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Background: Abnormal coagulation is a common feature of glioma. There is a strong correlation between 
coagulation and the complement system, named complement and coagulation cascades (CCC). However, the 
role of CCC genes in lower-grade glioma (LGG) remains unclear. This study aimed to investigate the role of 
CCC genes in LGG.
Methods: In total, 5,628 differential expressed genes were identified between 498 LGG tissues from The 
Cancer Genome Atlas (TCGA) and 207 normal brain tissues from Genotype-Tissue Expression Project 
(GTEx). Among them, 20 overlapped CCC genes were identified as differentially expressed CCC genes. 
Then, comprehensive bioinformatics analysis was used to investigate the role of CCC genes in LGG; 271 
LGG tissues from the Chinese Glioma Genome Atlas (CGGA) were used as the validation dataset. Cell 
Counting Kit-8 (CCK8) proliferation assay, colony formation assay, and wound healing assay were conducted 
to explore the anti-glioma effect of the sensitive drugs we predicted.
Results: We constructed a risk signature consisting of six CCC genes, including F2R, SERPINA1, TFPI, 
C1QC, C2, and C3AR1. The CCC gene-based risk signature could accurately predict the prognosis of 
patients with LGG. In addition, we found that the JAK-STAT, NOD-like receptor, Notch, PI3K-Akt, 
and Rap1 signaling pathways might be activated and had crosstalk with CCC in the high-risk group. Our 
findings analyses demonstrated that samples in high- and low-risk groups had different immune landscapes. 
Moreover, patients in the high-risk group might have greater resistance to immunotherapy. We validated the 
accuracy of the risk signature in predicting immunotherapy response in two public immunotherapy cohorts, 
GSE135222 and GSE78220. By means of oncoPredict, MG-132, BMS-536924, PLX-4720, and AZD6482 
were identified as potential sensitive drugs for high-risk patients, of which MG-132 was particularly 
recommended for high-risk patients. We performed in vitro experiments to explore the anti-glioma effect 
of MG-132, and the results demonstrated MG-132 could inhibit the proliferation and migration of glioma 
cells.
Conclusions: Our findings show that CCC genes are associated with the prognosis and immune 
infiltration of LGG and provide possible immunotherapeutic and novel chemotherapeutic strategies for 
patients with LGG based on the risk signature.
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Introduction

The 2021 5th edition of the World Health Organization 
(WHO) Classification of Tumors of the Central Nervous 
System reflects the discovery of genetic alterations 
underlying many brain tumors (1,2). Glioma is the most 
common brain tumor (3). With the publication of the 2021 
5th edition of the WHO Classification of Tumors of the 
Central Nervous System, gliomas are reorganized into 
adult-type diffuse gliomas, pediatric-type diffuse low-grade 
and high-grade gliomas, circumscribed astrocytic gliomas, 
and ependymal tumors (4). 

Low-grade glioma has long been referred to as 
grades I and II gliomas, whereas the term high-grade 
glioma encompassed grades III and IV tumors. The 
neuropathological dividing line between grades II and 
III gliomas is blurred, whereas there is a clear distinction 
between grades III and IV gliomas (5). For example, 
isocitrate dehydrogenase (IDH) mutations are characteristic 
of the vast majority of grades II and III gliomas but 
are significantly less common in grade IV glioma (6,7). 
As a result, researchers have progressively used lower-
grade glioma (LGG) to refer to grades II and III gliomas 
(8,9). LGG has a high risk of malignantly transformation 
into glioblastoma (GBM) and early identification of 
transformation into GBM remains challenging (10). 

Several studies explored the relationship between magnetic 
resonance imaging and the malignant progression of LGG 
and found that changes in relative cerebral blood volume 
measured at longitudinal perfusion-weighted magnetic 
resonance imaging can predict the malignant transformation 
of LGG (11,12). Complete surgical resection is the 
currently main treatment for LGG, when feasible (9). 
Nevertheless, the characteristics of invasive growth and 
involving eloquent regions of LGG make it difficult to be 
complete surgical resected in some LGG patients (13,14). 
Due to the heterogeneity of LGG and the presence of the 
brain-blood barrier, treatments such as chemotherapy and 
immunotherapy are not satisfactory (15,16). Therefore, it 
is of great clinical importance to find new biomarkers and 
develop new therapeutic strategies for treating LGG (17,18).

There is reported substantial crosstalk between the 
complement system and coagulation cascades (19). The 
complement and coagulation cascades (CCC) could 
favor tumor development and progression by promoting 
the suppression of tumor immunity (20). Abnormal 
coagulation is a common feature of glioma (21). Cancer-
associated thrombosis is significantly related to morbidity 
and mortality in patients with glioma (22). Activated 
complement signaling participates in various interactions 
between glioma cells and the tumor microenvironment 
(TME), promoting glioma growth (23). However, the 
role of CCC genes in LGG remains not systematically 
elucidated. Accordingly, we comprehensively analyzed the 
role of CCC genes in LGG based on RNA-sequencing 
(RNA-seq) and clinical data extracted from The Cancer 
Genome Atlas (TCGA) and Chinese Glioma Genome 
Atlas (CGGA) (24). The current study investigated the 
relationship between CCC genes and the prognosis, 
immune microenvironment, and chemotherapy efficacy of 
patients with LGG. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-23-906/rc).

Methods

Data extraction

The study was conducted in accordance with the 
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Highlight box

Key findings
• This study is the first to elucidate the role of complement and 

coagulation cascades (CCC) genes in the prognosis, immune 
microenvironment, and chemotherapy efficacy of patients with 
lower-grade glioma (LGG).

What is known and what is new? 
• Known: abnormal coagulation is a common feature of glioma.
• New: CCC are associated with the prognosis and immune 

infiltration of LGG. In this study, we report for the first time the 
association between TFPI and C2 and the prognosis of LGG.

