithm is similar
to the algorithm in [6], which aims to solve optimiza-
tion problems with block separable constraints and has
the sublinear convergence property. However, our algo-
rithm provides a more generalized framework, which can
manipulate any convex and compact constraints no mat-
ter whether they are block separable or not. Because the
setup of our algorithm is more general without any spe-
cific structure, it is difficult to obtain theoretical conver-
gence rate guarantees. In this paper, we only provide the
proof that our SBCFW converges to the global optimum.
The convergence guarantee of the generalized SBCFW
algorithm is provided by Theorem 1 below, which is
based on.

Lemma 1. At each iteration of the SBCFW algorithm,
the following inequality holds

∇f
(
xk

)T (
Ei

[
ski

]
− xk

)
≤ 0, (4)

where Ei
[
ski

]
is the expectation of ski with respect to

the random selection of the ith coordinate block to the
corresponding subspace.

Proof. Assuming at the kth iteration, we solve the fol-
lowing optimization problem:

min : Zi
k(s) := ∇if

(
xk

)T (
s − xk

)
s.t. Uj × s = Uj × xk , ∀j �= i,

s ∈ D.

(5)

The solution to (5) is ski . With ski achieving theminimum
of (5), we have

Zi
k

(
ski

)
≤ Zi

k

(
xk

)
= ∇if

(
xk

)T (
xk − xk

)
= 0. (6)



Wang and Qian EURASIP Journal on Bioinformatics and Systems Biology  (2016) 2016:9 Page 3 of 9

Therefore,

Zi
k

(
ski

)
= ∇if

(
xk

)T (
ski − xk

)
≤ 0. (7)

Taking expectation on both sides of the above inequality
with respect to random blocks, we obtain

Ei
[
∇if

(
xk

)T (
ski − xk

)]
≤ 0

⇒ 1
n

∑
i

∇if
(
xk

)T (
ski − xk

)
≤ 0

⇒
(∑

i
∇if

(
xk

))T
1
n

(∑
i

(
ski − xk

))
≤ 0

⇒
(∑

i
∇if

(
xk

))T (
1
n

∑
i
ski − xk

)
≤ 0

⇒ ∇f
(
xk

)T (
Ei

[
ski

]
− xk

)
≤ 0.

(8)

The inequality in the third line can be derived based on
the fact that ski − xk is a vector with only its ith coordinate
block having non-zero values and the other parts being all
zeros. With that, the summation in the second line can be
written as the inner product between vectors

∑
i ∇if

(
xk

)
and

∑
i

(
ski − xk

)
.

We now analyze the convergence of the new SBCFW
algorithm based on Lemma 1 from two cases. The first
case is when

∇f
(
xk

)T (
Ei

[
ski

]
− xk

)
= 0. (9)

This simply means that xk is a stationary point. Because
the original objective function f (x) is convex, we can con-
clude that xk is the global minimum. Another case is when

∇f
(
xk

)T (
Ei

[
ski

]
− xk

)
< 0, (10)

indicating that Ei
[
ski

]
−xk is a descent direction based on

the definition [10]. Hence, Ei
[
ski

]
−xk can move along the

direction to get closer to the global minimum in expec-
tation. Furthermore, we compute the optimal step size at
each iteration; therefore, the objective function values are
guaranteed to be non-increasing. With that, we present
Theorem 1 as follows:

Theorem 1. The sequence
{
f
(
x1

)
, f

(
x2

)
, . . . , f

(
xk

)
, . . .

}
generated by the SBCFW algorithm is non-increasing

f
(
x1

) ≥ f
(
x2

) ≥ . . . ≥ f
(
xk

)
≥ f

(
xk+1

)
, k → ∞.

