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Wolbachia is a bacterium that is present in 60% of insects but it is not generally found in
Aedes aegypti, the primary vector responsible for the transmission of dengue virus, Zika
virus, and other human diseases caused by RNA viruses. Wolbachia has been shown to stop
the growth of a variety of RNA viruses in Drosophila and in mosquitoes. Wolbachia-infected
Ae. aegypti have both reproductive advantages and disadvantages over wild types. If
Wolbachia-infected females are fertilized by either normal or infected males, the offspring
are healthy and Wolbachia-positive. On the other hand, if Wolbachia-negative females are
fertilized by Wolbachia-positive males, the offspring do not hatch. This phenomenon is
called cytoplasmic incompatibility. Thus, Wolbachia-positive females have a reproductive
advantage, and the Wolbachia is expanded in the population. On the other hand, Wolba-
chia-infected mosquitoes lay fewer eggs and generally have a shorter lifespan. In recent
years, scientists have successfully released these Wolbachia-adapted mosquitoes into the
wild in several countries and have achieved a high level of replacement with Wolbachia-
positive mosquitoes. Here, we propose a minimal mathematical model to investigate the
feasibility of such a release method. The model has five steady-states two of which are
locally asymptotically stable. One of these stable steady-states has no Wolbachia-infected
mosquitoes while for the other steady-state, all mosquitoes are infected with Wolbachia.
We apply optimal control theory to find a release method that will drive the mosquito
population close to the steady-state with only Wolbachia-infected mosquitoes in a two-
year time period. Because some of the model parameters cannot be accurately measured
or predicted, we also perform uncertainty and sensitivity analysis to quantify how varia-
tions in our model parameters affect our results.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dengue virus is a leading cause of illness and death in the tropics and subtropics. Global incidence of dengue has grown
dramatically in recent decades. About half of the world’s population is now at risk. According to World Health Organization
(WHO, 2019), as many as 390 million people are infected yearly and an estimated half million people with severe dengue
require hospitalization each year, a large proportion of whom are children. About 2.5% of those affected die. Although a
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dengue vaccine has been registered in several countries for use in people 9e45 years of age living in endemic settings, at
present, the key method to prevent the transmission of dengue virus is still to control vector mosquitoes (WHO, 2019).

Dengue, Zika andmany other diseases such as chikungunya and yellow fever aremosquito-borne and the primary vector is
Ae. aegypti, although Aedes albopictus is also a possible carrier. Ae. aegypti can be found in the tropical and subtropical areas
across the world. It is a day-biting mosquito very well adapted to humans. Only the female bites to obtain blood to mature
their eggs.

It is very difficult to eliminate Ae. aegypti because they can lay their eggs in many places such as one’s backyard with very
little water. The eggs can survive months without water and hatch immediately oncewater is available. They are also resistant
to common insecticides (Lima et al., 2011; Marcombe et al., 2012). These make the control of Ae. aegypti using conventional
methods very difficult (Achee et al., 2015).

There are currently two novel approaches that showed considerable promise in limiting the spread of dengue by Ae.
aegypti (Yakob & Walker, 2016). One approach is genetic control by releasing mosquitoes that are engineered with lethal or
flightless trait (Labb�e, Scaife, Morgan, Curtis, & Alphey, 2012; Thomas, Donnelly, Wood, & Alphey, 2000), and the other
approach is development of mosquitoes that are resistant to arbovirus. This paper is concerned with the second approach.

It is known that Wolbachia can stop the growth of dengue in mosquitoes (Ferguson et al., 2015; Kamtchum-Tatuene,
Joseph, Benjamin, Baylis, & Solomon, 2017). The idea here is to release Wolbachia-infected mosquitoes into the mosquito
population. Due to cytoplasmic incompatibility, the bacteria are passed on from generation to generation and the percentage
of mosquitoes carrying Wolbachia grows until it remains high without any further releases. This method is tried in several
countries for field release experiments (Frentiu et al., 2014; Hoffmann et al., 2011; O’Neill et al., 2018). Recently, it is found that
this method may also be able to stop the spread of Zika virus (Aliota, Peinado, Velez, & Osorio, 2016).

Since releasing Wolbachia-infected mosquitoes can be time-consuming and costly to implement, a few mathematical
models have been proposed to understand the impact of Wolbachia on the transmission of arboviruses (Dorigatti,
McCormack, Nedjati-Gilani, & Ferguson, 2018). In this most recent review paper, the authors noted that Hughes and Brit-
ton (Hughes & Britton, 2013) investigated the “potential impact of aWolbachia strain with perfect material transmission and
CI on the transmission of a single-strain arbovirus”, as well as gave other references (Supriatna & Padjadjaran, 2012), (Ndii,
Hickson, Allingham, & Mercer, 2015),(Ndii, Allingham, Hickson, & Glass, 2016a), (Ndii, Allingham, Hickson, & Glass, 2016b)
that “used simplified compartmental models of dengue transmission to examine similar issues".

In our mathematical model, we consider the bistability of disease-free vs endemic states, proposed a releasing method
that utilized optimal control theory and conducted a sensitivity analysis for model parameters. To our knowledge, there has
not been a study regarding impact of Wolbachia on dengue transmission that contains all three parts. The mathematical
model we propose has no analytical solutions but it has five steady state solutions, two of which are locally asymptotically
stable and the others are unstable. One of these stable steady-states contains no Wolbachia-infected mosquitoes and rep-
resents an unfavorable outcome, while all mosquitoes are infected with Wolbachia for the other stable steady-state and
represents a favorable outcome.We then add a control, u(t), to our model, which represents aWolbachia-infected mosquitoes
release method. Applying optimal control theory, we find a release method, u*(t), which will drive the solutions of the
mathematical model close to the favorable steady-state at the end of two years. After that, theWolbachia-infectedmosquitoes
will continue to expand in the population and eventually all mosquitoes are infected with Wolbachia, thus preventing the
spread of dengue.

The organization of the paper is as follows. In Section 2, we present our minimal model, parameter values and justify the
assumptions we made. In Section 3, we analyze the model and prove that it has five steady-states, two of which are locally
asymptotically stable. In Section 4, we explain how to find the optimal control, u*(t), and illustrate the results with numerical
examples. In order to ensure that the release method is feasible in practice, we restrict ourselves to bang-bang control.
Fig. 1. Transmission diagram of dengue virus among Ae. aegypti and humans.



H. Zhang, R. Lui / Infectious Disease Modelling 5 (2020) 142e160144
Because there is considerable uncertainty in measuring or estimating some of themodel parameters, in Section 5, we perform
uncertainty and sensitivity analysis to quantify these uncertainties in our model. The last section is discussion. Additional
references will be provided as we move through the technical parts of the paper.

2. Mathematical model

Ourmodel consists of a system of ordinary differential equations, (2.1) illustrated in Fig.1, with seven state variables: Sh, Eh,
Ih, Sv, Ev, Iv andW. We onlymodel female mosquitoes because only female mosquitoes bite to obtain protein to develop and lay
their eggs. We assume that there are equal number of male and female mosquitoes and homogeneous mixing.

