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Abstract: Camellia vietnamensis Huang is an important woody oil crop in China, which has attracted
much attention because of its abundant nutritional components and pharmaceutical value. Its seeds
undergo a complex series of physiological and biochemical changes during maturation, with conse-
quent alterations in metabolites. In order to investigate the endogenous metabolism of C. vietnamensis
on Hainan Island during seed development, in this study, ultra-high-performance liquid tandem
chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS)
and multivariate statistical analysis (MSA) were used to analyze the differences in the chemical
compounds of C. vietnamensis seeds among the four maturation stages. A total of 293 metabolites
were identified from the methanol extract of the seeds of C. vietnamensis. Five metabolites, belonging
to benzene and substituted derivatives, 5′-deoxyribonucleosides and linear 1,3-diarylpropanoids,
were found in all three comparison groups, with consistently down-regulated trends. The Kyoto En-
cyclopedia of Genes and Genomes (KEGG) results showed that phloretin and 5′-methylthioadenosine
were the differentially expressed metabolites when seeds were in the growth periods of S2 and
S3, and indole and L-tryptophan were the differentially expressed metabolites when seeds were in
the growth periods of S3 and S4. In addition, 34 flavonoid metabolites were detected, of which 4
were differentially expressed. It was indicated that flavonoids dynamically change during all the
oil-tea camellia seed development stages. The findings provide data for the better understanding of
endogenous metabolic pathways during C. vietnamensis seed development.

Keywords: Camellia vietnamensis Huang; UHPLC/Q-TOF-MS; maturation stages; metabolomics

1. Introduction

Camellia spp. have been distributed and cultivated in southern China for a long period,
where they are mainly distributed in the Yangtze River Basin [1,2], and some other tropical
countries—Thailand and Vietnam have some certain areas with planting [3]. Camellia
oil is used not only as a healthy edible oil but also for cosmetics and medical objectives
due to its beneficial ingredients, such as unsaturated fatty acids, triterpenes saponin,
squalene, vitamin E, β-amyrin, stigmasterol, quercetin, and flavonoids [3,4]. Because of
large-scale cultivation under different environmental conditions in China, Camellia spp.
populations have developed different morphological characteristics, growth habits, and oil
qualities [5]. Camellia vietnamensis Huang, a species of oil-tea Camellia trees from Hainan
Island, belongs to the Camellia genus, Theaceae, and is regarded as an independent and
a traditional plant resource according to a long period of geographic isolation from the
mainland [6]. C. vietnamensis is somewhat different from the widely grown C. oleifera on
the China mainland, mainly characterized by a large and thick fruit size, high oil content of
the seed but low fruit yield, of which the oil is of excellent quality and has a unique scent
and mouthfeel [7]. It is more suited to a tropical climate and has a large amount of genetic
variation with a higher content of active ingredients in the oil [6–8].
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Untargeted metabolomics provides comprehensive chemical profiling and plays a
key role in quality control, chemical composition changes, and processing mechanism
studies [9,10]. It has been widely used in plant classification [11], processing [12], chemical
component changes [13,14], and differential metabolite analysis [10]. Compared with
various profiling techniques in plant metabolomics, ultra-high-performance liquid tandem
chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC/Q-
TOF-MS) has a higher sensitivity and separation of metabolites, and it is widely used
in revealing the endogenous metabolism of plants. A UHPLC/Q-TOF-MS/MS-guided
approach has been used to isolate, purify, and analyze the sulfur-containing derivatives
from sulfur-fumigated ginseng [15]. Lee et al. used soybean (Glycine max (L.) Merr.) seeds
as experimental materials to study the metabolite levels of seeds at different maturity
stages [16]. They found that oil and total isoflavones were highly correlated with seed
maturity. In addition, they also found that there were differences in the accumulation
of bioactive secondary metabolites, such as anthocyanins and isoflavones, during the
mature period of the seeds. Therefore, in order to maximize the effectiveness of these
metabolites, it is necessary to avoid harvesting seeds in immature or over mature seasons.
Liu et al. found that there was a significant difference in the fatty acid content of Plukenetia
volubilis seeds at different growth stages [17]. In addition, the unsaturated fatty acid content
increased sharply in the mature stage of the seeds, especially α-linolenic acid and linoleic
acid, providing a reference for the rational development and utilization of these seeds
and the extraction of certain kinds of fatty acids. However, the chemical composition of
seeds during different developmental periods has seldom been studied in C. vietnamensis.
Therefore, it is meaningful and feasible to compare the main metabolites in different
maturation stages of C. vietnamensis seeds using UHPLC/Q-TOF-MS.