(11)

3 Biological network alignment
3.1 Optimization model formulation
In this section, we re-formulate the involved optimization
problem for the network alignment algorithm—IsoRank
[7] to address the potential computational challenges of
aligning multiple large-scale networks. The new formula-
tion has the same mathematical programming structure
as the problem (1).
Let Ga and Gb be two biological networks to align. Two

networks has Na and Nb vertices, respectively. We define
B ∈ R(Na×Nb)×(Na×Nb) as the Cartesian product network
from Ga and Gb: B = Ga ⊗ Gb. Denote the all-one vector
1 ∈ RNa×Nb and

B̄ = B × Diag(B1)−1, (12)

where Diag(B1) can be considered as a degree matrix with
B1 on its diagonal and all the other entries equal to zero.
B̄ contains the transition probabilities for the underlying
Markov random walk in IsoRank [7]. It is well known that
if Ga and Gb are connected networks and neither of them
is bipartite graph, then the corresponding Markov chain
represented by B̄ is irreducible and ergodic, and there
exists a unique stationary distribution for the underlying
state transition probability matrix B̄. The goal of the Iso-
Rank algorithm is to find the maximal right eigenvector of
the matrix B̄: B̄x = x and 1Tx = 1, x ≥ 0, which corre-
sponds to the best correspondence relationships between
vertices across two networks. When two networks are of
reasonable size, spectral methods as well as power meth-
ods can be implemented to solve the IsoRank problem [7].
However, with large-scale networks, the transition prob-
ability matrix B̄ can be extremely large (quadratic with
Na ×Nb) and spectral and power methods can be compu-
tationally prohibitive. In this paper, we re-formulate this
problem of searching for maximal right eigenvector as a
constrained optimization problem:

min : f (x) := 1
2

∥∥B̄x − x
∥∥2

s.t. 1Tx = 1, x ≥ 0. (H)

(13)

After expanding the objective function, we obtain f (x) =
1
2x

TMx, where M = B̄T B̄ − B̄ − B̄T + I. Therefore, the
equivalent optimization problem is

min : f (x) := 1
2
xTMx

s.t. 1Tx = 1, x ≥ 0. (H)

(14)

The gradient of f (x) can be easily computed ∇f (x) = Mx.
Furthermore, we find that the Hessian matrix of f (x) is
M, which is a positive semi-definite matrix proven by
Lemma 2:

Lemma 2. M = B̄T B̄ − B̄ − B̄T + I is positive semi-
definite.
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Proof. M can be written asM = (B̄ − I)T (B̄ − I), which
proves the lemma.

With Lemma 2, it is obvious that the objective function
f (x) is convex. Also, the constraint set H = {x|xT1 =
1, x ≥ 0} is a unit simplex, which is convex and compact.
Hence, the IsoRank problem (13) has the same problem
structure as (1) and our generalized SBCFW algorithm
can be used to solve (14) with much better scalability and
efficiency due to the efficiency of the randomized par-
tial gradient computation at each iteration. Similarly as in
[7], in addition to network topology, we can incorporate
other information in the formulation for more biologi-
cally significant alignment results by replacing B̄ with B̂ =
αB̄+(1−α)S̄1T , α ∈[ 0, 1]. Here, S̄ = S/|S| is a normalized
similarity vector with sizeNa×Nb, cancatenated from the
doubly indexed similarity estimates S([u, v] ) based on the
sequence or function similarity between vertices u in Ga
and v in Gb.

3.2 SBCFW-IsoRank algorithm
As shown in Section 3.1, f (x) in (13) is convex and the
constraint setH in (14) is a convex compact set. Therefore,
we can apply the generalized SBCFW algorithm pro-
posed in Section 2 to solve the corresponding optimiza-
tion problem (14). The detailed algorithm is illustrated in
Algorithm 2. We define E = B̄ − I. From Lemma 2, we
know M = (B̄ − I)T (B̄ − I), and therefore, we can write
M = ETE. Here, we want to emphasize that, in each itera-
tion of our SBCFW-IsoRank algorithm, both the time and
space complexity are O

(
N2

n

)
, which is achieved through

tracking the vectors of pk = Exk and qk = Eski at steps
2 and 10 of each iteration in Algorithm 2, respectively.
The stopping criterion is

∥∥B̄x − x
∥∥ ≤ ξ ‖x‖, which can be

efficiently estimated by
∥∥B̄x − x

∥∥ = xTMx = (Ex)TEx = pTk pk , (15)

which is taken in line 11 in the SBCFW-IsoRank
algorithm.