_Sh ¼ mhNh �
BvhkShIv

Nh
� mhSh;

_Eh ¼ BvhkShIv
Nh

� khEh � mhEh;

_Ih ¼ khEh � gIh � mhIh;

_Sv ¼ bðNvÞð1� shpÞðSv þ Ev þ IvÞ � BhvkSvIh
Nh

� mvSv;

_Ev ¼ BhvkSvIh
Nh

� kvEv � mvEv;

_Iv ¼ kvEv � mvIv

_W ¼ bðNvÞ
�
1� sf

�
W � ðmv þ DÞW þ uðtÞ;

(2.1)
In the above model, Sh denotes susceptible humans, Eh denotes exposed but not infectious humans, and Ih denotes in-
fectious humans. The infected humans eventually recover from the illness and form another class Rh. But the recovered
humans are permanently immune from the virus, and since the human population size is assumed to be a constant, Nh, there
is no need to model Rh separately. The first three equations of (2.1) is a classic SEIR model except that the virus is transmitted
by mosquito bites so Ih in the Sh equation is replaced by Iv.

The next three equations form an SEI model formosquitoes. Sv denotes susceptiblemosquitoes, Ev denotes exposed but not
infectious mosquitoes, and Iv denotes mosquitoes infected with dengue (but notWolbachia). Mosquitoes do not recover from
dengue virus. The last state variable W represents mosquitoes that are infected by Wolbachia (but not dengue). We assume
there is no co-infection by Wolbachia and dengue. (2.1) is a minimal model that includes interactions between mosquitoes
and humans and Wolbachia-infected mosquitoes.

In our model, we assume per capita emergence rate of mosquitoes (fecundity) is given by the logistic growth function
(Edelstein-Keshet, 2005)

bðNvÞ¼max
�
b0

�
1�Nv

K

�
þmv

Nv

K
; 0
�
; (2.2)

where K is the constant carrying capacity of mosquitoes and Nv:¼ Sv þ Ev þ Iv þW. This is because all mosquitoes compete for
resources. Note that unlike Nh, Nv is not a constant and changes over time.

The term 1� shp in the equation for Sv, where p :¼ W=Nv, models cytoplasmic incompatibility (CI). It is known that
offspring of Wolbachia-infected females are also infected with Wolbachia and viable. CI means that a fraction, sh, of eggs
produced byWolbachia-infectedmale and uninfected female is not viable. We follow (Hughes& Britton, 2013) to explain how
this equation is derived.

We ignore life-cycle (aquatic stages) of mosquitoes. Let

_Sv ¼ birth� rate�
�
kBhv
Nh

�
SvIh � mvSv:

Then the rate of addition to wild type mosquitoes is bðNvÞðSv þ Ev þ IvÞþ ð1 � vÞbðNvÞð1 � sf ÞW , where v is fraction of
offspring from Wolbachia-infected female that are also Wolbachia-infected. But not all eggs are going to hatch because of CI.
Assuming random mating and equal number of male and female mosquitoes, the probability of inviability is shIw= Nv.
Therefore,

birth� rate¼
�
1� sh

Iw
Nv

�
bðNvÞ

�
Sv þ Ev þ Iv þð1� vÞ

�
1� sf

�
W
�
:

if we assume CI is 100% successful so that v ¼ 1, we obtain the equation for Ṡv in (2.1).



Table 2
Parameter Values. The table shows the range of the parameter values and their meanings used in (2.1). They will be used in our numerical simulations in
Sections 4 and 5.

Parameter (unit) Range Meaning

Bvh (0.10, 0.75) Probability of infection from infected mosquito to susceptible human
Bhv (0.10, 0.75) Probability of infection from infected human to susceptible mosquito
k (0.33, 1) Biting rate
K/Nh (1, 5) Ratio of mosquitoes population to human population
mh (1/years) (1/76, 1/60) Human death-rate
mv (1/days) (1/42, 1/8) Mosquito death-rate
g (1/days) (1/12, 1/4) Human recovery rate
kh (days) (1/10, 1/3) IIP for humans
kv (days) (1/15, 1/2) EIP for mosquitoes at 30 �C
b0 (1/days) (0.5, 1) Intrinsic growth rate of mosquitoes
sf (0, 0.25) Reduction in birth-rate for Wolbachia-infected mosquitoes
sh (0.75, 1) Reduction in birth-rate due to CI
D (1/days) (1/20, 1/10) Death-rate of Wolbachia-infected mosquitoes
a (0.01, 0.10) Rate of release of Wolbachia in fraction of K
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There are fitness disadvantages of Wolbachia-infected mosquitoes over the wild types: females lay a fraction, 1 � sf , of
eggs compared to wild types, and encounter an additional per capita mortality rate D. These are reflected in the equation for
W in (2.1). The dengue model (first six equations with W ¼ 0) and its analysis may be found in the papers (Derouich,
Boutayeb, & Twizell, 2003; Manore, Hickmann, Xu, Helen, & Hyman, 2014). See also chapter 2 of (Antonelli, 2015).

Although we strive to construct a minimal model, it is important to include the exposed classes, Eh and Ev, in our model
because dengue virus takes some time after the initial infection before it reaches levels in the host when it can be transmitted
again to a susceptible agent. This time in humans is known as the intrinsic incubation period (IIP) and ranges from 3 to 10 days
for dengue (Chan & Johansson, 2012). The time until the virus is transmissible in mosquitoes is known as the extrinsic in-
cubation period (EIP) and has been found to range from 2 to 15 days (Chan & Johansson, 2012). These incubation periods are
significant when compared to the life-span of a mosquito, which for female mosquito is estimated to be between 8 and 48
days. One can avoid exposed classes by using delay equations but delay equations are harder to analyze (Smith, 2011) and the
results are the same as using exposed classes.

We have made several simplifications in our model. There are four distinct serotypes of the virus that cause dengue.
Recovery from infection by one provides lifelong immunity against that particular serotype. However, cross-immunity to the
other serotypes after recovery is only partial and temporary. Subsequent infection by other serotypes increase the risk of
developing severe dengue due to antibody-dependent enhancement (Katzelnick et al., 2017). In this paper, we restrict our
consideration to only one serotype. References tomodels that study two or more serotypes may be found in the review article
(Andraud, Niel Hens, Marais, & Beutels, 2012). We do not include life-cycle of mosquitoes in our study to keep the number of
equations to a minimum. Otherwise, we will need to build an age-structured model, which will significantly increase the
complexity of our model. We also assume that our model parameters are constant, hence no seasonal effects are included in
ourmodel. Oneway to take temperature or rainfall into account is to allow the carrying capacity, K, to be a periodic function of
time. Studies suggest that most female Ae. aegypti spend their lifetime in or around the places where they emerge as adults
and they usually fly an average of 400m (WHO, 2016). This means that people, rather thanmosquitoes, rapidlymove the virus
within and between communities and places. We ignore spatial migration of humans because its effect is small compared to
other environmental factors.