At present, numerous studies have focused on the key metabolites associated with the
high oil quality and disease prevention of oil-tea trees using multi-omics analysis [6,18],
as well as sugar metabolism and the transporters of sugar during seed development [19].
However, changes in the composition and content of nutrient components during the seed
development of C. vietnamensis are still unclear. Hence, this study examined the principal
chemical constituents of Camellia seeds in four different developmental periods using
UHPLC/Q-TOF-MS coupled with multivariate statistical analysis, and subsequently the
different metabolites were elucidated by the Kyoto Encyclopedia of Genes and Genomes
(KEGG). The findings were intended to provide theoretical support for analyzing the
endogenous metabolism of C. vietnamensis during its seed development and for elucidating
the mechanisms of camellia oil quality formation, as well as to provide chemical information
for the potential health benefits of C. vietnamensis.

2. Results
2.1. Metabolite Detection in Seeds from C. vietnamensis at Different Maturation Stages

C. vietnamensis seeds appear from August and then gradually expand to big fruits with
thin skin. Seed extracts derived from four maturation stages of C. vietnamensis were profiled
by UHPLC/Q-TOF-MS to examine the plant’s response to the accumulation of nutrition
and the development of metabolites or derivatives. A total of 293 metabolites were detected
in the seeds. In all the four stages, UHPLC/Q-TOF-MS analysis data identified classes
including cinnamaldehydes (2), fatty acyls (5), flavonoids (22), isoflavonoids (2), phenols
(1), and steroids and steroid derivatives (6) (Table S1).

2.2. Multivariate Analysis of Seeds in C. vietnamensis

UHPLC/Q-TOF-MS data profiles showed an overlapped overview of response inten-
sity and retention time (rtime) of the peak, indicating minor variations due to instrument
error (Figure S2). Quantitative data for the total sample with quality control (QC) were
subjected to PCA analysis to investigate variation in the metabolic profiles of Stages S1-S4
of C. vietnamensis seeds. The results in two-dimensional space showed that the QC sam-
ples were clustered closely, and all the samples were within the 95% confidence interval
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(Hotelling’s T-squared ellipse), which indicated the good repeatability of this experiment
(Figure 1A). As manifested in Figure 1A, the samples of S3 and S4 were evidently catego-
rized and assembled separately on the scorer plot, which suggested that the C. vietnamensis
seeds from the two mature stages could be noticeably detached from S1 and S2, while
the samples from S1 and S2 were too discrete, and the classification was not obvious. In
conclusion, the metabolites of C. vietnamensis seeds from the four maturation stages could
not be differentiated through the PCA algorithm. Consequently, the exploration of differ-
ential metabolites among the four stages were further studied by the OPLS-DA approach.
OPLS-DA was modeled to analyze the metabolic profiling for further distinguishing the
differences between the S1–S4 groups and determining the differential metabolites of C.
vietnamensis seeds at different maturation stages (Figure 1B–D and Figure S3). It showed
that the established model had no over-fitting, the sample discrimination was quite distinct,
and all the samples were within the 95% confidence interval, which could explain the
significant difference in the metabolites between different groups.
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Figure 1. Multivariate analysis of seeds of C. vietnamensis. (A) PCA analysis of metabolic profiles
from four sample groups and QC. (B–D) OPLS-DA models of seeds of C. vietnamensis at different
maturity stages in positive and negative ion modes.