3.3 Initialization
In order to guarantee both the time and space complex-
ity to be O

(
N2

n

)
at each iteration, we cannot initialize the

algorithm with randomly generated x0 to avoid a multi-
plication of a matrix of size N × N and a vector of size
N, whose time and space complexity would be O(N2).
We propose to initialize x0 in the following way: First,
randomly divide RN into n parts with equal sizes and ran-
domly pick the ith part. Then, we initialize every elements
in the ith part with n

N , which makes x0 in the feasible
space defined by the constraint set H. Using the above
initialization strategy, the time and space complexity for

Algorithm 2 SBCFW-IsoRank algorithm
Input: ξ , n and E
1 For k = 0, ...,∞ do
2 Randomly divide RN into n equal-size parts
3 Choose i = Ck
4 If(k == 0)
5 Initialize the ith block of x0 with n

N
6 EndIf
7 Compute pk = Exk and ∇if (xk) =[ET ]i pk
8 Solve the sub-problem:
9 ski := arg min

Uj×s=Uj×xk , ∀j �=i;
s∈H,

∇if (xk)T (s − xk)

10 Compute qk = Eski
11 If pTk pk < ξ ‖x‖
12 Break;
13 EndIf
14 Compute the step size γ ∗

k :

15 γ ∗
k =

⎧⎨
⎩min

{
γ̂ , 1

}
γ̂ > 0, γ̂ = pTk pk−pTk qk

pTk pk−2pTk qk+qTk qk
0 o.w.

16 xk+1 = xk + γ k(ski − xk
)

17 EndFor
Output: xk

computating ∇if (x0), p0 = Ex0, and q0 = Es0 are all
under O

(
N2

n

)
, which is easy to verify.

3.4 Algorithm to solve the subproblem
As shown in the SBCFW-IsoRank algorithm, at each itera-
tion, we need to solve a subproblem. Fortunately, the sub-
problem can be solved in a straightforwardmanner for the
optimization problem (14). For the following subproblem
at iteration k:

min : ∇if
(
xk

)T (
s − xk

)
s.t. s ∈ H,

Uj × s = Uj × xk , ∀j �= i,

(16)

the optimal solution is s∗ = xk − Uixk + Lej, where ej
is an all-zero vector except that the jth element is 1 and
L = ∑

l∈RNi xk(l). Here, j is the index of the coordinate
with the smallest value in the ith block of ∇if

(
xk

)
:

j = argmin :
l∈RNi

[
∇if

(
xk

)]
(l). (17)

3.5 Optimal step size
To obtain the optimal step size at each iteration, we need
to solve the following optimization problem:

min :
(
xk + γ

(
sk − xk

))T
M

(
xk + γ

(
sk − xk

))
s.t. 0 ≤ γ ≤ 1,

(18)



Wang and Qian EURASIP Journal on Bioinformatics and Systems Biology  (2016) 2016:9 Page 5 of 9

which is the classic quadratic form with respect to γ . If
γ̂ = pTk pk−pTk qk

pTk pk−2pTk qk+qTk qk
> 0, which is the solution to (18)

without any constraints, the optimal solution γ ∗ is the
minimum value between 1 and γ̂ , otherwise γ ∗ = 0.
The definitions of pk and qk are given in lines 7 and 10
in Algorithm 2.

3.6 Time and space complexity
At each iteration, the most computationally expensive
operations are the updates of pk and qk (lines 7 and 10
of SBCFW-IsoRank) and the calculation of the partial
gradient ∇if

(
xk

)
(line 7 of SBCFW-IsoRank).

The calculation of pk and qk are similar. From line 10 of
Algorithm 2, we know

pk = Exk

= E
(
xk−1 + γ k−1

(
sk−1 − xk−1

))
= pk−1 + γ k−1E

(
sk−1 − xk−1

)
.

(19)

The second equation is derived by replacing xk with
the equation in line 16 of our SBCFW-IsoRank algorithm.
Because we keep tracking pk at each iteration, we do
not need to recompute pk−1. Therefore, we only need to
compute E

(
sk−1 − xk−1), which takes O

(
N2

n

)
operations

because
(
sk−1 − xk−1) is a vector, with only its ith block

being non-zeros and all the other parts are zeros. Addi-
tionally, the memory consumption is also O

(
N2

n

)
by the

similar argument. Similarly, we can compute qk :

qk = Esk

= E
(
xk +

(
Lej − Uixk

))
= pk + E

(
Lej − Uixk

)
,

(20)

where
(
Lej − Uixk

)
is also a vector with only the ith block

having non-zero values. Therefore, the computation of
qk also takes O

(
N2

n

)
operations and consumes O

(
N2

n

)
memory.
The equation of calculating ∇if

(
xk

)
is as follows:

∇if
(
xk

)
=

[
ET

]
i
pk , (21)

where the operator [ ·]i is to get the rows of the matrix cor-
responding to the ith coordinate block. Hence, it is easy
to verify that the time complexity and space complexity of
computing ∇if

(
xk

)
are O

(
N2

n

)
.