Our model contains 13 parameters: Bvh, Bhv, k, K/Nh, mh, mv, g, kh, kv, b0, sf, sh and D. The range of values for these parameters
are given in Table 2. They are taken from Table 3 of (Manore et al., 2014) except for b0, sf, sh and D, which we estimated. We
chose the values for Ae. aegypti in (Manore et al., 2014) although Ae. albopictus is also a possible carrier. Values of IIP and EIP
are taken from (Chan & Johansson, 2012).

The release of Wolbachia-infected mosquitoes is model by the bounded piecewise continuous function, u(t), in the last
equation of (2.1). We restrict our consideration to the case u(t) takes on only two values: 0 or a > 0. This is called a bang-bang
control.
Table 3
Parameter values for example 1 with a ¼ 0.5.

b1¼ 0.94225366 b2 ¼ 0.08016039 k ¼ 0.70788728 K=Nh ¼ 3.53413624

mh ¼ 0.00003904 mv ¼ 0.09749953 g ¼ 0.14075889 kh ¼ 0.21466300
kv ¼ 0.12951257 b0 ¼ 0.69182424 sf ¼ 0.05536627 sh ¼ 0.98174721
D ¼ 0.06030220 a ¼ 0.03043562 R 0 ¼ 1.77156218 q ¼ 0.90
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3. Analysis of the model

We first non-dimensionalize (2.1) by letting Sh ¼ Sh=Nh; Eh ¼ Eh=Nh ; Ih ¼ Ih=Nh; Sv ¼ Sv=K; Ev ¼ Ev=K; Iv ¼ Iv=K
and W ¼ W=K . In terms of these newly defined state variables, (2.1) becomes

_Sh ¼ mh � b1ShIv � mhSh;
_Eh ¼ b1ShIv � khEh � mhEh;
_Ih ¼ khEh � gIh � mhIh;
_Sv ¼ bðNvÞð1� shpÞðSv þ Ev þ IvÞ � b2SvIh � mvSv;
_Ev ¼ b2SvIh � kvEv � mvEv;
_Iv ¼ kvEv � mvIv;
_W ¼ bðNvÞ

�
1� sf

�
W � ðmv þ DÞW þ uðtÞ ;

(3.1)

where we have omitted the bar above the state variables for convenience. Also, in (3.1), b1 ¼ Bvh kK=Nh; b2 ¼
Bhvk and bðNvÞ ¼maxfb1ðNvÞ; 0g, where b1ðNvÞ ¼ b0ð1 � NvÞþ mvNv. This means only the ratio of mosquito carrying capacity
to human population size is relevant in our study. The rate of release ofWolbachia-infected mosquitoes, a, is also expressed as
a fraction of K in (3.1).

We assume that there exists T > 0 such that u(t) ¼ 0 for t� T. Let x(t) be the solutions of (3.1). Then x1(t)¼ x(tþ T) satisfies
(3.1) with u(t) replaced by u(t þ T) ¼ 0 and initial condition x1(0) ¼ x(T). Therefore, we assume that u(t) ¼ 0 in the following
analysis.

Let b0 > mv (see Table 2). Then db1ðNvÞ
dt ¼ ðmv �b0Þ _Nv ¼ ðb0 �mvÞðmvNv þDWÞ>0 when b1(Nv) ¼ 0. Thus, b1(Nv) > 0 if it is

positive initially. Henceforth, we assume that b(Nv) ¼ b0(1 - Nv) þ mvNv.
Since we assume no co-infection, W does not contribute to the spread of dengue. The basic reproduction number is

R 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1b2khkv
mvðmh þ khÞðmv þ kvÞðgþ mhÞ

s
: (3.2)

This is proved in Appendix A. The basic reproduction number, R 0, is defined as the expected number of secondary cases
produced by a typical infection in a completely susceptible population E1 defined below. There is outbreak of the disease if
R 0 >1. The standard method of findingR 0 is the next generation matrix method (Van den Driessche andWatmough, 2002).
R 0 was estimated to be around 5 in (Sanches & Massad, 2016) for dengue outbreak. If we allow co-infection, then the basic
reproduction number should be smaller. One can argue that mv should be replaced by mvþ D and Bhv is smaller in (3.2) (Hughes
& Britton, 2013).

System (3.1) has five steady-states, Ei :¼ ðSih; Eih; Iih; Siv;Eiv; Iiv;WiÞ; i ¼ 1; :::;5. They are constant solutions of (3.1) and are
obtained by setting the right hand side of (3.1) to zero and finding all non-negative roots of the system of equations. To define
them, let

J :¼ b0
�
1� sf

�
� mv � D;

A1 :¼ mhðb1b2khkv � ðmh þ khÞðmv þ kvÞðmh þ gÞmvÞ;
A2 :¼ b2ðmh þ khÞðb1kv þ mhkv þ mhmvÞ;
A3 :¼ ðkv þ mvÞðb2khmh þ mvðgþ mhÞðkh þ mhÞÞ;

s :¼ shðDþ mvÞ � mvsf � D

sh
�
1� sf

� ;

B1 :¼ numerator of second component of E5;

B2 :¼ denominator of second component of E5;

B3 :¼ b1shkv
�
sf � 1

�
ðkv þ mvÞðb0 � mvÞðmv þ DÞ �

�
b2khmh þ gkhmv þ gmhmv þ khmhmv þ m2hmv

�
:

then,
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E1 :¼ ð1; 0; 0; 1; 0; 0; 0Þ;

E2 :¼
 
1; 0; 0; 0; 0; 0;

J�
b0 � mv

��
1� sf

�
!
;

E3 :¼
 
1; 0; 0;

Js
ðDþ mvÞðb0 � mvÞ

; 0; 0;

�
mvsf þ D

�
J

sh
�
b0 � mv

��
1� sf

��
mv þ D

�
!
;

E4 :¼
�
A3ðmh þ khÞ

A2kh
;

A1

A2kh
;

A1

ðgþ mhÞA2
;
ðmv þ kvÞðmh þ gÞmvA2

A3kvb1b2
;

mvA1

A3b1kv
;

A1

A3b1
; 0
�
;

E5 :¼
�
B3ðkh þ mhÞ

B2b1kv
;
B1
B2

;
B1kh

B2ðgþ mhÞ
;
B2mvðgþ mhÞðkv þ mvÞ

B3khb2
;
mvB1
B3

;
B1kv
B3

;

�
mvsf þ D

�
J

sh
�
1� sf

��
b0 � mv

��
mv þ D

�
!
:

Eh gþmh 1 ShEv
The constants B1 and B2 are defined in Appendix D. One can easily verify E5 by showing that Ih
¼ kh

; ShSv ¼ R 2
0
; Eh

¼
mvðkhþmhÞ

b1kv
and Iv

Ev
¼ kv

mv
. Since B3 <0, we need B1;B2 to be both negative in order for E5 to exist. This is not always true for pa-

rameters chosen according toTable 2. Note thatR 0 >1 is equivalent to A1 >0. The last four components of E1 and E4 add up to

1. The last four components of E2; E3 and E5 add up to J
ð1�sf Þðb0�mvÞ. For the rest of this paper, we assume that

b0
�
1� sf

�
�mv � D>0; (H1)

shðDþmvÞ�mvsf � D>0: (H2)
Condition (H1) is stronger than b0 >mv, which was used to show that bðNvÞ>0 for t >0 if it holds at time t ¼ 0. Condition
(H2) will be satisfied if CI is 100% successful (sh ¼ 1). Otherwise, it will depend on the reduction in birthrate of Wolbachia-
infected mosquitoes. If the birthrate is very low (sfz1), then (H2) may not be satisfied. (H1) is equivalent to J > 0 and (H2)
implies that s>0.