2.3. Global Trend Analysis of Metabolites during Seed Maturation in C. vietnamensis

To analyze changes during C. vietnamensis maturation, we clustered and classified the
total detected metabolites. The metabolites were grouped into six clusters that could con-
clude the change trend of the metabolite content of each cluster (Figure 2). The metabolites
in Cluster 1 were strongly detected in S1, mainly flavonoids, such as phloretin, 2-(3,4-
dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-one, 5,7-dihydroxy-
2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one, and peonidin-3-glucoside. The
metabolites in Clusters 2 and 4 were quite accumulated in S2, mainly terpenoids, prenol
lipids, and other substances, such as coumarin, β-amyrin, caryophyllene alpha-oxide,
alpha-amyrone, Olean-12-en-28-oic acid, 3-hydroxy-, (3beta,5xi,9xi,18xi)-, and so on. The
metabolites in Clusters 3, 5, and 6 had the highest accumulation in S3, mainly glyco-
sides, flavonoids, and other substances, such as brassicoside, kaempferol 3-glucosyl-
(1- > 4)-rhamnosyl-(1- > 2)-glucoside, panasenoside, naringenin-7-O-glucoside, cyanidin
3-glucoside, luteolin 7-glucoside, (+)-Epicatechin, quercitrin, and so on. Notably, flavonoids,
tannins, phenols, and mini peptides in Cluster 1 showed drops in concentration during
C. vietnamensis maturation (S2–S4) (Figure 2 and Table S2).
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Figure 2. Cluster analysis of metebolites of seeds of C. vietnamensis in four maturation stages by using
the Mfuzz package. Cluster 1: metabolites were mainly accumulated in S1; Clusters 2 and 4: metabolites
were mainly accumulated in S2; Clusters 3, 5, and 6: metabolites were mainly accumulated in S3.

2.4. Identification of Differential Metabolites

Based on the condition of a variable importance in projection (VIP) of >1 of the
first principal component in the OPLS-DA model and a p-value (Student’s t test) of
univariate analysis of <0.05, the differential metabolites were screened (Table S3). Fur-
thermore, 15, 32, and 30 metabolites were screened in S1 vs. S2, S1 vs. S3, and S1
vs. S4, respectively (Figure 3). We also found that the up-regulated metabolites with
the largest fold change among the three comparison groups were triamcinolone ace-
tone, lysoPE(18:1(9Z)/0:0), asiaticoside, and hydrocinnamic acid, and the down-regulated
metabolites were N-acetylproline, 3-methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone, and
phloretin (Figure 3 and Table S3). In addition, five metabolites, belonging to benzene and
substituted derivatives, 5′-deoxyribonucleosides and linear 1,3-diarylpropanoids, were
found in all three comparison groups, with the consistent down-regulated trends. For each
comparison group, this study further used the radar plots to display the trend change of
the corresponding content of these metabolites (Figure 4).
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2.5. Analysis of Differential KEGG Pathway

The KEGG database provides a reference knowledge network for linking metabolites
from C. vietnamensis seeds in each development period to biological processes through
PATHWAY mapping. In this study, the metabolic pathways enriched by differential metabo-
lites were “pentose and glucuronate interconversions” and “cysteine and methionine
metabolism” in Group S1 vs. S2; mainly “tryptophan metabolism”, “purine metabolism”,
“cysteine and methionine metabolism”, and “glycerophospholipid metabolism” in Group
S1 vs. S3; and in Group S1 vs. S4, they mainly were “tryptophan metabolism”, “glyoxylate
and dicarboxylate metabolism”, “pyruvate metabolism”, “galactose metabolism”, “cysteine
and methionine metabolism”, and the “citrate (TCA) cycle” (Figure 5).
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After obtaining the matching information of each group of differentially expressed
metabolites, we performed correlation network analysis on the KEGG database (Figure S4).
The results showed that phloretin (flavonoid biosynthesis and circadian rhythm) and 5’-
methylthioadenosine (MAPK signaling pathway and glycerophospholipid metabolism)
were the differentially expressed metabolites when seeds were in the growth periods of S2
and S3, and indole (tryptophan metabolism) and L-tryptophan (tryptophan metabolism)
were the differentially expressed metabolites when seeds were in the growth periods of
S3 and S4 (Figure S5). In addition, flavonoid biosynthesis could be focused when camellia
seeds in nutrition synthesis turned to fat accumulation, and the detailed information for
this is displayed in Table S4.



