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Abstract

Autism is a severe neurodevelopmental disorder that is characterized by impaired language, communication, and social
skills. In regressive autism, affected children first show signs of normal social and language development but eventually lose
these skills and develop autistic behavior. Protein kinases are essential in G-protein-coupled, receptor-mediated signal
transduction and are involved in neuronal functions, gene expression, memory, and cell differentiation. We studied the
activity and expression of protein kinase A (PKA), a cyclic AMP–dependent protein kinase, in postmortem brain tissue
samples from the frontal, temporal, parietal, and occipital cortices, and the cerebellum of individuals with regressive autism;
autistic subjects without a clinical history of regression; and age-matched developmentally normal control subjects. The
activity of PKA and the expression of PKA (C-a), a catalytic subunit of PKA, were significantly decreased in the frontal cortex
of individuals with regressive autism compared to control subjects and individuals with non-regressive autism. Such
changes were not observed in the cerebellum, or the cortices from the temporal, parietal, and occipital regions of the brain
in subjects with regressive autism. In addition, there was no significant difference in PKA activity or expression of PKA (C-a)
between non-regressive autism and control groups. These results suggest that regression in autism may be associated, in
part, with decreased PKA-mediated phosphorylation of proteins and abnormalities in cellular signaling.
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Introduction

Autism spectrum disorders (ASDs) are neurodevelopmental

disorders characterized by impairment in social interactions and

verbal/non-verbal communication skills, and restricted, repetitive

and stereotyped patterns of behavior [1]. According to a recent

report from the Centers for Disease Control and Prevention, the

prevalence of ASDs is 1 in 110 for children 8 years of age [2].

The symptoms of ASDs are typically present before the age of 3

years, and are often accompanied by abnormalities in cognitive

functioning, learning, attention, and sensory processing. While

the causes of ASDs remain elusive, ASDs are considered to be

heterogeneous and multifactorial disorders that are influenced by

both genetic and environmental factors. The onset of autism is

gradual in many children. However, in regressive autism,

children first show signs of normal social and language

development but lose these developmental skills at 15–24 months

and develop autistic behavior [3]. The reported incidence of

regressive autism varies in different studies from 15% to 62% of

cases [4–7]. In a few cases, regression may significantly affect

language, with lesser impact in other domains such as social

interaction or imaginative play [4,8]. On the other hand, some

children may regress especially in social functions and not in

language [9].

Protein kinases are known to play important roles in cellular

signaling pathways and are involved in brain development [10–

13]. Protein kinase A (PKA) is a cyclic adenosine monophosphate

(cAMP)–dependent protein kinase that is involved in cognitive

functions and memory formation [14–18]. PKA consists of

regulatory (R) and catalytic (C) subunits. Three genes encode for

catalytic units (Ca, Cb, and Cc), and four other genes encode for

regulatory units (RIa, RIb, RIIa, and RIIb) of PKA. PKA remains

catalytically inactive when the levels of cAMP are low. The

concentration of cAMP rises upon activation of adenylate cyclase

by G protein-coupled receptors, and/or inhibition of cyclic

nucleotide phosphodiesterase (PDE) enzyme. Under these condi-

tions, cAMP binds to two binding sites on the regulatory subunits

of PKA, which results in the release of the catalytic subunits. These

free catalytic units of PKA can then phosphorylate proteins by

transferring a phosphate group from ATP. Several studies have

implicated the role of PKA in neuropsychiatric disorders such as

schizophrenia, bipolar affective disorder, obsessive compulsive

disorder, and panic disorders [19–22]. To date, no studies of PKA

have been done in autism.

The intracellular levels of cAMP are controlled by PDE, which

degrades the phosphodiester bond in cAMP. PDE regulates the

localization, duration, and amplitude of cAMP signaling within

subcellular domains. Multiple forms of PDEs have been identified
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on the basis of substrate specificity. PDE4, 7, and 8 act on cAMP;

PDE5, 6, and 9 act on cyclic guanosine monophosphate (cGMP);

whereas PDE1, 2, 3, 10, and 11 act on both cAMP and cGMP.