In summary, based on the above analyses, both the time
complexity and space complexity of our SBCFW-IsoRank
at each iteration are O

(
N2

n

)
.

4 Experiments
In this section, we apply our SBCFW-IsoRank algorithm
to two network query problems. For the first set of exper-
iments, we take a known protein complex in an archived
yeast PPI network in one database [11] as the query
to search for the subnetwork in another yeast PPI net-
work [12] with different archived interactions.We call this
yeast-yeast network query problem. The goal of this set of
experiments is to check the correctness of our algorithm
as we have the ground truth for the target subnetwork.
With that, we aim to test the convergence property of
our algorithm with different partitions and the relation-
ship between the number of iteration steps and number
of partitions. The second experiment is to query a large-
scale yeast PPI network in IntAct [13] to find similar
subnetworks of proteins with similar cellular functionali-
ties for a known protein complex in human PPI network.
The aim of this experiment is to show that our new algo-
rithm can help transfer biology knowledge from model
organisms to study potential functionalities of molecules
in different organisms. Our Matlab implementation of
SBCFW-IsoRank runs on a MacBook Pro notebook with
8 GB RAM. We do not compare with IsoRank algorithm
in terms of computational and biological performance.
Computationally, it is not fair to compare our algorithm
(implemented in matlab) with IsoRank (implemented in
C). Biologically, they should generate the same results if
our algorithm converges, so the proof of convergence is
sufficient to guarantee the equivalence of the biological
performance.

4.1 Yeast-yeast network query problem
We test our SBCFW-IsoRank algorithm on the yeast-yeast
PPI network query problem by solving the optimization
problem introduced in the previous section. We take a
subnetwork with six proteins (Fig. 1a) from Krogan’s yeast
PPI network [11] as the query example to search for
the conserved functional complex in a target network,
which is Collins’ network [12] with 1622 proteins and
9074 interactions. The query subnetwork is the transcrip-
tion factor TFIIIC complex in Krogan’s network and we
are interested in testing whether we can find the same
subnetwork in Collins’ network. The dimension of our
optimization problem is 6 × 1622 = 9732. We run this
preliminary example so that we can compare our stochas-
tic optimization results with the results from the power
method, which is typically done in the original IsoRank
algorithm [7]. Theoretically, the time and space complex-
ity of our SBCFW-IsoRank at each iteration are both
O(N2/n) based on the analysis in Section 3.6. Compared
toO(N2) time and space complexity for the powermethod
by IsoRank [7], our SBCFW-IsoRank algorithm can scale
better with the properly selected number of partitions n at
each iteraction.
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Fig. 1 Query subnetwork and its aligned result in the target network. a The query subnetwork in Krogan’s yeast PPI network [11]. b The aligned
result in Collins’ yeast PPI network [12]

As both the query example and the target network
contain interactions among proteins from the same
organism—yeast, we can easily check the correctness of
the query result. We define the accuracy as the number
of corrected aligned proteins divided by the total num-
ber of proteins in the query subnetwork. We implement
the SBCFW-IsoRank algorithm for different numbers of

partitions n but use the same stopping criterion:
∥∥∥B̂x − x

∥∥∥
≤ ξ ‖x‖ , ξ = 0.1 [9].
Figure 2 shows the changes of the objective function val-

ues with respect to the increasing number of iterations.
As illustrated in Fig. 2, our algorithm converges for all
different n values. Additionally, we find that, the larger
the number of partitions n is, the larger the number of