Molecules 2022, 27, 6817 7 of 14

2.6. Identification and Analysis of Flavonoids at Different Seed Maturation Stages

Flavonoids are an important class of metabolites in plants. In this context, 34 flavonoid
metabolites were detected, of which 4 were differentially expressed (Tables S1 and S3).
Phloretin was significantly down-regulated in all three comparison groups, and 5,7-dihydroxy-
2-(4-hydroxyphenyl)-3, 4-dihydro-2H-1-benzopyran-4-one was notably down-regulated
in both S1 vs. S2 and S1 vs. S3 (Figure 6A,B). Gentisic acid was found to be induced when
oil-tea camellia seed was in the mature stage. In addition, 3,4-dihydroxybenzaldehyde
in seeds increased in the late mature stage (Figure 6C,D). This indicates that flavonoids
dynamically change during all the oil-tea camellia seed development stages, possibly being
related to the nutrient synthesis or accumulation in seeds.
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The flavonoid biosynthesis pathway in C. vietnamensis seeds was further analyzed and
mapped (Figure 7). The changes in the content of each metabolite in the flavonoid pathway
can be clearly observed in Figure 7.
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3. Discussion
3.1. General Features of Metabolites during Seed Development of C. Vietnamensis

In this paper, we performed an analysis of the metabolic components of seed sam-
ples in C. vietnamensis at different maturation stages (including nutrition synthesis, fat
accumulation, mature, and late mature) and found 15, 32, and 30 significant differentially
expressed metabolites in the S1 vs. S2, S1 vs. S3, and S1 vs. S4 comparison groups, re-
spectively. They mainly included benzene and substituted derivatives, followed by linear
1,3-diarylpropanoids, purine nucleotides, glycerophospholipids, and a small number of in-
doles and derivatives and organooxygen compounds. The results from this study showed
that metabolites classified as benzene and substituted derivatives ranked first among
the differentially expressed metabolites. Aromatic compounds, such as poly-substituted
benzene derivatives, play an important role in being antibacterial agents, optoelectronic
materials, and chiral ligands, which have received special attention [20]. A component
of 3-Methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone was found to be preleptospermone.
Dayan et al. explored a natural herbicide, manuka oil, and tested its primary component
leptospermone, and its soil stability and bioavailability, providing a better understanding
of the basis for pre-applied (PRE) activity of soil [21]. The reason those differential metabo-
lites, such as 3-Methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone, showed a down-regulated
expressional trend during the seed ripening stages of C. vietnamensis may be related to the
adaptation to environmental factors, including soil, during plant growth and reproduction.

3.2. Camellia Oil of the Fruit Ripening Period in C. vietnamensis

Camellia oil is a major nutritious substance stored in C. vietnamensis seeds. The oil
content of dry seed was up to 42.01% in seed full maturity stage [5]. It has been suggested
that a decrease in lipid content occurs at the final stage of the seed maturation process [22,23].
We also found that fatty acid content increased rapidly during seed development, peaked
at S2, and then decreased gradually [6]. It might be that fatty acids start to decompose
and be consumed in the fruit ripening period [24]. Our results showed that the content of
kojibiose classified in fatty acyls in the late mature period was significantly higher than
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that in the nutrition synthesis stage. It is speculated that the fatty acids in the late mature
period were decomposed to fatty acyls.

In this study, two compounds, including lysophosphatidylethanolamines (LysoPEs)
(18:1(9Z)/0:0) and lysophosphatidlycholines (LysoPCs) (18:2(9Z,12Z)) were classified in
glycerophospholipid metabolism. LysoPEs are hydrolyzed products of glycerophospho-
lipids with phospholipase A1 (PLA1) and A2 (PLA2) [25], and phospholipid synthesis
is definitely inhibited when cell injury or apoptosis occurs [26]. The increase in LysoPE
(18:1(9Z)/0:0) levels in the mature periods of the seeds (S3 and S4) suggests that the oil-
tea tree can improve glycerophospholipid metabolism disorder. In addition, previous
studies have shown that LysoPCs are highly correlated with cell apoptosis, inflamma-
tory, diet-induced hyperlipidemia, or even glucose regulation [27,28]. Lin et al. spec-
ulated three possible mechanisms of the incorporation of phosphatidylcholine-derived
fatty acid in triacylglycerol and which one involved the transfer of the fatty acid from
phosphatidylcholine to triacylglycerol to form LysoPCs and triacylglycerol [29]. Then, acyl-
CoA:lysophosphatidylcholine acyltransferase (LPCAT) regenerated phosphatidylcholine
from LysoPCs. The accumulation of camellia oil ought to reveal some essential biological
processes, including phosphatidylcholine metabolism [29]. In our results, the LysoPC
(18:2(9Z,12Z)) level increased in the mature stage of oil-tea tree seeds, which was consistent
with the hypothesis of the relationship between fatty acids and LysoPCs.