What is the implication, and what should change now? 
• Implication: the CCC gene-based risk signature could be used to 

predict the prognosis of LGG patients. Individualized treatment 
for LGG patients can be developed based on this signature.

https://tcr.amegroups.com/article/view/10.21037/tcr-23-906/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-906/rc
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Figure 1 Workflow chart. GTEx, the Genotype-Tissue Expression Project; LGG, lower-grade glioma; TCGA, The Cancer Genome Atlas; 
CCC, complement and coagulation cascades; GSVA, gene set variation analysis; GSEA, gene set enrichment analysis; CGGA, the Chinese 
Glioma Genome Atlas.

Declaration of Helsinki (as revised in 2013). Figure 1 
shows the workflow chart for this study. A total of 769 
patients with LGG were included in this study, 498 in 
TCGA, and 271 in CGGA. Among them, patients in 
TCGA were divided into the training set, and patients in 
CGGA were divided into the validation set. RNA-seq and 
clinical data of patients were collected from TCGA and 
CGGA. The clinical characteristics of patients in the study 
are summarized in Table 1, and there were no significant 
differences in the clinical characteristics except IDH 
mutation between the training and validation sets. 

Identification of differentially expressed CCC genes

The CCC genes were obtained from the Molecular 
Signatures Database (25). RNA-seq data of 207 normal 
brain tissues from Genotype-Tissue Expression Project 
(GTEx) were collected from TCGA TARGET GTEx 
dataset in University of California Santa Cruz Xena 
database (26). Principal component analysis (PCA) was used 
to see if the discrimination between TCGA and GTEx 
was significant. R package “limma” was used to identify 
differentially expressed genes between TCGA and GTEx, 
and genes with logFC (Log2 foldchange) >1 and q<0.05 

were considered as differentially expressed genes (27).

Construction of the risk signature and clinical prediction 
model

Univariate Cox regression, least absolute shrinkage and 
selection operator (LASSO) analysis (28), co-linearity 
analysis, and multivariate Cox regression were used to 
construct the risk signatures based on the identified 
differentially expressed CCC genes. The hazard ratio 
(HR) was used to assess the impact of risk factors on the 
prognosis of patients with LGG. The risk scores were 
calculated using the following algorithm: Risk Score = 
coefficient of Gene1 × expGene1 + coefficient of Gene2 
× expGene2 + … + coefficient of Genen × expGenen; in 
which the coefficient was the regression coefficient of 
genes obtained using multivariate Cox regression analysis, 
and ‘exp’ was the expression of corresponding genes. To 
explore the relationship between the risk score and clinical 
characteristics of patients with LGG, a clinical prediction 
model was constructed based on the risk score and clinical 
characteristics. R package “regplot” (https://cran.r-project.
org/web/packages/regplot/) were used to build and visualize 
the nomogram. The model’s predictive value was assessed 

https://cran.r-project.org/web/packages/regplot/
https://cran.r-project.org/web/packages/regplot/
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Table 1 Clinical characteristics of patients 

Clinical characteristics Classification TCGA (n=498) CGGA (n=271) P value

Age, years >40 255 130 0.287

≤40 243 140

NA 0 1

Gender Male 277 151 0.979

Female 221 120

Histologic grade WHO II 240 130 0.956

WHO III 258 141

IDH mutation Mutant 399 176 0.008

Wildtype 90 65

NA 9 30

1p/19q Codel* Codel 161 81 0.795

Non-codel 328 158

NA 9 32

*, 1p/19q co-deletion status. TCGA, The Cancer Genome Atlas; CGGA, the Chinese Glioma Genome Atlas; P value, significant difference 
between the TCGA dataset and the CGGA dataset; WHO, World Health Organization; IDH, isocitrate dehydrogenase; NA, not available.

by calibration curves, receiver operating characteristic 
(ROC) curves and the area under the curve (AUC).

Exploration of the molecular mechanism

The logFC of each gene between the high- and low-risk 
groups was calculated by R package “limma”. Gene set 
enrichment analysis (GSEA) and gene set variation analysis 
(GSVA) were used for enrichment analysis on the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
and Gene Ontology (GO) terms, the latter including 
biological process (BP), molecular function (MF), and cell 
component (CC) (29-32).

Estimation of the immune microenvironment and 
prediction of the immunotherapy sensitivity

The Estimation of Stromal and Immune cells in Malignant 
Tumor tissues using Expression (ESTIMATE) data analysis 
was conducted to calculate the tumor purity of each 
sample (33). CIBERSORT was conducted to estimate the 
infiltration of immunocytes of each sample (34). The tumor 
immune dysfunction and exclusion (TIDE) framework was 
used to estimate the efficacy of immune checkpoint (ICP) 
therapy of each patient by characterizing dysfunctional T 

cells and infiltrating cytotoxic T lymphocyte levels (35).  
To further determine the integrated relationship between 
risk score and ICP therapy’s efficacy, we plotted Kaplan-
Meier (KM) curves for patients in different risk groups and 
different ICP expressions. RNA-seq data and corresponding 
clinical data of two immunotherapy cohorts, including 
GSE135222 (36) and GSE78220 (37), were collected 
to evaluate the predictive abilities of the efficacy of the 
immunotherapy. GSE135222 is an anti-programmed 
cell death 1 (PD-1)/programmed death-ligand 1 (PD-
L1) cohort of patients with lung cancer. GSE78220 is a 
melanoma cohort where patients were treated with anti-
PD-1 checkpoint inhibition therapy. Based on the response 
to ICP therapy, patients were categorized into two groups, 
stable disease or progressive disease (SD/PD) and complete 
response or partial response (CR/PR).

Prediction of chemotherapy drug efficacy 

The sensitivity of each sample is predicted by R package 
‘oncoPredict’ based on drug-sensitive data and expression 
data (38). The drug-sensitive data and expression data were 
obtained from the Genomics of Drug Sensitivity in Cancer 
database (the ‘GDSC2’ dataset, https://www.cancerrxgene.
org/), the Cancer Therapeutics Response Portal (the ‘CTRP 

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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v2’ dataset, https://portals.broadinstitute.org/ctrp), and 
the Cancer Cell Line Encyclopedia (39-41). Sensitivity 
to drugs was assessed as sensitivity value, and lower 
sensitivity value suggested more sensitive to potential drugs. 
SwissTargetPrediction (42), SuperPred (43), and similarity 
ensemble approach (SEA) (44) are three dependable tools to 
predict the targets of small molecular drugs. After screening 
out the potential drugs, the possible interactions between 
CCC genes and the potential drugs were estimated utilizing 
these tools. The three-dimensional (3D) structures of the 
potential drugs were obtained from PubChem (45).