Lemma 3.1. (i) B1 is negative for sufficiently small mh if

R 2
0 >

ðb0 � mvÞðmv þ DÞ
sJ

: (3.3)
(ii) B2 is negative for sufficiently small mh.

Proof. Through some calculations, one can obtain

B1 ¼
�
t1 þ t2mh þ t3m

2
h

�
mh;

t1 ¼ sh
�
1� sf

�
½khgmvðkv þ mvÞðb0 � mvÞðmv þ DÞ � khkvb1b2sJ�;

t2 ¼ ðgþ khÞt3;
t3 ¼ mvsh

�
1� sf

�
ðkv þ mvÞðb0 � mvÞðmv þ DÞ:
Then (i) follows from t1 and (3.2). Again, through some calculations, we can show that

B2 ¼ khbvðkh þmhÞ
h
B20 þB21mh þO

�
m2h

�i
;

where B20 ¼ �bhkvJðshðDþmvÞ�mvsf �DÞ and B21 ¼ shðsf �1Þðkv þmvÞðb0 �mvÞðmv þDÞ are both negative from our hypotheses
above. Thus (ii) holds. The proof of the lemma is completed.

Note that if sh ¼ 1, then condition (3.3) becomes

R 2
0 >

b0 � mv

b0
�
1� sf

�
� mvsf � D

mv þ D
mv

:
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Lemma 3.2. The set Rþ ¼ fSh >0; Eh >0; Ih >0; Sv >0; Ev >0; Iv >0; W >0g is invariant under the flow (3.1). The same is
true for the set where all components are positive except W ¼ 0.

Proof. Suppose Sh(t1) ¼ 0. Then Ṡh(t1) ¼ mh > 0 so Sh immediately turns around and reenter Rþ. The same argument may be
applied to the other equations except for W. But the system with no Wolbachia is an invariant set so W(t) cannot be zero in finite
time t. The proof of the lemma is completed.

Lemma 3.3. Let (H1) be replaced by the weaker condition b0 >mv. Suppose there is no Wolbachia-infected mosquito, then the
reduced system has three possible steady-states: ~E1 ¼ ½1;0;0;0;0;0�; ~E2 ¼ ½1;0;0;1;0;0� and ~E3, which is the same as E4 without
the last component. ~E1 is always unstable. If R 0 <1, then ~E2 is stable and ~E3 does not exist. If R 0 >1, then ~E2 is unstable and ~E3
exists and is locally asymptotically stable.

Proof. The eigenvalues of ~E1 are f � mh; � mv; � kh � mh; � kv � mv; � g � kh;b0 � mvg. From our assumption ~E1 is unstable. The
characteristic polynomial at ~E2 is ðl þ mhÞðl þ b0 � mvÞpðlÞ, where pðlÞ ¼ l4 þ b3l

3 þ b2l
2 þ b1lþ b0. It can be shown that

b0 ¼ �b1b2k1k2 þ m2ðk2 þ m2Þðk1 þ m1Þðgþ m1Þ;
b1 ¼ g k1 k2 þ 2 g k1 m2 þ g k2 m1 þ g k2 m2 þ 2 g m1 m2 þ g m22;

þk1 k2 m1 þ k1 k2 m2 þ 2 k1 m1 m2 þ k1 m22 þ k2 m21 þ 2 m1 m2 k2 þ 2 m21m2 þ 2 m1 m22;

b2 ¼ g ðk1 þ k2Þ þ g m1 þ 2 g m2 þ k1 k2 þ k1 m1 þ 2 k1 m2 þ 2 k2 m1 þ k2 m2 þ m21 þ 4 m1 m2 þ m22;

b3 ¼ gþ k1 þ k2 þ 2 m1 þ 2 m2:
According to the Routh-Hurwitz criterion (Edelstein-Keshet, 2005), ~E2 is stable if and only if b0; b1;b2; b3 are all positive and
D ¼ ðb1b2 � b0b3Þb3 � b21b4 >0. Now D ¼ w1 þ w2, where

w2 ¼ ðk2 þ 2 m2Þðk1 þ m1 þ m2Þðk1 þ k2 þ m1 þ m2Þðgþ m1 þ m2Þðgþ k2 þ m1 þ m2Þðgþ k1 þ 2 m1Þ ;
w1 ¼ b1 b2 k1 k2 ðgþ k1 þ k2 þ 2 m1 þ 2 m2Þ2:

Thus, ~E2 is stable if and only if b0 >0, or equivalently, R 0 <1. Finally, since E4 is stable, ~E3 must also be stable. The proof of the
lemma is completed.

The system will have no Wolbachia-infected mosquitoes if u(t) ¼ 0 and there is no Wolbachia-infected mosquitoes initially.

Lemma 3.4. Suppose R 0 >1;B1 <0 and B2 <0, then all five steady-states exist. E1; E3; E5 are unstable and E2; E4 are locally
asymptotically stable for sufficiently small mh.

Proof. The existence part is obvious from the definitions above. The stability part is more delicate and is given in Appendix B. The
idea,which originates from (Chung & Lui, 2016), is when mh ¼ 0, the characteristic polynomial at E4 has two zero roots.We show
that when we turn on mh >0, these two zero eigenvalues move to the negative complex plane. The proof of the lemma is completed.

The five steady-states defined above represent possible long-term behavior of the human and mosquito populations. For
example, if solutions of (3.1) converge to E1 as time goes to infinity, then eventually the population consists of mostly susceptible
humans and mosquitoes. Assuming that there are no periodic solutions, Lemma 3.4 implies that depending on the initial conditions,
solutions of (3.1) approach either E2 or E4 as time goes to infinity. This bistability phenomenon is quite interesting and is similar to
strong competition in population ecology (Edelstein-Keshet, 2005).

The steady-state E2 is desirable because all mosquitoes carryWolbachia; Sv, Ev and Iv components of E2 are all zero. On the other
hand, E4 is undesirable because nomosquitoes carryWolbachia; the last component of E4 is 0. Since E4 exists if there is an epidemic,
solutions of (3.1)may approach it depending on the initial condition. The idea here is to releaseWolbachia-infectedmosquitoes into
the mosquito population until the percentage of Wolbachia-infected mosquitoes is high enough to sustain itself. Once the release
stops, the solutions of (3.1) will converge to E2 as time goes to infinity, thus preventing the spread of dengue.