3.3. Nutritional Components of the Fruit Ripening Period in C. vietnamensis

Some studies have shown that soluble sugar content is higher in the early development
period in the plant’s seed but lower in seed oil synthesis and aging [30–32]. The results from
the differential metabolite analysis showed that one compound (5’-Methylthioadenosine)
classified in 5’-deoxyribonucleosides significantly degraded with oil-tea tree seed devel-
opment. One beta-D-glucopyranoside level decreased in the mature stage (S3), while the
D-xylulose level increased in the fat accumulation period compared to that in the nutrient
accumulation stage, which might be due to the consumption of a large amount of carbo-
hydrates and its conjugates for oil-tea tree fruit ripening and oil accumulation [24]. The
increase in LysoPC (18:2(9Z,12Z)) content also confirmed Lin’s [33] research results that
sucrose produced more defects where LysoPCs can insert, providing a better understanding
of glucose regulation to LysoPCs.

Flavonoids, a natural polyphenol group in plants, widely exist in nature, with an-
tioxidant, anti-inflammatory, anti-cancer, anti-tumor, protecting gastric mucosa, etc., func-
tions [34,35], and are widespread in the seeds and flowers of C. oleifera [36,37]. The re-
sults from the differentially expressed metabolite analysis showed that the content of
phloretin was significantly down-regulated during oil-tea tree fruit development, which
was consistent with the finding in pomegranate (Punica granatum L.) [38] and apple
(Malus × domestica) [39]. The higher content of gentisic acid in the mature stage of
the seeds is interesting. As an important kind of phenolic acid, gentisic acid enables
its conjugated form to have greater antioxidant efficacy than the free form, which be-
comes a material that can combine multiple natural bioactive compounds to intermeddle
food waste and loss in food chemistry [40,41]. Another significantly increased flavonoid
compound (3,4-dihydroxybenzaldehyde) in the mature stage of the seeds can weaken
pentachlorophenol-induced cytotoxicity, DNA damage, and oxidative damage of human
blood cell components and is able to function as a chemoprotective agent against pen-
tachlorophenol or other harmful effects of chlorophenols [42]. Thus, the extracts from the
ripe fruits of C. vietnamensis, especially high-level gentisic acid and the plant’s natural
antioxidant 3,4-dihydroxybenzaldehyde could be used in the food industry to ensure the
freshness of food and as medical agents. The flavonoid biosynthesis pathway is further
mapped in Figure 7. As shown in Figure 7, cyanidin is a key intermediate for catechin,
epicatechin, and cyanidin 3-glucoside synthesis. Phenylalanine is catalyzed by a series
of enzymes such as ferulate-5-hydroxylase (F5H), dihydroflavonol 4-reductase (DFR),
anthocyanidin reductase (ANR), leucoanthocyanidin reductase (LAR) to produce dihy-
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drokaempferol, and then cyanidin [6,10]. It is also the common precursor of anthocyanins,
flavonols, flavone glycosides, and so on [10]. In this pathway, the downstream metabolites
epicatechin and procyanidin B2 were significantly higher in S3, while catechin and cyanidin
3-rutinoside showed a downward trend. The reason for this phenomenon might be that the
expression of related genes (such as F5H, DFR, LAR, and ANR) had changed [6]. In addition,
dihydroquercetin is a common precursor for both quercetin and leucocyanidin [10]. Conse-
quently, it was reasonable that large amounts of cyanidin-based anthocyanins accumulated
in C. vietnamensis seeds should enhance the production of quercetin. The widely enhanced
flavonoid pathway could provide more available precursors for flavanol or anthocyanin
biosynthesis in C. vietnamensis seeds.