Recent evidence has suggested altered levels of PDE4 in the brains

of individuals with autism [23].

Because the levels of PDE4 are altered in autism, and PKA is

involved in neuropsychiatric disorders, it was of interest to

compare the activity and protein levels of PKA in different brain

regions in autism (regressive and non-regressive) and age-matched

control subjects. Our study suggests that PKA activity and

expression are decreased in the frontal cortex of individuals with

regressive autism as compared with control subjects. Such changes

were not observed in individuals with non-regressive autism.

Materials and Methods

Autism and Control Subjects
Samples of postmortem frozen brain regions, i.e., the cerebel-

lum, and the cortices from the frontal, temporal, parietal, and

occipital lobes from autistic (N = 7–10 for different brain regions)

and age-matched, typically developed, control subjects (N = 9–10)

were obtained from the National Institute of Child Health and

Human Development (NICHD) Brain and Tissue Bank for

Developmental Disorders at the University of Maryland, Balti-

more, MD. The age (mean 6 S.E.) for autistic subjects was

12.663.2 years, and for control subjects, 12.463.3 years. All brain

samples were stored at 270uC.

The case history and clinical characteristics for the autism and

control subjects are summarized in Table 1. Donors with autism

had met the diagnostic criteria of the Diagnostic and Statistical

Manual-IV for autism. The Autism Diagnostic Interview-Revised

(ADI-R) test was performed for the donors UMB #s 4671, 4849,

1174, 797, 1182, 4899, and 1638 (Table 2). Each donor’s

impairments in social interaction, qualitative abnormalities in

communication, and restricted, repetitive and stereotyped patterns

of behavior are consistent with the diagnosis of autism, according

to the results of the ADI-R diagnostic algorithm. All donors with

autism exceeded the cut-off score in these parameters. The

diagnosis of autism was assigned to donor UMB # 1349 after

extensive evaluation of behavioral tests, including the Autism

Diagnostic Observation Schedule (ADOS), Vineland Adaptive

Behavioral Scale (VABS), and Bayley Scales for Infant Develop-

ment-II (BSID-II). In addition to the ADI-R, UMB # 4849 was

also evaluated by the BSID-II and Childhood Autism Rating Scale

(CARS), which indicated moderate to severe autism, and autism in

UMB # 4671 was also verified by the VABS and BSID-II. Table 3

shows scores for the VABS test, which assesses adaptive behavior

in four domains: communication, daily living skills, socialization,

and motor skills.

In this study, the subjects with autism were divided into two

subgroups: regressive autism and non-regressive autism, depend-

ing on the pattern of onset of symptoms for autism. Regressive

autism is a type of autism in which early development is normal,

followed by a loss of previously acquired skills. Language is the

most common area that regresses; this regression can be

accompanied by more global regression involving loss of social

skills and social interest. On the other hand, in non-regressive

autism, the child never gains normal language and social skills, and

initial symptoms are delayed speech development, and/or delay in

development of social skills and in nonverbal communication.

These children do not demonstrate regression in terms of loss of

language or social skills.

Ethics statement. This study was approved by the

Institutional Review Board (IRB) of the New York State

Institute for Basic Research in Developmental Disabilities. The

IRB reviewed this study in accordance with New York State

Regulations and the HHS Office for Human Research

Protections, including the ‘‘Human Subject Decision Chart 1,’’

and found that the research does not involve human subjects because ‘‘the

research does not involve intervention or interaction with the

individuals’’, nor ‘‘is the information individually identifiable’’.

The subjects cannot be identified, directly or through identifiers

linked to the system, and the consent is not required.