We give an example to illustrate the bistability phenomenon. Let Bvh ¼ 0.60715, Bhv ¼ 0.15273, k ¼ 0.95269, Nh/K ¼ 3, m1 ¼
0.00159, m2 ¼ 0.07307, g ¼ 0.15598, k1 ¼ 0.29078, k2 ¼ 0.41109, b0 ¼ 0.7233919, D ¼ 0.06532, sh ¼ 1.00000, sf ¼ 0.12713, and T
¼ 5 years. Then,

y1ð0Þ ¼ ½0:993398 0:000000 0:006602 0:220499 0:000000 0:002870 0:062834�;
y1ðTÞ ¼ ½0:055014 0:005133 0:009472 0:981487 0:002794 0:015719 0:000000�;
E4 ¼ ½0:055014 0:005133 0:009472 0:981487 0:002794 0:015719 0:000000�;
y2ð0Þ ¼ ½1:004709 0:002305 0:008443 0:001948 0:002259 0:001707 0:870846�;
y2ðTÞ ¼ ½0:995562 0:000000 0:000000 0:000000 0:000000 0:000000 0:868570�;
E2 ¼ ½1:000000 0:000000 0:000000 0:000000 0:000000 0:000000 0:868570� :

From the above, we see that after 5 years, solutions for the first set of initial conditions converge to E4, while solutions for the
second set of initial conditions converge to E2. Distance between y1(T) and E4 is approximately 4.0223 � 10-7, while distance
between y2(T) and E2 is approximately 0.0043833. Thus, which stable steady-state solutions converge to depends on the initial
conditions.



H. Zhang, R. Lui / Infectious Disease Modelling 5 (2020) 142e160 149
4. Optimal control

In this section, we assume that u(t) is a piecewise continuous function that lies between 0 and a > 0. We want to find the
control that minimizes the total number of infected humans and cost of releasing Wolbachia over T days.

Let J1½u� ¼
R T
0 AI2hðtÞ N2

h þ BuðtÞ Kdtþ J1ðxðTÞÞ, where A;B are positive constants. Dividing J1 by the constant AN2
h þ BK ,

we can reduce J1 to the form

J½u� ¼
ZT
0

qI2hðtÞþ ð1� qÞuðtÞ dt þJðxðTÞÞ; (4.1)

where q ¼ AN2
h=ðAN2

h þ BKÞ; 0< q<1, and 0 � u � a.
Let x¼ [Sh, Eh, Ih, Sv, Ev, Iv, W]. Given a set of parameters chosen according toTable 2, wewant to find uwhichminimizes J[u].

Pontryagin minimum principle gives a necessary condition for finding such a minimizer (Lenhart & Workman, 2007). To
implement Pontryagin minimum principle, we first form the Hamiltonian:

H ¼ qI2hðtÞ þ ð1� qÞuðtÞ
þl1ðtÞ½mh � b1ShIv � mhSh�
þl2ðtÞ½b1ShIv � khEh � mhEh�
þl3ðtÞ½khEh � gIh � mhIh�
þl4ðtÞ½bðNvÞð1� shpÞðSv þ Ev þ IvÞ � b2SvIh � mvSv�
þl5ðtÞ½b2SvIh � kvEv � mvEv�
þl6ðtÞ½kvEv � mvIv�
þl7ðtÞ

h
bðNvÞ

�
1� sf

�
W � ðmv þ DÞW þ uðtÞ

i
;

(4.2)

where the adjoint variable, l(t), satisfies the equations

dlj
dt

¼ � vH
vxj

; j ¼ 1; 2; :::;7; (4.3)

and terminal transversality condition l(T) ¼ Jx(x(T)). Explicit form of equation (4.3) is given in Appendix C.
The optimal control, u*(t), satisfies the equation 0 ¼ vH

vu. Since H is linear in u, this equation yields no information on u. In
order tominimizeH, we set u to be themaximum (¼ a) if the coefficient of u inH, j(t)¼ (1 - q)þ l7(t), is negative and set u¼ 0
otherwise. The result is a bang-bang control and j(t) is called the switching function.

To solve this set of necessary conditions numerically, we use the method of forward backward sweep (Lenhart &
Workman, 2007). We start with a guess control, say u1(t) ¼ 0, and solve the state equation (3.1) with u ¼ u1 forward in
time until T. We then solve (4.3) backward in time with the adjoint variable satisfying the transversality condition at time T.
Then we update u1 to u2 by setting it equals to either 0 or a depending on the sign of the switching function. This is one
iteration and thenwe repeat the process. We set an exit criterion and in our case we exit the loop whenwe reach 20 iterations
or when an iteration does not produce any changes in u. Since E2 is the desirable stable steady state, we want to choose the
terminal condition, J, such that the solution under the optimal control is close to E2 at time T. Hence, we let JðxðTÞÞ ¼ �
aWðTÞ; a > 0.

The choice of a bang-bang control is by design. In actual application,Wolbachia is collected from other insects such as fruit
flies and injected into the larvae of Aedes in a laboratory. When the mosquitoes hatch, theWolbachia-infected mosquitoes are
released into the wild (Soares, 2016). Not all larvae are successfully infected with Wolbachia this way. This process may also
need to be repeated, such as in example 2.

There are a large number of papers on applying optimal control to control the spread of dengue but they deal with
different aspects of the problem. For example, in a recent paper (Agusto & Khan, 2018), the authors used vaccination and
insecticides as control and include an immunized class in the model. In the paper (Campo-Duarte, Doris, Vasilieva, Cardona-
Salgado, & Svinin, 2018), the authors studied a sex-structured model which describes the interaction between uninfected
mosquitoes and those infected with thewMelPop strain ofWolbachia. The purpose of their study is to find a trade-off between
reaching replacement by Wolbachia and minimum time with minimum cost of control effort. Their model also exhibits
bistability and they conclude that periodic release is necessary to establishWolbachia in mosquito populations. It is unclear if
Pontryagin maximum principle still holds if we replace bounded control by periodic control. Belowwe present two examples
using our method.

Example 1. Parameter values are given in Table 3. Initial condition is
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xð0Þ¼ ½1; 0; 0; 0:24284960; 0; 0:04587122; 0:01345308�:
Basic reproduction number isR 0 ¼ 1.71156218. If there is no control, then after T¼ 2 years, x(T)¼ [0.06479510, 0, 0, 1, 0, 0, 0]

so most humans belong to the recovered class. Note that mh is relatively small so Sh has not reached its equilibrium after 2
years.

We perform forward-backward sweep. Simulations stopped after 6 iterations. The graph of the optimal control obtained
numerically is given in Fig. 2.