Cell culture 

Given that there were no widely used LGG cell lines, 
and GBM and LGG belonged to gliomas, we used two 
GBM cells to perform the drug sensitivity experiments, 
which is an acceptable practice as another published 
study has used GBM cell lines in LGG-related study 
(46). The glioma cell lines including U251 and U87 
purchased from the Cell Library of the Chinese Academy 
of Sciences (Shanghai, China) were cultured in complete 
medium [Dulbecco’s modified Eagle medium (DMEM; 
Servicebio, Wuhan, China) with 10% fetal bovine serum 
(FBS, Gibco, California, USA) and 10 μL/mL penicillin-
streptomycin (Biosharp, Beijing, China)] at a humidified 
chamber at 37 ℃ with 5% CO2. For the drug sensitivity 
experiments, glioma cells were cultured in normal complete 
medium and complete medium containing 20 μM MG-
132 (MedChemExpress, New Jersey, USA), respectively, to 
explore the impact of MG-132 on the malignant phenotype 
of glioma cells.

Cell Counting Kit-8 (CCK8) proliferation assay 

CCK8 assay was conducted to evaluate cell proliferation 
ability according to the manufacturer’s protocol (Vazyme 
Biotech, Nanjing, China). Firstly, U251 and U87 cells were 
seeded in 96-well plates with three repetitions at a density 
of 5,000 cells/100 μL/well. Then, 10 μL of CCK8 solution 
was added to each well of the plates and incubated for  
2 h at 37 ℃ at 0 and 24 h. Finally, the optical density (OD) 
value was measured at 450 nM by using a BioTek Synergy 
HT Microplate Reader (California, USA). Since the OD 
value was linearly related to the number of cells, we used 
the OD value to estimate the effect of MG-132 on the 

proliferation ability of glioma cells.

Colony formation assay

For colony formation assay, U251 and U87 cells were 
seeded in 6-well plates with three repetitions at a density 
of 500 cells/1 mL/well. After 14-day incubation, when the 
colonies could be visible to the naked eye, these plates were 
washed with phosphate-buffered saline (PBS, Servicebio) 
twice, fixed by 4% paraformaldehyde (Servicebio) for 30 min 
and stained with 0.1% crystal violet solution (Servicebio) 
for 15 min. Then the colony assay was photographed for 
further analysis.

Wound healing assay 

Wound healing assay was performed to evaluate cell 
migration ability. U251 and U87 cells were seeded in 6-well 
plates with three repetitions at a density of 500,000 cells/ 
1 mL/well. After cultured for 24 h, a 10-μL disposable 
pipette tip was run over the surface of the cells to cause a 
wound. The cells were washed three times with PBS and 
cultured with 3% FBS (low concentration) medium to 
reduce the interference of cell proliferation with results. 
The extent of wound healing was measured at 0 and 24 h, 
respectively using a microscope at 4× magnification. The area 
of the wound was measured using ImageJ (National Institutes 
of Health, Maryland, USA) (47). The wound healing 
percentage was calculated using the following formula: 
wound healing percentage = (Area0h − Area24h)/Area0h.

Statistical analysis

Statistical analyses and data visualizations were performed 
using R version 4.1.3. Spearman correlation analysis was 
used to evaluate the correlation between data. The Student’s 
t-test was used to compare the differences of continuous 
variables between the two normally distributed datasets. 
The Wilcoxon rank-sum test was used to compare the 
differences of continuous variables among non-normally 
distributed datasets. The Chi-square test was used to 
compare the differences between the two groups of discrete 
random variables. Kaplan-Meier analysis was used to 
compare the differences in survival between the two groups. 
Two-sided P≤0.05 was considered statistically significant 
and was stratified to P<0.01, P<0.001, and P<0.0001.
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Results

Identification of differentially expressed CCC genes

PCA showed a clear separative trend between LGG and 
normal brain tissue from the “TCGA TARGET GTEx” 
dataset (PC1 + PC2 =76.3%>75%) (Figure 2A). A total of 
5,628 differentially expressed genes were identified between 
LGG and normal brain tissue (Figure 2B). Among them, 
20 CCC genes were highly expressed in LGG (Figure 2C).  
According to the results of univariate Cox regression,  
12 CCC genes, including F2R, F5 (HR <1), CFI, SERPINE1, 
SERPINA1, PLAU, TFPI, C1QC, C1R, C2, C3AR1, C5AR1, 
were associated with the prognosis of patients with LGG in 
both TCGA (Figure 2D) and CGGA (Figure 2E). 

Construction of a six-CCC-gene signature related to the 
prognosis of patients with LGG 

Six CCC genes were selected to construct the risk signature 
using LASSO and co-linearity analysis (Figure 3A,3B). 
Patients in the high-risk group had shorter overall survival 
(P<0.0001), faster arrival at censored, and worse prognosis 
in TCGA (Figure 3C,3D). These six CCC genes, including 
F2R, SERPINA1, TFPI, C1QC, C2, and C3AR1, were highly 
expressed in the high-risk group in TCGA (Figure 3E). The 
AUC of the risk signature in predicting one-, three-, and 
five-year survival of patients with LGG was 0.774, 0.695, 
and 0.628 in TCGA (Figure 3F). Similar to the TCGA 
dataset, patients in the high-risk group in CGGA had a 
shorter overall survival time (P<0.0001), high expression 
of six CCC genes in the signature, and censored status was 
enriched in the high-risk group (Figure 3G-3I). The AUC 
of the risk signature in predicting one-, three-, and five-year 
survival of patients with LGG was respectively 0.571, 0.607, 
and 0.647 (Figure 3J).

Construction of a clinical prediction model based on the 
risk signature and clinical characteristics

When it comes to several clinical biomarkers of glioma, 
the risk score was significantly elevated in patients WHO 
III (P<0.001), IDH wildtype (P<0.001), and 1p/19q non-
codeleted (P<0.001) in TCGA (Figure 4A) and aged  
>40 years (P<0.01), and 1p/19q non-codeleted (P<0.001) in 
CGGA (Figure 4B). Based on these clinical characteristics 
and the risk score, a clinical prediction model was 
constructed with high accuracy in predicting patients’ 
three-year and five-year survival in TCGA (Figure 4C,4D). 