Preparation of Brain Homogenates
The tissue samples were homogenized (10% w/v) in cold buffer

containing 50 mM Tris-HCl (pH 7.4), 8.5% sucrose, 2 mM

EDTA, 10 mM b-mercaptoethanol, and protease inhibitor

cocktail (Sigma-Aldrich, St. Louis, MO) at 4uC. For extraction

of protein kinases, the homogenates were mixed with an equal

volume of extraction buffer containing 40 mM Tris-HCl (pH 7.4),

300 mM NaCl, 2 mM EDTA, 2 mM EGTA, 2% Triton, 5 mM

sodium pyrophosphate, 2 mM b-glycerophosphate, 2 mM

Na3VO4, 100 mM NaF, and 2 mg/ml leupeptin. The samples

were allowed to stand on ice for 10 min, and then centrifuged at

135,000 g for 20 min at 4uC. The supernatants were collected,

and the concentrations of total proteins in the supernatants were

measured by the biocinchoninic acid protein assay kit (Thermo

Scientific, Rockford, IL).

Assay for PKA Activity
PKA activity was measured using the solid phase enzyme-linked

immunosorbent assay (ELISA) kit from Enzo Life Sciences

International, Inc. (Plymouth Meeting, PA). In this assay, the

substrate of PKA was pre-coated on the wells of a microplate. The

microplate wells were soaked with 50 ml of kinase assay dilution

buffer for 10 min. The buffer was then carefully aspirated from

each well, and the brain samples were added to the appropriate

wells. The kinase reaction was initiated by adding 10 ml ATP, and

was carried out for 90 min at 30uC. It was terminated by emptying

the contents of each well. A phosphosubstrate–specific antibody

was added to the wells except in blank, and incubated for 60 min

at room temperature, followed by washing 4 times with wash

buffer. The peroxidase-conjugated secondary antibody was then

added except in blank, and incubation was done for 60 min at

room temperature. The wells were again washed 4 times with

wash buffer. The color was developed with tetramethylbenzidine

substrate, and it was proportional to the phosphotransferase

activity of PKA. The reaction was stopped with acid-stop solution,

and the absorbance was measured at 450 nm in a microplate

reader. The absorbance was divided by the concentration of total

protein (mg) in each sample, and the data are represented as

relative PKA activity.

Western Blot Analysis
Total protein (15 mg) from brain homogenates of subjects with

regressive- and non-regressive autism or control subjects was

separated using a 10% sodium dodecyl sulfate-polyacrylamide gel

electrophoresis, and then transferred to a nitrocellulose mem-

brane. The membrane was blocked with Tris-buffered saline

containing 5% fat-free dried milk for 2 h at room temperature,

and further incubated overnight at 4uC with polyclonal antibody

against C-subunit (isoform a) of PKA (Cell Signaling Technology

Inc., Danvers, MA). The membrane was then washed 3 times with

TBS-0.05% Tween 20, and incubated with horseradish peroxi-

dase-conjugated secondary antibody for 2 h at room temperature.

The membrane was washed again, and the immunoreactive

protein was visualized using enhanced chemiluminescent reagent.
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Because PKA (C-a) and b-actin have similar molecular weights

(42 KDa), polyclonal antibody against PKA (C-a) was stripped

from nitrocellulose membrane, and the membrane was re-probed

with monoclonal antibody against b-actin (loading control). The

densities of all protein bands were measured by NIH Image J

software, and the density of PKA (C-a) band was normalized with

the density of b-actin for each sample.

Statistical Analysis
Initially, autistic and control cases were collected as age-

matched pairs. As data for both members of a pair were not

available in all cases, and data were approximately normally

distributed, unpaired two-tailed t-tests were employed to make

comparisons of PKA activity in various brain regions, and of

overall PKA density between autistic vs. control cases. Compar-

isons among controls and autistic cases showing or not showing

clinical signs of regression in function were made using one-way

analysis of variance (ANOVA). To guard against type I error, a

Bonferroni adjustment for multiple comparisons was made to the

t-tests of multiple brain regions, and for the pairwise post-hoc t-tests

comparing each pair of the three groups that were compared in

the overall ANOVA. For purposes of this adjustment, tests of

different hypotheses, i.e., of activity levels and of protein contents

of PKA, were not considered to be multiple comparisons.