The limit of the solutions of (3.1) after 2 years with optimal control and modified optimal control are:

E2 ¼ ½1:00000000; 0; 0; 0; 0; 0; 0:88297444�;
xðTÞ ¼ ½0:33468947; 0; 0; 0; 0; 0; 0:93197956�;
xsðTÞ ¼ ½0:33468947; 0; 0; 0; 0; 0; 0:88297456�:
Solutions of (3.1) with and without optimal control for this set of parameter values are given in Fig. 3.

Example 2. In this example u*s attains the value a twice, see Fig. 4. Parameter values are given in Table 6. Initial condition is

xð0Þ¼ ½1; 0; 0; 0:24361241; 0; 0:03118208; 0:02162989�:
Basic reproduction number is R 0 ¼ 7.45627458. After T ¼ 2 years,

E2 ¼ ½1:00000000; 0; 0; 0; 0; 0; 0:87543420�;
xðTÞ ¼ ½0:02589060; 0; 0; 0; 0; 0; 0:97307461�;

xsðTÞ ¼ ½0:02589060; 0; 0; 0; 0; 0; 0:87543425�:
Solutions of (3.1) with and without optimal control for this set of parameter values are given in Fig. 5. It should be pointed
out that in our simulations, for a small set of parameter values, the control fails to drive the solutions close to E2 at the end of 2
years.

5. Sensitivity analysis

In this section, we conduct uncertainty and sensitivity analysis using Latin Hypercube Sampling (LHS) (Blower &
Dowlatabadi, 1994; Marino, Hogue, Ray, & E Kirschner, 2008; McKay, Beckman, & Conover, 1979) and partial rank correla-
tion coefficients (PRCC) (Blower& Dowlatabadi, 1994; Kendall, 1942; Marino et al., 2008) to examine the variability of various
important outcomes and their associationwith input variables. LHS, or stratified samplingwithout replacement, is an efficient
implementation of Monte Carlo simulation that requires fewer samples than random sampling. PRCC is partial correlation
coefficient (PCC) (Fisher, 1924; Marino et al., 2008) calculated on the ranks instead of values. PCC is the correlation between a
Fig. 2. Graph of optimal control u*ðtÞ on the left and modified optimal control u*s ðtÞ on the right. The modified optimal control is obtained by setting the last part
of u*ðtÞ to zero.



Fig. 3. Graph of solutions of (3.1) with (red) and without (blue) control u*s . Parameters values are given in Table 3. Maximum values of infected humans, Ih, are
0.1088 and 0.1251 and occur on days 18 and 30 for the cases with and without control, respectively. Maximum values of infected mosquitoes, Iv, are 0.0459 and
0.0492 and occur on days 1 and 43 for the cases with and without control, respectively.

Fig. 4. Graph of optimal control u*(t) on the left and modified optimal control u*s ðtÞon the right. The modified optimal control is obtained by setting the last part
of u*(t) to zero. Unlike the first example, the controls achieve the value a ¼ 0.0872 twice.
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given outcome and an input while discounting the linear effects of all other inputs. PCC measures the ‘genuine’ association
between the outcome and the input by excluding the impact of other inputs on the outcome and input of interest. When
performed on the ranks, PRCC is robust against potentially non-linear effects.

To perform uncertainty analysis, we use LHS to generate 17 input variables 1, 000 times independently from uniform
distributions with ranges defined in Table 2. These 17 input variables include those from Table 2 and initial conditions Sv,0, Iv,0



Fig. 5. Graph of solutions of (3.1) with (red) and without (blue) optimal control u*s . Parameters values are given in Table 6. Maximum values of infected humans,
Ih, are 0.3943 and 0.3200 and occur on days 21 and 24 for the cases with and without control, respectively. Maximum values of infected mosquitoes, Iv, are 0.5637
and 0.2281 and occur on days 31 and 40 for the cases with and without control, respectively.

Table 6
Parameter values for example 2 with a ¼ 0.5.

b1¼ 1.08983733 b2 ¼ 0.32748506 k ¼ 0.73155980 K=Nh ¼ 2.55101907

mh ¼ 0.00004209 mv ¼ 0.05244734 g ¼ 0.10915675 kh ¼ 0.25036073
kv ¼ 0.43447502 b0 ¼ 0.86062658 sf ¼ 0.02594910 sh ¼ 0.92287205
D ¼ 0.09669820 a ¼ 0.08719785 R 0 ¼ 7.45627458 q ¼ 0.90
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andW0 which are randomly chosen from the intervals (0, 1), (0, 0.05) and (0, 0.05), respectively. Because of the conditions in
Lemma 3.4, only 798 sets of datawere selected.With the simulated data, we summarize the descriptive statistics of important
outcomes and use PRCC and the corresponding t-test to determine the sensitivity of the outcomes to the input variables.

Fig. 6 shows that the empirical distributions ofR 0, max Ih, andmax Iv are all right-skewed. This means that the majority of
the values lie on the left side of the scale. An overly right-skewed distribution means that even thoughmedian is smaller than
the mean, the chance of getting large outcomes, i.e., the right-tail probability, is not negligible.

Fig. 7 shows the PRCC between the state variables at the end of two years and maximum values of infected humans and
infected mosquitoes against the 14 parameters given in Table 2. We observe that (1) Eh, Ih, Ev and Iv are sensitive to the same
set of inputs: Bvh, Bhv, mv, g and a. The magnitude of the associations for each input remains stable across the outcomes. (2) Sh
and Sv are influenced by Bvh, Bhv, mv, kh, sf, sh, D and a. These associations are in opposite directions. It is also worth mentioning
that mh appears to be associated with Sh but not with Svwhile g is associatedwith Sv but not with Sh. (3) The outcome variables
max Ih and max Iv are strongly associated with Bvh, Bhv, mv and a but only weakly associated with kh, kv, b0, sh and D. The
parameter g has large influence over max Ih but almost no influence over max Iv.

The scatter plots of the top PRCC in Fig. 8 show that this approach indeed identifies the input variables that have large
impact on the outcomes. We observe that as in (1) above, Eh, Ih, Ev and Iv are similarly correlated with mv since they are, in fact,
highly correlated with each other. The large clusters near the bottom in their PRCC plots with mv correspond to the cases that



Fig. 6. Empirical densities and summary statistics of R 0 (left), max Ih (center), and max Iv (right).

Fig. 7. The PRCC between input variables and outcomes for model (3.1). The PRCCs that pass the statistical significance threshold of 0.01 are labeled.
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at the end of two years, Eh, Ih, Ev and Iv are equal to 0. Occasionally, the release method fails to drive the solutions close to E2
and they are partially responsible for the small clusters near the top left of the scatter plots. These clusters also show that a
relatively small mv can increase the likelihood of getting large outcomes, i.e., a failed optimal control.