The AUC of the clinical prediction model in predicting 
one-, three-, and five-year survival of patients with LGG 
was 0.890, 0.892, and 0.823 in TCGA (Figure 4E). In 
CGGA, the clinical prediction model had high accuracy 
in predicting patients’ three-year and five-year survival as 
well (Figure 4F,4G), and the AUC of the clinical prediction 
model in predicting one-, three-, and five-year survival of 
patients with LGG was 0.831, 0.849, and 0.813 (Figure 4H).

Exploration of molecular mechanisms underlying the risk 
signature

GSVA results showed the top 15 enriched KEGG pathways 
in high-risk and low-risk groups in TCGA (Figure 5A). 
The CCC pathway was activated in the high-risk group 
(Figure 5B). GSEA results indicated that the JAK-STAT 
signaling pathway, neutrophil extracellular trap formation, 
NOD-like receptor signaling pathway, Notch signaling 
pathway, PI3K-Akt signaling pathway, platelet activation, 
and Rap1 signaling pathway were enriched in the high-
risk group in TCGA (Figure 5B). The top 15 enriched 
KEGG pathways in high-risk and low-risk groups in 
CGGA were similar to those in TCGA, with a high degree 
of overlap (Figure 5C). The CCC pathway, JAK-STAT 
signaling pathway, neutrophil extracellular trap formation, 
NOD-like receptor signaling pathway, Notch signaling 
pathway, PI3K-Akt signaling pathway, platelet activation, 
and Rap1 signaling pathway were enriched in the high-
risk group in CGGA, as well (Figure 5D). By means of 
GSVA, the enriched GO terms in the high-risk group in 
TCGA were displayed, including upregulated and down-
regulated (Figure 5E). GSEA results on GO terms showed 
that blood coagulation, complement activation, classical 
pathway, negative regulation of humoral immune response, 
negative regulation of natural killer (NK) cell-mediated 
immunity, positive regulation of macrophage activation, 
receptor signaling pathway via JAK-STAT, regulation of 
inflammatory response were enriched in the high-risk group 
in TCGA (Figure 5F). In CGGA, the results of GSVA 
and GSEA showed good agreement with those in TCGA  
(Figure 5G,5H).

Different immune landscape in different risk groups

ESTIMATE results demonstrated a strong correlation 
between risk score and stromal score (R=0.77), immune 
score (R=0.86), ESTIMATE score (R=0.85), and tumor 
purity (R=−0.83) (Figure 6A). The CIBERSORT results in 
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Figure 2 Identification of 12 differentially expressed CCC genes associated with LGG prognosis. (A) PCA scatterplot of TCGA and 
GTEx. (B) Volcano plot of genes between TCGA and GTEx. (C) Heatmap of 20 differentially expressed CCC genes. (D) Forest plot 
of 12 differentially expressed CCC genes associated with LGG prognosis in TCGA. (E) Forest plot of 12 differentially expressed CCC 
genes associated with LGG prognosis in CGGA. PC, principal component; GTEx, the Genotype-Tissue Expression Project; TCGA, The 
Cancer Genome Atlas; var., variance; padj, adjusted P value; FC, fold change; PCA, principal component analysis; CCC, complement and 
coagulation cascades; LGG, lower-grade glioma; CGGA, the Chinese Glioma Genome Atlas. 
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Figure 3 Construction of the six-CCC-gene risk signature. (A,B) LASSO analysis to screen CCC genes. (C) Scatter plot of each patient’s 
risk score and survival time in TCGA. (D) KM curve of risk group and prognosis of patients in TCGA. (E) Heatmap showing expression 
of the six CCC genes in TCGA. (F) Time-dependent ROC curve in TCGA. (G) Scatter plot of each patient’s risk score and survival time 
in CGGA. (H) KM curve of risk group and prognosis of patients in CGGA. (I) Heatmap showing expression of the six CCC genes in 
CGGA. (J) Time-dependent ROC curve in CGGA. TCGA, The Cancer Genome Atlas. TCGA, The Cancer Genome Atlas; IDH, isocitrate 
dehydrogenase; 1p19q, 1p/19q codeletion status; WHO, World Health Organization; CGGA, the Chinese Glioma Genome Atlas; AUC, 
area under curve; CCC, complement and coagulation cascades; LASSO, least absolute shrinkage and selection operator; KM, Kaplan-Meier; 
ROC, receiver operating characteristic.
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Figure 4 Construction of a clinical prediction model. (A) Risk scores in different ages, grades, 1p/19q status, and IDH status of patients with 
LGG in TCGA. (B) Risk scores in different ages, grades, 1p/19q status, and IDH status of patients with LGG in CGGA. (C) Nomogram of 
TCGA. (D) Calibration plot of nomogram of TCGA. (E) Time-dependent ROC curve of nomogram of TCGA. (F) Nomogram of CGGA. 
(G) Calibration plot of nomogram of CGGA. (H) Time-dependent ROC curve of nomogram of CGGA. **, P<0.01; ***, P<0.001; ns, not 
significant. WHO, World Health Organization; 1p19q, 1p/19q codeletion status; IDH, isocitrate dehydrogenase; TCGA, The Cancer 
Genome Atlas; OS, overall survival; AUC, area under curve; CGGA, the Chinese Glioma Genome Atlas; LGG, lower-grade glioma; ROC, 
receiver operating characteristic.
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TCGA showed that macrophage M2 (R=0.31), monocyte 
(R=0.18), T cell CD4 memory activated (R=0.12), and 
macrophage M1 (R=0.11) were positively correlated with 
the risk score, while B cell plasma (R=−0.35), B cell naïve 
(R=−0.33), T cell follicular helper (R=−0.29), NK cell 
activated (R=−0.21), Mast cell activated (R=−0.16), Tregs 
(R=−0.14), T cell CD4 naïve (R=−0.14), and macrophage 