Results

PKA Activity in Different Brain Regions of Individuals with
Autism and Age-Matched Control Subjects: Relationship
with Regression in Autism

The activity of PKA was measured in the brain homogenates

from the frontal, temporal, occipital, and parietal cortices, and

the cerebellum in autistic and control subjects (Fig. 1). When all

autism cases (regressive and non-regressive) were compared with

the age-matched control group, no significant difference was

found in PKA activity in any of these brain regions, although

PKA activity in the frontal cortex was found to be reduced by

34.7% in the autism vs. control group. When the autism group

was divided into two sub-groups (regressive and non-regressive),

depending on whether there was a clinical history of regression

or not, unadjusted two-tailed t-test showed a significant decrease

in PKA activity in the frontal cortex of individuals with

regressive autism as compared to the developmentally normal

control group (p = 0.0278) and the non-regressive autism group

Table 2. Autism Diagnostic Interview-Revised test scores in donors of brain tissue samples.

Autism Diagnostic Interview-Revised (ADI-R)a

Diagnostic Algorithm
Cutoff score for
autism UMB 4671 UMB 4849 UMB 1174 UMB 797 UMB 4899 UMB 1638

Impairments in reciprocal social
interaction (Scores:0–30)

10 26 22 22 24 22 21

Abnormalities in communication:

Verbal (Scores:0–26) 8 - 18 - 20 - -

Non-verbal (Scores: 0–14) 7 13 N/A 11 13 14 11

Restricted, repeated and stereotyped
behavior (Scores: 0–12)

3 3 8 6 6 8 7

Abnormalities of development evident
at or before 36 months

1 5 3 5 - 4 5

a: Higher score represents greater impairment.
UMB 1182: ADI-R was conducted but the scores are not available. The donor met the criteria for a diagnosis of autism.
doi:10.1371/journal.pone.0023751.t002

Table 3. Vineland Adaptive Behavioral Scales diagnostic test for autism in donors of brain tissue samples.

Vineland Adaptive Behavioral Scales (VABS)a

UMB 1349 UMB 4671 UMB 1174

At age: 25 months At age: 33 months At age: 39 months At age: 6.4 y

Domain (Scores:20–160)
Standard
Score

Age equivalent
performance

Standard
Score

Age equivalent
performance

Standard
Score

Age equivalent
performance

Standard
score

Communication 57 9 months 69 18 months 52 10 months 41

Daily living skills 65 16 months 62 16 months 54 14 months 22

Socialization 60 9 months 71 17 months 51 4 months 52

Motor skills - - - - 65 24 months -

Composite - - - - 51 13 months 35

a: Higher score represents better function.
According to the medical histories for UMB-4231 and UMB-5027, the donors had psychological evaluation, and met the criteria for a diagnosis of autism. Detailed
information is not available.
doi:10.1371/journal.pone.0023751.t003
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(p = 0.0318), but these differences did not remain significant

after application of the adjustment for multiple comparisons.

The mean 6 S.E. of PKA activity in the frontal cortex was:

2.4860.57 in autism (regressive+non-regressive), 1.6060.31 in

regressive autism, 3.9460.99 in non-regressive autism, and

3.8060.65 in control groups. The alteration in PKA activity was

specific to the frontal cortex in regressive autism because it was

not observed in other regions of the brain, i.e., the cerebellum

and the temporal, parietal, and occipital cortices, suggesting

that the changes observed in PKA activity were brain region–

specific in regressive autism. PKA activity was also similar in all

of the brain regions between non-regressive autism and control

groups.

There was no significant difference in postmortem interval

(PMI) between the autistic and control groups, or between the

regressive autism and non-regressive autism groups. The mean 6

S.E. of PMI was: 22.064.2 in the autism groups (regressive+non-

regressive, n = 10), 16.161.22 in the control group (n = 10),

28.467.2 in regressive autism (n = 5), and 15.662.6 in the non-

regressive autism group (n = 5). We also studied whether there was

an inverse correlation between PMI and PKA activity. Correlation

analysis between PMI and PKA activity for all autistic and control

subjects did not reveal any such association (data not shown).