Fig. 9 shows that Bvh, mv and a are significantly associated with all the outcomes. On the other hand, k, K/Nh and b0 are not
associated with any of the outcomes. From (2.2), b0 is the fecundity of mosquito when the density is very low and its value is
estimated. Our global sensitivity analysis also implicates that death-rate of mosquitoes, mv, is the most important factor in
controlling the spread of dengue.
6. Discussions

Dengue is a mosquito-borne viral infectionwhich normally causes flu-like symptoms that go away in a few days. However,
occasionally, it may lead to somethingmore serious called severe dengue, which is a leading cause of illness and death among
children in some Asian and Latin American countries (WHO, 2019).

Wolbachia is a bacterium commonly found in insects but not in Ae. aegypti, the mosquito that carries the dengue virus.
There is strong evidence thatWolbachia-infected Ae. aegypti can resist infection by dengue virus. In the paper (Ferguson et al.,



Fig. 8. The scatter plots of the largest PRCC between each outcome and input variables for model (3.1). Each dot represents a pair of residuals from regressing the
outcome and the input variable against other input variables on rank values.
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2015), the authors performed field experiments and used a mathematical model to conclude that the strain of Wolbachia,
wMelPop, can reduce the basic reproduction number of dengue transmission by 66e75 percent. This strain of Wolbachia is
considered to be the best blocker of dengue (Ant, Herd, Geoghegan, Hoffmann, & Sinkins, 2018).

The purpose of this paper is to usemathematical modeling and optimal control theory to find a releasemethod that will be
effective in controlling the spread of dengue. Without release, our model exhibits bistability, which is interesting because
absent Wolbachia-infected mosquito, there is only one interior steady-state which is stable when it exists, see Lemma 3.3.

Our release of Wolbachia-infected mosquitoes is modeled by the forcing function u(t) in (2.1). We employ optimal control
theory to find u(t) that will drive the solutions of (2.1) close to the stable steady-state, E2, at the end of two years. When the
release stops, since E2 is locally asymptotically stable, solutions of (2.1) will converge to E2 as time goes to infinity. All
mosquitoes are then infected with Wolbachia, preventing the spread of dengue.

The control is optimal in the sense that it minimizes a functional within certain class of functions. However, it is by no
means the best release method. For example, if medical resources are limited in a community, then one might want to find a
control that minimizes max Ih. It is not clear if such a control can be found by minimizing a functional. In practice, it is not
possible to continuously adjust the amount of release. Hence, we design a functional so that the control is a bang-bang
control; its value is either zero or a > 0.

The last part of our paper deals with uncertainty and sensitivity analysis. Uncertainty analysis means quantifying vari-
ability of the output due to the variability of the input; in other words, propagation of error. For us, the uncertainty of input
comes from random selection of the 14 model parameters each assume to be uniformly distributed on an interval suggested
by experimental data. Some researchers chose to use other distributions such as triangular or normal distribution, or a mix of
them. The uncertainty of our output is quantified by the probability distribution function (pdf) of the outcome variables we
want to measure plus their associated statistics.



Fig. 9. The heatmap for the statistical significance of PRCC between input variables and outcomes under model (3.1).
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There is a large amount of work done on sensitivity analysis (Chitnis, Hyman, & Cushing, 2008; Saltelli et al., 2008; Wu,
Dhingra, Gambhir, & Remais, 2013). We use PRCC to perform global sensitivity analysis on the 14 parameters and find out
which parameters have strong influence on the outcomes we are interested in. They are reported in Figs. 7 and 9. The
parameter values that we estimated are b0, sf, sh and D. Fig. 9 shows that b0, sf, sh are not strongly associated with any outcome
variables except sf, sh are associated with Sv.

It was pointed out in (Marino et al., 2008) that PRCC may produce erroneous results if the outcome variables we measure
do not depend monotonically on the model parameters. In such cases, a different test, eFAST (Extended Fourier Amplitutde
Sensitivity Test), is necessary. However, from the descriptions given in Table 2, it is reasonable to assume that the mono-
tonicity conditions are satisfied.

The idea in this paper may be applicable to other mosquito-borne diseases such asmalaria and Zika. In improve ourmodel,
we plan to introduce rainfall into our model because mosquito aquatic stages all require water. We also plan to distinguish
between male and female mosquitoes to better model CI and include multiple serotype in our next model.

Dengue is considered as the world’s fastest spreading tropical disease. It is estimated about 50% of the world’s population
is at risk of getting dengue (WHO, 2019). Since 2011, the World Mosquito Program has been breeding Wolbachia-carrying
mosquitoes and in partnerships with local communities release them into areas affected by mosquito-borne diseases. This
method is self-sustaining in almost all international project sites operated by the World Mosquito Program. This agrees with
our analysis in Section 3, as solutions of our model converge to the stable steady-state, E2, even after the release is stopped.
The results in Section 4 may be useful in finding the optimal way to release the Wolbachia-carrying mosquitoes. Hopefully,
this method can be safe and effective to stop A. aegypti from spreading viruses such as dengue, Zika, chikungunya and yellow
fever to humans.
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Appendix

A. Proof of (3.2).
We follow the recipe in (Van den Driessche and Watmough, 2002) and write the model equation as

_Eh ¼ b1ShIv � khEh � mhEh;

_Ev ¼ b SvI � kvEv � m Ev;
2 h v

_I ¼ k E � gI � m I ;
h h h h h h

_Iv ¼ kvEv � m Iv:
v
Let xi ¼ F iðxÞ � V iðxÞ; x ¼ ðEh; Ev; Ih; IvÞ, where F i is rate of new infection in compartment i andV i is rate of transfer
of infected humans and mosquitoes in and out of compartment i.

F ¼

0
B@

b1ShIv
b2SvIh

0
0

1
CA; V ¼

0
B@

khEh þ mhEh
kvEv þ mvEv

gIh þ mhIh � khEh
mvIv � kvEv

1
CA:
We then compute the Jacobian of F and V :

JF ¼

0
BBBBB@

0 0 0 b1Sh

0 0 b2Sv 0

0 0 0 0

0 0 0 0

1
CCCCCA; JV ¼

0
BBBBB@

kh þ mh 0 0 0

�kh kv þ mv 0 0

0 0 gþ mh 0

0 �kv 0 mv

1
CCCCCA;

ðJF ÞðJV Þ�1 ¼

0
BBBBBBBBBBBB@

0
b1Shkv

ðkv þ mvÞmv
0

b1Sh
mv

b2Svkh
ðkh þ mhÞðmh þ gÞ 0

b2Sv
gþ mh

0

0 0 0 0

0 0 0 0

1
CCCCCCCCCCCCA
:

The basic reproduction number, R 0, is the spectral radius of the matrix ðJF ÞðJV Þ�1 evaluated at the disease-free stage
Sh ¼ 1, Sv ¼ 1. This will yield formula (3.2).