Fig. 2 The change of the objective function values with the increasing number of iterations with different numbers of partitions
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iterations we need to have the algorithm converge to the
global optimum with the same stopping criterion. This
clearly demonstrates the tradeoff between the efficiency
and scalability of the stochastic optimization algorithms.
Interestingly, we notice that for n = 10, 30, and 50,
the number of iterations does not increase much, which
indicates that wemay achieve fast computation with a rea-
sonably large n because our algorithm is more efficient for
larger n values at each iteration.
To further investigate the performance with differ-

ent n values, we run our algorithm 10 times for n =
[ 2, 10, 20, 30, . . . , 200] and show the average and standard
deviation of the computational time as well as the aver-
age and standard deviation of the number of iterations in
Fig. 3.
We find that for all different n values, our algorithm

can obtain 100 % accuracy, which again demonstrates the
effectiveness and convergence of our generalized SBCFW
algorithm. Also, we notice that with the increasing n, the
number of iterations increase; however, the computational
time is first reducing then increasing. For example, when
n = 2, our algorithm converges with the smallest num-
ber of iterations, but the computational time is not the
best because at each iteration, the algorithm takesO

(
N2

2

)
operations. In contrast, when n = 30, the number of iter-
ations is larger; but it reaches the global optimumwith the
least computation time, which is indeed twice faster than
n = 2. The trend of the computational time implies that
there may exist the best number of partitions n∗. Empir-
ically, when n < n∗, the computational time decreases
while the computational time can increase when n >

n∗. However, it is difficult to provide a theoretical proof
for this observed phenomenon. Finally, for the scalability

of the algorithm, we always prefer larger n to make the
memory requirement as low as possible.

4.2 Human-yeast network query problem
We further study the biological signficance of network
query results by our SBCFW-IsoRank algorithm. We
extract a subnetwork as a query example from a human
PPI network archived in IntAct [13]. The query subnet-
work is the proteasome core complex, with induced inter-
actions among the corresponding proteins from IntAct
[13]. The proteasome core complex in human consists of
14 proteins in total, as shown in Fig. 4a. The target net-
work is the yeast PPI network, also obtained from IntAct
[13], which has 6392 proteins and 77,065 interactions. Our
goal is to find the most similar subnetwork to the human
proteasome core complex in the target yeast PPI network,
based on both the interaction topology and the protein
sequence similarity, which is computed by BLAST [14].
We first construct the alignment network, which has

N = 14 × 6, 392 = 89, 488 vertices. By our SBCFW-
IsoRank algorithm with n = 300, at each iteration, instead
of operating a matrix of size 89, 488 × 89, 488 by the
power method, we only need to handle a matrix of size
298 × 89, 488. The computational time as well as the
memory requirement are reduced 300 times. Our Mat-
lab implementation of SBCFW-IsoRank on the MacBook
Pro notebook with 8GB RAM takes only around 750 s to
converge by reaching the stopping criteria (0.1).
The identified subnetwork in the target yeast PPI

network by our algorithm is illustrated in Fig. 4b. To
evaluate the biological significance of the obtained sub-
network, we check the p value based on Gene Ontology
(GO) enrichment analysis using GOTerm Finder [15].

Fig. 3Mean and standard deviation of the computational time in seconds and the number of iterations for different partition numbers
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Fig. 4 Querying human protein complex in a yeast PPI network. The proteins are annotated by their gene names. The solid lines are protein
interactions and the dashed lines denote orthologous relationships based on protein sequence similarity by BLAST between the proteins in different
organisms. a Human proteasome core complex. b The aligned proteasome core complex in yeast found by SBCFW-IsoRank

The identified subnetwork is significantly enriched in GO
term GO:0005839, which is in fact the same proteasome
core complex, with p value 9.552e − 36. This experiment
demonstrates that our algorithm can find the biologi-
cally consistent groups of proteins with the same cellular
functionalities as the proteins in the query subnetwork,
hence with the capability of transferring existing biology
knowledge in model organisms (yeast for example) to less
studied organisms when the group of proteins in the query
subnetwork require better understanding of their cellular
functionalities.

5 Conclusions
In this paper, we generalize the block coordinate Frank-
Wolfe algorithm to solve general convex optimization
problems with any convex and compact constraint set.
Our generalized SBCFW algorithm has the convergence
guarantee. We re-formulate the IsoRank problem to such
a convex programming problem and solve the biological
network alignment problem by our SBCFW-IsoRank algo-
rithm, which scales better with the size of networks under
study. The scalability, efficiency, and effectiveness of our
algorithm on solving IsoRank are demonstrated for real-
world PPI network query problems. In our future work,
we will consider the derivation of the optimal partition

number for better tradeoff between computational effi-
ciency and scalability and generalize the derived SBCFW
algorithm to solve other optimization problems when
analyzing biological networks.
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