M0 (R=−0.09) were negatively correlated with risk score 
(Table 2, Figure 6B). In TCGA, macrophage M2 (P<0.001), 
monocyte (P<0.001), and myeloid dendritic cell activated 
(P<0.05) were highly infiltrated in the high-risk group, and 
B cell naïve (P<0.001), B cell plasma (P<0.001), Mast cell 
activated (P<0.001), neutrophil (P<0.05), NK cell activated 
(P<0.001), T cell CD4 naïve (P<0.01), T cell follicular 
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Figure 5 Exploration of molecular mechanisms underlying the risk signature. (A) GSVA results of top 15 KEGG pathways in high-risk and 
low-risk groups in TCGA. (B) GSEA results of complement and coagulation cascades and other KEGG pathways in TCGA. (C) GSVA 
results of top 15 KEGG pathways in high-risk and low-risk groups in CGGA. (D) GSEA results of complement and coagulation cascades 
and other KEGG pathways in CGGA. (E) GSVA results of upregulated and down-regulated GO terms in the high-risk group in TCGA. 
(F) GSEA results of GO terms in TCGA. (G) GSVA results of upregulated and down-regulated GO terms in the high-risk group in CGGA. 
(H) GSEA results of GO terms in CGGA. TCGA, The Cancer Genome Atlas; GSEA, gene set enrichment analysis; CGGA, the Chinese 
Glioma Genome Atlas; BP, biological process; CC, cellular component; MF, molecular function; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; GSVA, gene set variation analysis. 

helper (P<0.001), and Tregs (P<0.01) were highly infiltrated 
in the low-risk group (Figure 6C). Consistent with results 
on tests with TCGA datasets, there was a strong correlation 
among the risk score and stromal score (R=0.46), immune 
score (R=0.50), ESTIMATE score (R=0.51), and tumor 
purity (R=−0.47) in CGGA (Figure 6D). After comparing 

the CIBERSORT results in TCGA, we found that 
macrophage M2 (R=0.25, P<0.001) and monocyte (R=0.41, 
P<0.001) were positively correlated with the risk score and 
highly infiltrated in the high-risk group in CGGA (Table 2,  
Figure 6E,6F). Meanwhile, B cell plasma (R=−0.50, 
P<0.001), T cell follicular helper (R=−0.41, P<0.001), B cell 
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Figure 6 The immune landscape of different risk groups. (A) ESTIMATE results of TCGA. (B) The correlation between immunocytes 
and the risk score in TCGA. (C) Infiltration of immunocytes in TCGA. (D) ESTIMATE results of CGGA. (E) The correlation between 
immunocytes and the risk score in CGGA. (F) Infiltration of immunocytes in CGGA. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not significant. 
ESTIMATE, the Estimation of Stromal and Immune cells in Malignant Tumor; NK, natural killer; TCGA, The Cancer Genome Atlas; 
CGGA, the Chinese Glioma Genome Atlas. 
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naïve (R=−0.25, P<0.001), and NK cell activated (R=−0.15, 
P<0.01) were negatively correlated with the risk score and 
highly infiltrated in the low-risk group in CGGA.

Association between risk score and the efficacy of 
immunotherapy

To explore the association between risk score and the 
efficacy of immunotherapy, we evaluated the differences in 
expression of ICPs in high- and low-risk groups and found 
several ICPs were highly expressed in the high-risk group 
in TCGA (Figure 7A). There was a positive correlation 
between the TIDE score and risk score in TCGA  
(Figure 7B). The prognosis of patients in different 
stratification based on risk score and TIDE score was 
significantly different (P<0.0001), suggesting that patients 
in the high-risk group may have greater resistance to 
immunotherapy (Figure 7C). Consistent with results on tests 
with TCGA datasets, these ICPs were highly expressed in 
the high-risk group in CGGA (Figure 7D). The TIDE score 
was positively correlated with the risk score (Figure 7E),  
and the higher the TIDE score and risk score, the worse 
the patient’s prognosis (Figure 7F). Moreover, we also 
explored the association between the risk score, ICPs 
(including CD28, CTLA4, PDCD1, RASA2) expression, 
and the patient’s prognosis in both TCGA and CGGA 

(Figure 7G,7H). The results indicated that patients with 
lower expression of ICPs and lower risk scores had a better 
prognosis (P<0.0001). Then we validated our findings 
in two public immunotherapy cohorts, GSE135222 and 
GSE78220. All patients were assigned a corresponding risk 
score based on the risk signature and classified as high- or 
low-risk patients. According to our findings, lung cancer 
patients with higher risk scores had worse prognoses 
(P=0.03) and less favorable responses to immunotherapy 
(P<0.0001) (Figure 7I). In melanoma patients, we found 
a similar trend, although not statistically significant 
(P=0.092) (Figure 7J). These results suggest that this risk 
signature is an effective predictor of patient response to 
immunotherapy, with high-risk patients responding more 
poorly to immunotherapy and low-risk patients benefiting 
more from immunotherapy.

Prediction of potential drugs for high-risk patients

The flow chart for screening potential drugs is shown in 
Figure 8A. Eight overlapped potential drugs were identified 
using oncoPredict, including KU-55933, PLX-4720, 
AZD8055, AZD6482, NVP-ADW742, BMS-536924, 
BMS-345541, MG-132 (Figure 8B,8C). The correlation 
between risk scores and predicted sensitivities based on 
different datasets was not entirely consistent. Through 
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Table 2 Correlation between the risk score and CIBERSORT results