Furthermore, the cerebellum and the temporal, parietal, and

occipital cortices were not affected in subjects with regressive

autism in comparison with control subjects, while the frontal

cortex was affected in these individuals. These results suggest that

PMI was not a contributing factor to the observed alteration in

PKA activity in the frontal cortex of individuals with regressive

autism. There was also no significant difference in age (mean 6

S.E.) between the regressive autism (11.662.7 years, n = 5) and

non-regressive autism groups (13.766.1 years, n = 5).

Figure 1. PKA activity in different brain regions from regressive autism, non-regressive autism, and age-matched control subjects.
The autism group comprises combined regressive and non-regressive autism sub-groups. Brain homogenates were prepared, and activity of PKA was
measured as described in Materials and Methods. Data represent mean 6 S.E.
doi:10.1371/journal.pone.0023751.g001
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Protein Levels of Catalytic C-a Subunit of PKA in the
Frontal Cortex of Individuals with Autism (Regressive and
Non-Regressive) and Control Subjects

Because a decrease in PKA activity was observed in the frontal

cortex of subjects with regressive autism as compared to control

subjects and subjects with non-regressive autism, we analyzed

whether the decreased activity of PKA is related to the reduced

protein contents of PKA. The protein contents of the catalytic Ca
unit of PKA were analyzed in the frontal cortex of individuals with

autism (regressive and non-regressive) and age-matched controls by

Western blotting (Fig. 2 A). The relative densities of the protein

contents of PKA (C-a) normalized with b-actin are shown in Fig. 2

B. A one-way ANOVA comparing regressive and non-regressive

autism cases and controls showed a significant difference in the

protein contents among these three groups (F [df = 2,15] = 9.770,

p = 0.002). Post-hoc pairwise comparisons among the groups

revealed a significant decrease in the protein contents of PKA (C-

a) in individuals with regressive autism (mean 6 S.E = 0.3460.09)

as compared to control (mean 6 S.E. = 0.6460.05, p = 0.019,

Bonferroni-adjusted) and individuals with non-regressive autism

(mean 6 S.E. = 0.8360.09, p = 0.002, Bonferroni-adjusted), sug-

gesting that the protein contents of PKA are affected in regressive

autism. PKA contents were similar between non-regressive autism

and control groups, and when the entire autism group (regressive

and non-regressive) was compared with the control group.

Discussion

ASDs are complex neurodevelopmental disorders. The com-

plexity of ASDs is further increased because some affected

individuals fall in the sub-group of regressive autism [7].

Behavioral changes in regressive autism fall into two broad

domains: (a) loss of vocalization and (b) loss of social skills. The rate

of regressive autism varies from 15% to 62% of cases in different

studies [4–7]. While Lord et al. reported that 29% of the children

they studied who were diagnosed with autism had lost language

skills for meaningful words, and another 9% lost non-word

vocalizations [5], Goldberg et al. reported regression in 62% of

children [4]. Loss of spoken words generally associates with loss of

social behavior [6], but some affected children show only loss of

social skills [4]. We report here that individuals with regressive

autism have decreased PKA activity in the frontal cortex of the

brain. This decreased PKA activity in autistic regression may be

attributed to the decreased protein contents of PKA because the

protein content of PKA (C-a subunit) was also decreased in the

frontal cortex of individuals with regressive autism. Interestingly,

such changes were not observed in other brain regions of

individuals with regressive autism, or in the frontal cortex and

other brain regions of individuals with non-regressive autism.

These results suggest that alterations in PKA activity and PKA

expression are specific to the frontal lobe in regressive autism.

Our results suggest that PMI and age cannot account for the

observed alteration in PKA in regressive autism. Other factors,

such as comorbidity with seizure disorder, reported for three of 10

autism cases (of which two had regressive autism, and one had

non-regressive autism), and medications, reported for two

regressive autism cases, four non-regressive autism cases, and

two control cases, do not seem to be contributing factors to the

altered activity or expression of PKA in regressive autism.