Tea saponins, oleanane-type pentacyclic triterpenoids, have multiple biological activ-
ities, such as antimicrobial activity, strong contact toxicity, and stomach toxicity against
pests [43], and are difficult to extract from C. oleifera seed [44]. The principal active ingredi-
ents of C. oleifera seed are saponins, including 77 kinds saponins with different structures
(camelliasaponin, theasaponin E1/E2, etc.), which are widely used in cooking or in the med-
ical agent industry [43,45]. One β-amyrin (precursor in the upstream of tea saponin synthe-
sis) and five tea saponin monomers ((2alpha,3beta,5xi,9xi,18xi)-2,3-Dihydroxyolean-12-en-
28-oic acid; Olean-12-en-28-oic acid, 2,3,19,24-tetrahydroxy-, (2alpha,3beta,5xi,9xi,19alpha)-;
1-O-[(3beta,5xi,9xi,18xi)-3-(beta-D-Glucopyranuronosyloxy)-28-oxoolean-12-en-28-yl]-beta-
D-glucopyranose; (3beta,5xi,9xi,16beta,18xi,21beta,22alpha)-28-Acetoxy-16,22,23-trihydroxy-
21-[(2-methylbutanoyl)oxy]olean-12-en-3-yl beta-D-glucopyranosiduronic acid; and Olean-
12-en-28-oic acid, 3-hydroxy-, (3beta,5xi,9xi,18xi)-) were detected in this metabolic pro-
filing. Although their content maintained a relatively stable trend throughout the de-
velopment of C. vietnamensis seeds, the change trend between the different substances
was slightly different. The content of β-amyrin and three saponins (Olean-12-en-28-
oic acid, 2,3,19,24-tetrahydroxy-, (2alpha,3beta,5xi,9xi,19alpha)-; 1-O-[(3beta,5xi,9xi,18xi)-
3-(beta-D-Glucopyranuronosyloxy)-28-oxoolean-12-en-28-yl]-beta-D-glucopyranose; and
Olean-12-en-28-oic acid, 3-hydroxy-, (3beta,5xi,9xi,18xi)-) reached the highest in the S2
period, while the content of (2alpha,3beta,5xi,9xi,18xi)-2,3-Dihydroxyolean-12-en-28-oic
acid and (3beta,5xi,9xi,16beta,18xi,21beta,22alpha)-28-Acetoxy-16,22,23-trihydroxy-21-[(2-
methylbutanoyl)oxy]olean-12-en-3-yl beta-D-glucopyranosiduronic acid were the highest
in the S3 period. The results indicated that the seeds had an abundance of saponins, which
might lead to the bitterness of Camellia oil.

4. Materials and Methods
4.1. Plant Materials

Fresh C. vietnamensis fruits at the full maturity stage that were uniform in size, shape,
and color, and that had not been attacked by insects, were collected from Yangjiang
town (19◦120′10′′ N; 110◦240′32′′ E), Qionghai city, Hainan Province in China, where
they had ample light exposure, a hot and rainy climate, and sandy red soil with pH 5.5,
on 24 November 2018. The seeds of C. vietnamensis were harvested during the 2018 season
at four different developmental periods: nutrition synthesis stage (S1, 24 August), fat
accumulation stage (S2, 24 September), mature stage (S3, 24 October), and late mature stage
(S4, 24 November) (Figure S1). Then, a total of four stages of seed samples were quickly
placed into liquid nitrogen and then stored at−80 ◦C for metabolomic analysis (3 biological
samples for each stage).

4.2. Sample Preparation

The freeze-dried samples were crushed with a mixer mill for 2 min at 60 Hz. Then,
100 mg powder of each sample was transferred to a 2 mL EP tube and extracted with
1500 µL methanol/water mixture (v:v = 3:1). The samples were vortexed for 30 s and
ultra-sonicated for 15 min in an ice bath, followed by overnight shaking at 4 ◦C. Then, all
the samples were centrifuged at 12,000 rpm for 15 min at 4 ◦C. The resulting supernatants
were transferred to 2 mL glass vials and stored at −80 ◦C until the UHPLC/Q-TOF-MS
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analysis. The quality control (QC) sample was prepared by the mixing of an equal aliquot
of the supernatants from all the samples [46].