Cell type
TCGA CGGA

Correlation P value Correlation P value

B cell memory 0.0405648 0.366346 0.0757 0.21416

B cell naive −0.325094 1.01E−13 −0.25242 2.62E−05

B cell plasma −0.347916 1.29E−15 −0.5042 7.01E−19

Eosinophil −0.082572 0.065594 0.093876 0.123157

Macrophage M0 −0.094908 0.034223 −0.07951 0.191926

Macrophage M1 0.1050114 0.019077 0.292333 9.70E−07

Macrophage M2 0.3050242 3.49E−12 0.24784 3.70E−05

Mast cell activated −0.158601 0.000381 0.091634 0.132404

Mast cell resting −0.036861 0.411755 −0.08207 0.177937

Monocyte 0.1769645 7.17E−05 0.414568 1.11E−12

Myeloid dendritic cell activated 0.0871031 0.052065 0.026895 0.659373

Myeloid dendritic cell resting 0.0108241 0.809594 −0.03094 0.612098

Neutrophil −0.084768 0.058713 0.033011 0.588461

NK cell activated −0.211297 1.96E−06 −0.14694 0.015485

NK cell resting 0.0272013 0.544774 0.070102 0.250101

T cell CD4 memory activated 0.1221341 0.006354 −0.01208 0.843078

T cell CD4 memory resting 0.014237 0.751297 0.028692 0.638186

T cell CD4 naive −0.141191 0.001585 −0.0439 0.471666

T cell CD8 −0.038265 0.394173 −0.14532 0.016669

T cell follicular helper −0.288333 5.45E−11 −0.4082 2.64E−12

T cell gamma delta 0.0739388 0.099328 0.073939 0.099328

T cell regulatory Tregs −0.144271 0.001245 0.163766 0.006898

TCGA, The Cancer Genome Atlas; CGGA, the Chinese Glioma Genome Atlas; NK cell, natural killer cell.

the strategy of screening potential drugs, MG-132, BMS-
536924, PLX-4720, and AZD6482 were identified as 
potential sensitive drugs for high-risk patients because the 
sensitivity values of these drugs were negatively correlated 
with the risk score and lower in the high-risk group, 
suggesting being more sensitive (Figure 8C-8E). Among 
them, MG-132 was particularly recommended for high-
risk patients because of the lowest sensitivity values. Then 
we obtained the 3D structure of these sensitive drugs  
(Figure 8F). To explore the relationship between the drugs 
and CCC, we predicted possible interactive targets between 
these four drugs and the CCC genes (Figure 8G). The 

results showed that MG-132 had the most possible targets 
for CCC genes, indicating MG-132 might be able to exert 
anti-LGG activity by interacting with CCC.

We performed in vitro experiments to explore the 
anti-glioma effect of the MG-132. The CCK8 assay and 
colony formation assay demonstrated that MG-132 could 
significantly suppress the proliferation of glioma cells  
(Figure 9A,9B). The results of the wound healing assay 
indicated that MG-132 could inhibit the migration of U251 
(P<0.001) and U87 cells (P<0.0001) (Figure 9C). In summary, 
our findings reflected the accuracy of our drug prediction and 
suggested that MG-132 was a powerful anti-glioma drug. 



Yang et al. CCC in LGG126

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(1):112-136 | https://dx.doi.org/10.21037/tcr-23-906

BTL
A

BTL
A

 0 2000 4000 6000
Time, days

 0 1000 2000 3000 4000 5000
Time, days

 0 2000 4000 6000
Time, days

 0 1000 2000 3000 4000 5000
Time, days

  0 1000 2000 3000 4000 5000
Time, days

  0 1000 2000 3000 4000 5000
Time, days

  0 1000 2000 3000 4000 5000
Time, days

 0 2000 4000 6000
Time, days

 0 2000 4000 6000
Time, days

 0 2000 4000 6000
Time, days

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

P<0.0001

P<0.0001

P<0.0001

P<0.0001

P<0.0001

P<0.0001

P<0.0001

P<0.0001

P<0.0001

P<0.0001

High-risk, high-TIDE
High-risk, low-TIDE
Low-risk, high-TIDE
Low-risk, low-TIDE

High-risk, high-TIDE
High-risk, low-TIDE
Low-risk, high-TIDE
Low-risk, low-TIDE

High-risk, high-CD28
High-risk, low-CD28
Low-risk, high-CD28
Low-risk, low-CD28

High-risk, high-CD28
High-risk, low-CD28
Low-risk, high-CD28
Low-risk, low-CD28

High-risk, high-CTLA4
High-risk, low-CTLA4
Low-risk, high-CTLA4
Low-risk, low-CTLA4

High-risk, high-CTLA4
High-risk, low-CTLA4
Low-risk, high-CTLA4
Low-risk, low-CTLA4

High-risk, high-PDCD1
High-risk, low-PDCD1
Low-risk, high-PDCD1
Low-risk, low-PDCD1

High-risk, high-PDCD1
High-risk, low-PDCD1
Low-risk, high-PDCD1
Low-risk, low-PDCD1

High-risk, high-RASA2
High-risk, low-RASA2
Low-risk, high-RASA2
Low-risk, low-RASA2

High-risk, high-RASA2
High-risk, low-RASA2
Low-risk, high-RASA2
Low-risk, low-RASA2

Strata

Strata

Strata

Strata

Strata

Strata

Strata

Strata

Strata

Strata

CD8A

CD8A

IC
OSLG

IC
OSLG

CD28

CD28

HAVCR2

HAVCR2

LA
G3

LA
G3

PDCD1L
G2

PDCD1L
G2

−10 −5 0 5 10
Risk score

−10 −5 0 5 10
Risk score

TI
D

E
TI

D
E

2.0

1.6

1.2

0.8

2.5

2.0

1.5

1.0

CD27
4

CD27
4

CTL
A4

CTL
A4

Group High low

Group High low

ID
O1

ID
O1

CD80

CD80

***

***

***

***

***

***

***

***

***

***

***

***

***

*** ***

***

***

***

***

***

***

***

***

***

***

***

***

ns

IC
OS

IC
OS

PDCD1

PDCD1

RASA2

RASA2

6

4

2

0

6

4

2

0

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

E
xp

re
ss

io
n 

[lo
g 2

(T
P

M
 +

1)
]

E
xp

re
ss

io
n 

[lo
g 2

(T
P

M
 +

1)
]

B

E

C

F

A

D

G

H



Translational Cancer Research, Vol 13, No 1 January 2024 127

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(1):112-136 | https://dx.doi.org/10.21037/tcr-23-906