Figure 2. Relative protein levels of PKA (C-a) in the frontal cortex of regressive autism, non-regressive autism, and age-matched
control subjects. Western blot analyses of C-a subunit of PKA in the frontal cortex of individuals with regressive and non-regressive autism, and
age-matched control subjects are represented in Fig. 2A. The relative density of PKA (C-a) normalized with the density of b-actin (loading control) is
shown in Fig. 2B. Data represent mean 6 S.E.
doi:10.1371/journal.pone.0023751.g002
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However, further studies with a larger autistic group should be

done to explore this issue.

cAMP is one of the key factors for neuronal outgrowth, plasticity,

and regeneration. Members of the cAMP-dependent second-

messenger pathways participate in the regulation of cellular growth

and differentiation and are also implicated in a variety of embryonic

stages including brain development [24]. The PKA pathway is also

recognized as an essential component in memory formation.

Several studies in Drosophila have demonstrated the role of PKA

in memory formation [25–29]. Mutations in the rutabaga gene,

which encodes adenylate cyclase, caused significant defects in short-

term memory [25]. Reduced expression or activity of DC0 (the gene

encoding the catalytic subunit of PKA) caused deficits in learning,

short-term memory, and middle-term memory [26–28]. Studies

have also shown that pharmacological agents such as cAMP analogs

and rolipram (an inhibitor of PDE), which are known to increase

PKA activity, could improve memory [30,31].

G-protein–coupled adenylate cyclase converts ATP to cAMP,

which in turn binds to regulatory subunits of PKA. Following this

event, catalytic subunits of PKA are released, which are the

activated forms of PKA. PKA then phosphorylates and alters the

activity of enzymes and many target proteins such as ion channels,

chromosomal proteins, and transcription factors. cAMP response-

binding protein (CREB) is one of the targets of PKA-mediated

phosphorylation. CREB, upon activation by PKA, binds to certain

DNA sequences (cAMP response elements), thereby stimulating

the transcription of downstream genes and the synthesis of

proteins. The CREB transcription factor is also required for long-

term memory formation [32–34]. It is possible that a decrease in

the activity of PKA in regressive autism may result in reduced

phosphorylation of CREB, and thus reduced transcription and

altered synthesis of some proteins.

Given that PKA is activated by cAMP, and PDE regulates the

levels of cAMP, a discussion on PDE becomes imperative. Altered

levels of PDE4 in the cerebella of autism subjects were reported by

Fatemi and group [23]. Other studies have suggested a role of

PDE4 in learning and memory in behavioral models of mice, rats,

and monkeys [35,36]. PDE4 is also reported to be involved in

behavior sensitivity to antidepressant drugs in animals [37]. PDE

inhibitors such as rolipram could improve object recognition

[38,39], passive avoidance [40,41], radial arm maze [40–42],

Morris water maze [43], and contexual fear conditioning

[30,43,44]. PDE4 has also been studied as a potential therapeutic

target for depressive disorders. It has been suggested that rolipram

may have potential therapeutic benefits for major depression [45],

Alzheimer’s disease [36,46], Parkinson’s disease [47,48], schizo-

phrenia [49,50], and tardive dyskinesia [51,52].

Several reports suggest that some proteins related to the PKA

pathway are involved in autism. Extensive evidence indicates

hyperserotonemia in autism [53–55]. PKA regulates serotonergic

activity in the brain [56]. Galter and Unsicker [57] reported that

co-activation of cAMP- and tyrosine receptor kinase B (TrkB)–

dependent signaling pathways plays an important role in

maintaining the serotonergic neuronal phenotype. TrkB is also

regulated by the cAMP/CREB pathway in neurons [58].

Furthermore, transcriptional activity of the engrailed-2 gene is

also regulated by PKA [59]. The importance of engrailed can be

envisioned because of its crucial roles in brain development [60]

and in the development of autism [61–65].

In conclusion, this study suggests that the frontal cortex may be

the region of the brain involved in regressive autism, where

abnormalities such as decreased activity and expression of PKA

can affect the signal transduction. It may have multiple effects on

signal transduction pathways, which may also influence seroto-

nergic neurons, TrkB, and engrailed-2, all of which have been

suggested to be involved in the development of autism.
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