4.3. UHPLC/Q-TOF-MS Analysis

The UHPLC separation was carried out using a Waters ACQUITY UPLC HSS T3
column (100 × 2.1 mm, 1.8 µm). Mobile phase A was 0.1% formic acid in water, and mobile
phase B was acetonitrile. The gradient elution procedure was as follows: 0–0.5 min, 98%
A, 2% B; 0.5–10 min, 50% A, 50% B; 10–11 min, 5% A, 95% B; 11–13 min, 5% A, 95% B;
13–15 min, 98% A, 2% B. The column temperature was set at 40 ◦C. The auto-sampler
temperature was set at 4 ◦C and the injection volume was 2 µL [47,48].

An AB Sciex QTOF mass spectrometer was used for its ability to acquire MS/MS
spectra using information-dependent acquisition (IDA) during an LC/MS experiment. In
this mode, the acquisition software (Analyst) continuously evaluates the full scan survey MS
data as it collects and triggers the acquisition of MS/MS spectra depending on preselected
criteria. In each cycle, 5 precursor ions whose intensity was greater than 100 were chosen for
fragmentation using collision energy. The acquired mass ranges were divided into 100–300,
300–450, 450–600, 600–750, and 750–1200 with 5 injections. The ESI source conditions were
set as follows: the ion spray voltage was +5500/−4500 V, the curtain of gas was 35 psi, the
temperature was 600 ◦C, the ion source of Gases 1 and 2 was both 60 psi, and the DP was
±100 V [47,48].

An AB Sciex QTrap 6500 mass spectrometer was used for assay development. The
ion source parameters were: ion spray voltage of +5000/−4500 V, curtain of gas of 35 psi,
temperature of 400 ◦C, ion source of Gases 1 and 2 of 60 psi, and DP of ±100 V.

4.4. Data Preprocessing and Annotation

The high-resolution MS data were converted to the mzXML format using ProteoWizard
and processed using MAPS software (version 1.0, Dalian, China). The preprocessing results
generated a data matrix that consisted of the retention time (RT), mass-to-charge ratio
(m/z) values, and peak intensity. An in-house MS2 database was used for the metabolite
identification. In addition, the MRM data were processed with Skyline software [49].

5. Conclusions

In the present study, a total of 293 metabolites were identified from the methanol
extract of the seeds of C. vietnamensis by UHPLC/Q-TOF-MS analysis. Five metabolites,
belonging to benzene and substituted derivatives, 5′-deoxyribonucleosides and linear
1,3-diarylpropanoids, were found in all three comparison groups, with consistent down-
regulated trends. The KEGG results showed that phloretin and 5′-methylthioadenosine
were the differentially expressed metabolites when seeds were in the growth periods of
S2 and S3, and indole and L-tryptophan were the differentially expressed metabolites
when seeds were in the growth periods of S3 and S4. In addition, 34 flavonoid metabolites
were detected, of which 4 were differentially expressed. This indicated that the flavonoids
dynamically change during all the oil-tea camellia seed development stages, possibly being
related to the nutrient synthesis or accumulation in the seeds, which needs to be further
studied. The results in this study showed that C. vietnamensis seeds should be collected in S2
to obtain a higher concentration of β-amyrin and in S3 or S4 to obtain a higher concentration
of phenolic compounds (such as gentisic acid and 3,4-dihydroxybenzaldehyde).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27206817/s1, Figure S1: Phenotypic characteristics of seeds
of C. vietnamensis in different maturation stages. S1–4, nutrition synthesis stage, fat accumulation
stage, mature stage and late mature stage; Figure S2: OPLS-DA models of seeds of C. vietnamensis at
different maturity stages in positive and negative ion modes; Figure S3: OPLS-DA permutation plot
of seeds of C. vietnamensis at different maturity stages. A: S2 vs. S1, B: S3 vs. S1, C: S4 vs. S1; Figure S4:
Correlation network analysis of differentially expressed metabolites in comparison groups. A: S1 vs.
S2, B: S1 vs. S3, C: S1 vs. S4; Figure S5. Heatmap of differentially expressed metabolites in comparison
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groups. A: S1 vs. S2, B: S1 vs. S3, C: S1 vs. S4. Table S1: Detection of total metabolites using UHPLC-
QTOFMS; Table S2: Metabolites in clusters; Table S3: Differentially Expressed Metabolites; Table S4:
Regulatory network information of differentally expressed metabolites in seeds from C. vietnamensis
at different maturity stages.
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