Figure 7 Association between risk score and the efficacy of immunotherapy. (A) Expression of several ICPs between different risk groups 
in TCGA. (B) TIDE results of TCGA. (C) KM curve of patients with LGG stratified by TIDE score and the risk score in TCGA. (D) 
Expression of several ICPs between different risk groups in CGGA. (E) TIDE results of CGGA. (F) KM curve of patients with LGG 
stratified by TIDE score and the risk score in CGGA. (G,H) KM curves of patients with LGG stratified by expression of ICPs and the risk 
score in TCGA and CGGA. (I,J) Validating risk signature to predict immunotherapy response based on the GSE135222 and GSE78220 
cohorts. ***, P<0.001; ****, P<0.0001; ns, not significant. TPM, transcripts per million; TIDE, the tumor immune dysfunction and exclusion; 
SD/PD, stable disease or progressive disease; CR/PR, complete response or partial response; ICP, immune checkpoint; TCGA, The Cancer 
Genome Atlas; CGGA, the Chinese Glioma Genome Atlas; KM, Kaplan-Meier; LGG, lower-grade glioma. 
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Discussion

Hypercoagulability and thrombotic complications are 
common in patients with glioma (48,49). Several previous 
studies have reported that activation of CCC may be 
associated with the development of glioma (50-52).  
However, the specific mechanism of how the CCC is 
involved in glioma development and the mechanism 
of coagulation in gliomas has not been enclosed yet. 
To the best of our knowledge, this study is the first to 
elucidate the role of CCC genes in the prognosis, immune 
microenvironment, and chemotherapy efficacy of patients 
with LGG. In the current study, we found that 20 CCC 
genes were highly expressed in LGG, of which 12 CCC 
genes were related to worse prognosis in patients with 
LGG. Then we constructed a risk signature based on six 
of those CCC genes and divided the patients into high- 
and low-risk groups. GSEA results demonstrated that 
CCC was activated in the high-risk group, suggesting that 
CCC might influence the prognosis of patients with LGG 
in some ways. Subsequently, through a comprehensive 
bioinformatics analysis, we found that CCC may affect 
the prognosis of LGG patients by influencing the immune 
microenvironment and treatment resistance of LGG.

A complete surgical resection is the optimal treatment 

of LGG, when safe (8). Gross total resection (GTR) had 
superior efficacy on survival, functional outcome, tumor 
progression, seizure control, malignant transformation, 
morbidity, and mortality in LGG patients (53). Compared 
with LGG patients who had a subtotal or partial resection, 
a higher proportion of LGG patients had a better prognosis 
following GTR (54). Although GTR, when feasible, is the 
most important treatment for LGG, the invasive growth 
and involving functional brain regions of LGG make 
complete surgical resection difficult. For LGG patients 
following incomplete resection, they could benefit from 
radiotherapy (55,56). When the effects of surgery and 
radiotherapy remain unsatisfactory, chemotherapies can be 
used as an adjunctive treatment (57). Moreover, targeted 
therapies might be effective in specific LGG patients. 
BRAF and MEK inhibitors are recommended for pilocytic 
astrocytomas, pleomorphic xanthoastrocytomas, and 
gangliogliomas when BRAF altered (58,59), and mTOR 
inhibitor everolimus is recommended for subependymal 
giant cells astrocytomas (60).

The constructed risk signature consisted of six CCC 
genes, including F2R, SERPINA1, TFPI, C1QC, C2, and 
C3AR1. Univariate Cox analysis showed that all of the 
six genes were risk factors for poor prognosis in glioma 
patients, and highly expressed in the high-risk group. Of 
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Figure 8 Prediction for potential drugs for high-risk patients. (A) Flow chart to screen potential drugs. (B) Venn diagram to filter out 
overlapped drugs. (C) Sensitivity values of drugs from the CTRP v2 and GDSC2 datasets in different risk groups in TCGA and CGGA. 
(D) Correlation between sensitivity values of drugs from the GDSC2 and CTRP v2 datasets and the risk score in TCGA. (E) Correlation 
between sensitivity values of drugs from the GDSC2 and CTRP v2 datasets and the risk score in CGGA. (F) The 3D structure of four 
sensitive drugs. (G) The possible interactive targets between sensitive drugs and CCC genes. *, P<0.05; **, P<0.01; ***, P<0.001. CGGA, 
the Chinese Glioma Genome Atlas; CTRP, The Cancer Therapeutics Response Portal; TCGA, The Cancer Genome Atlas; GDSC, the 
Genomics of Drug Sensitivity in Cancer database; SEA, similarity ensemble approach; CCC, complement and coagulation cascades.
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these six genes, F2R (61), SERPINA1 (62), C1QC (63), 
and C3AR1 (64) have been reported to be associated 
with worse prognosis or the development of glioma. In 
this study, we reported for the first time the association 
between TFPI and C2 and the prognosis of LGG. Several 
studies have shown that TFPI is associated with metastasis 
of lung cancer and progression of breast cancer (65-68). 

Meanwhile, C2 is reported to be a prognostic factor for 
hepatocellular carcinoma and colorectal cancer (69,70). We 
then constructed a clinical prediction model based on this 
risk signature and clinical characteristics. This model could 
accurately predict the prognosis of patients with LGG and 
be further applied to the clinical settings. 

To discover the possible mechanisms by which CCC 
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Figure 9 In vitro validating experiments to explore the anti-glioma effect of MG-132. (A) CCK8 results showing MG-132 inhibited the 
proliferation of glioma cells. (B) Colony formation assay results showing MG-132 inhibited the proliferation and colony formation of glioma 
cells. The colonies were stained with 0.1% crystal violet solution and photographed by a digital camera. (C) Wound healing assay showing 
MG-132 inhibited the migration of glioma cells. The wounds were observed under a microscope at 4× magnification. ***, P<0.001; ****, 
P<0.0001. OD, optical density; CCK8, Cell Counting Kit-8. 
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affects the prognosis of patients with LGG, GSVA and 
GSEA were performed based on KEGG pathways and GO 
terms. In addition to CCC, the platelet activation pathway 
was also activated in the high-risk group, indicating a 
synergistic relationship between CCC and platelet activation 
in LGG. By comparing the results of GSEA and GSVA, we 
found that the JAK-STAT signaling pathway, NOD-like 
receptor signaling pathway, and Notch signaling pathway 
were activated in the high-risk group. Complement activation 
could interact with inflammasomes, which are comprised of 
upstream sensor proteins of the NOD-like receptor family 
(71,72). JAK-STAT and Notch signaling pathways were 
demonstrated to play an important role in coagulation (73,74). 
Consistent with findings from previous studies, which have 
reported the simultaneous upregulation or activation of these 
pathways, our study suggested that there may be crosstalk 
between CCC and these pathways, and proteins in JAK-
STAT, NOD-like receptor, and Notch signaling pathways 

might involve in the CCC progression (75,76). 
The current study demonstrated that CCC might be 

associated with the progression of LGG. The complement 
system has been proven to play a crucial role in the 
progression of LGG (77). A study found higher levels of 
C1Q expression were correlated with unfavorable prognosis 
in LGG (63). Other studies suggested that C3 and C1RL 
can serve as diagnostic biomarkers and potential targets 
of therapy for LGG patients (78,79). On the other hand, 
TF is related to epithelial-mesenchymal transition (EMT) 
and has the potential to become an effective target against 
EMT and thrombotic events in LGG. PROS1, a vital blood 
coagulation gene, was considered to promote the glioma 
immunosuppressive microenvironment (80). In addition, 
another study showed PROS1 was enriched in complement 
activation in LGG, indicating the critical role of CCC in 
the progression of LGG (81). 

The complex tumor microenvironment is closely related 
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to the occurrence and development of glioma (82,83). 
According to our findings, macrophage M2 and monocyte 
were highly infiltrated in the high-risk group, while T 
cell follicular helper and NK cell were highly infiltrated 
in the low-risk group. These findings suggest that there 
may be crosstalk between the CCC and immune cells in 
LGG. Microglia and macrophage M2 play an important 
role in glioma maintenance and progression (84,85). 
Macrophage M2 could produce complement C5 to promote 
chemotherapy resistance of glioma (86). A study showed 
that T cell follicular helper could exert antitumor immune 
effects in a CD8-dependent manner (87). T cells also 
stimulate humoral responses and induce the production 
of tumor-specific antibodies to activate the complement 
system on tumor cells, indicating T cell follicular helper 
might be related to the activation of the complement 
system in a CD8-dependent manner in LGG (88). NK cell 
is a powerful antitumor immune cell that could effectively 
kill glioma cells upon activation, and several clinical studies 
have been conducted on NK cell immunotherapy for the 
treatment of glioma (89-91). Meanwhile, we found that the 
negative regulation of NK cell-mediated immunity pathway 
was suppressed in the high-risk group. In summary, CCC 
might be associated with the high infiltration of these 
immunosuppressive immunocytes and decreased infiltration 
of antitumor immunocytes may be the reason for the poor 
prognosis of patients in the high-risk group. 

Immunotherapy is a promising treatment strategy for 
glioma (92,93). In the current study, we found that the 
expression of several ICPs was upregulated in the high-
risk group. The results of TIDE demonstrated that 
immunotherapy resistance might be present in high-
risk patients, providing novel insight into the clinical 
choice of applying immunotherapy to patients with 
LGG. Moreover, stratification based on the expression 
of ICPs and risk score could accurately distinguish 
patients with different prognoses. Patients with high 
expression of ICPs and high risk scores had the worst 
prognosis, while risk scores had a more significant impact 
on the prognosis of patients with LGG compared to the 
expression of ICPs. Immune resistance is an important 
reason why immunotherapy for glioma has not achieved 
widespread use, and the development of tools to predict 
immunological resistance in glioma patients is therefore of 
great clinical importance (94,95). We validated our results 
in the GSE135222 and GSE78220 cohorts. Compared to 
low-risk patients, high-risk patients in two cohorts had 
shorter OS, poorer prognosis, and a higher proportion 

of responses to immunotherapy manifesting as SD/PD. 
These findings indicated that the CCC-based risk signature 
is able to accurately predict the response of patients to 
immunotherapy, providing a tool to predict the response to 
immunotherapy in patients with LGG.

Chemotherapy is one of the most important treatments 
for glioma (96-99). However, chemotherapy drugs for 
patients with LGG are still scarce, so the discovery of novel 
chemotherapeutic agents and strategies for patients with 
LGG is of great clinical importance (100-102). The current 
study identified MG-132, BMS-536924, PLX-4720, and 
AZD6482 as potential sensitive drugs for high-risk patients 
with LGG. MG-132 has been shown to promote glioma 
cell apoptosis and thus exert anti-glioma activity (103,104). 
A study reports that BMS-536924 could inhibit glioma 
growth in vitro and in vivo (105). Several studies show that 
PLX4720 offers significant advantages in treating BRAF 
V600E gliomas (106,107). AZD6482 is reported to exert 
antiproliferative activity and induce apoptosis in human 
GBM cells (108). We predicted the possible interactive 
targets between these four drugs and the CCC gene, and all 
of these sensitive drugs had possible targets interacting with 
CCC genes. Among them, MG-132 had the most possible 
targets, including F2R, C2, and C3AR1, which belonged 
to the six CCC genes that constructed the risk signature. 
What’s more, MG-132 was particularly recommended for 
high-risk patients because of its highest sensitivity. Thus, we 
performed in vitro experiments to validate the anti-glioma 
effect of MG-132, and the results demonstrated the strong 
anti-glioma activity of MG-132. Corresponding clinical 
trials based on our findings could be conducted to enrich 
the chemotherapy strategy for LGG.

The current study still had some limitations. The 
validation of this study was based on the CGGA dataset and 
showed strong predictive ability. However, other essential 
genes with prognostic values were not considered in this 
study. Furthermore, given that the prognostic signature was 
constructed and validated by leveraging data from public 
databases, evidence from biological experiments is required 
to further validate the statistical evidence we have provided.

Conclusions

In summary, through integrated bioinformatics analysis, 
this study investigated the relationship between CCC 
genes and the prognosis, immune microenvironment, and 
chemotherapy efficacy of patients with LGG. Our findings 
demonstrated that CCC genes are associated with the 
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prognosis and immune infiltration of LGG and provide 
possible immunotherapeutic and novel chemotherapeutic 
strategies for patients with LGG.
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