B. Proof of Lemma 3.4.
A steady-state is locally asymptotically stable if all the eigenvalues of the Jacobian matrix evaluated at the steady-state are

negative or have negative real-parts. Otherwise, the steady-state is said to be unstable (Edelstein-Keshet, 2005). Eigenvalues
are the roots of the characteristic equation of the Jacobian matrix. Let Ji be the Jacobian matrix evaluated at Ei. To avoid
excessive algebra, we assume that sh ¼ 1 so that s > 0. Condition J > 0 is equivalent to

b0 >
mv þ D
1� sf

: (7.1)
The following calculations were performed using the mathematical software Maple.

Lemma 7.1. E1; E3 and E5 are unstable, while E2 and E4 are locally asymptotically stable for sufficiently small mh > 0.

Proof.

(i) Eigenvalues of J1 are f � mh; � ðb0 � mvÞ; � D � mvsf g, which are all negative, plus the roots of a fourth degree polynomial.
The leading coefficient of this polynomial is one and the constant term is t0 :¼ � qþ OðmhÞ, where
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q : ¼ b1b2khkv � gkhkvmv � gkhm
2
v :

2
Now A1 ¼ q mh � OðmhÞ. Since we assume A1 >0 in order for E4 to exist, we have q>0 and t0 <0 for sufficiently small mh > 0.
Since t0 is the product of the eigenvalues of J1, one of these eigenvalues must be positive when mh is sufficiently small. Thus, E1 is
unstable.

(ii) The eigenvalues of J2 are f � mh; � mv; � mv; � mh � g; � mh � kh; � mv � kv; � Jg,which are all negative. Thus, E2 is locally
asymptotically stable.

(iii) The characteristic polynomial of J3 is ðl þ mhÞ p1ðlÞ p2ðlÞ, where p1ðlÞ is a quadratic polynomial and p2ðlÞ is fourth degree
polynomial. The leading term of p1ðlÞ is ð1� sf Þðmv þ DÞ2 >0 and the constant term is � mvð1 � sf Þðmv þ DÞðmvsf þ DÞJ < 0.
Thus, p1ðlÞ has one positive and one negative root and E3 is unstable.

(iv) The characteristic polynomial of J4 when mh ¼ 0 is

l2ðlþ b0 �mvÞ
�
mvsf þDþ l

�
p3ðlÞ:

where p3ðlÞ is a third degree polynomial. Using Routh-Hurwitz stability criterion (Edelstein-Keshet, 2005), one can show that the

roots of p3ðlÞ are either negative or have negative real parts. We only need to determine the sign of the real parts of the two zero
roots (l2) when mh turns positive. To accomplish that, we let the characteristic polynomial of J4 be

p4ðlÞ : ¼ l7 þ a6ðmhÞl6 þ…þ a1ðmhÞlþ a0ðmhÞ:

2
We look for a pair of complex conjugate roots of (7.3), which vanish when mh ¼ 0. Let aiðmhÞ ¼ ai0 þ ai1mh þ ai2mh::. It can be
shown that ai0s0 for i ¼ 2; :::; 6 while

a0ðmhÞ ¼ a01 mh þ oðmhÞ; a01s0;
a1ðmhÞ ¼ a11 mh þ oðmhÞ; a11s0:

ffiffiffiffiffiffip
0
B 3

2

1
C
Let l :¼ mh l1 þ mh l2 þ O@mhA. Substitute this into p4ðlÞ ¼ 0 and expanding in terms of mh,

p4 ¼
�
a20l

2
1 þ a01

�
mh þ

�
a30l

3
1 þ2a20l1l2 þ a11l1

�
m

3
2
h þ higher order terms of mh:

therefore,
l21 ¼ �a01
a20

¼ �
�

q

gkhkv þ 2gkhmv þ gkvmv þ gm2v þ khkvmv þ khm
2
v

�
;

l2 ¼ �
 
a30l

2
1 þ a11
2a20

!
¼ a30a01 � a11a20

2a220
:

Since q>0, l1 is pure imaginary. The sign of l2 is determined by the sign of its numerator. Expanding the numerator as a series in
b2, one can show that numerator ¼ Aþ B b2, where B<0 and A;B are too complicated to be displayed here. From q> 0, we have
b2 > ðgkvmv þgm2v Þ=ðb1kvÞ so that

numerator of l2 <Aþ B
gkvmv þ gm2v

b1kv

¼ �ðb0 � mvÞ2
�
mvsf þ D

�2�
gkhkv þ 2gkhmv þ gkvmv þ gm2v þ khkvmv þ khm

2
v

�2
:

therefore, l2 <0 and l2 in (7.2) turns into a pair of complex conjugate eigenvalues with negative real parts when mh turns positive.
E4 is locally asymptotically stable when mh >0 is sufficiently small.

(v) When mh ¼ 0, the characteristic polynomial of J5 is of the form l2 p5ðlÞ p6ðlÞ, where p5ðlÞ is a quadratic polynomial with
leading coefficient ðmv þ DÞ2 and constant term � mvðmvsf þ DÞðmv þ DÞJ <0. Thus, p5ðlÞ has one positive and one negative
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root. It can be shown using Routh-Hurwitz stability criterion that all roots of p6ðlÞ are negative or have negative real parts.
One can use the method presented in (iv) to investigate the behavior of l2 when mh >0 but J5 has at leaset one positive
eigenvalue and E5 is therefore unstable. The proof of the lemma is complete.

C. Explicit form of the Adjoint Equation

l1’ðtÞ ¼ �vH
vSh

¼ l1ðtÞb1Iv þ l1ðtÞmh � l2ðtÞb1Iv;

l2’ðtÞ ¼ �vH
vEh

¼ l2ðtÞðkh þ mhÞ � l3ðtÞkh;

l3’ðtÞ ¼ �vH
vIh

¼ �2qIh þ l3ðtÞðgþ mhÞ þ l4ðtÞb2Sv � l5ðtÞb2Sv;

l4’ðtÞ ¼ �vH
vSv

¼ �l4ðtÞ
"
b’ðNvÞð1� shpÞðSv þ Ev þ IvÞ þ bðNvÞ

 
sh
W

N2
v

!
ðSv þ Ev þ IvÞ

#

�l4ðtÞ½ bðNvÞð1� shpÞ � b2Ih � mv� � l5ðtÞb2Ih � l7ðtÞb’ðNvÞ
�
1� sf

�
W ;

l5’ðtÞ ¼ �vH
vEv

¼ �l4ðtÞ
"
b’ðNvÞð1� shpÞðSv þ Ev þ IvÞ þ bðNvÞ

 
sh
W

N2
v

!
ðSv þ Ev þ IvÞ

#

�l4ðtÞbðNvÞð1� shpÞ þ l5ðtÞðkv þ mvÞ � l6ðtÞkv � l7ðtÞb’ðNvÞ
�
1� sf

�
W ;

l6’ðtÞ ¼ �vH
vIv

¼ l1ðtÞb1Sh � l2ðtÞb1Sh

�l4ðtÞ
"
b’ðNvÞð1� shpÞðSv þ Ev þ IvÞ þ bðNvÞ

 
sh
W

N2
v

!
ðSv þ Ev þ IvÞ

#

�l4ðtÞbðNvÞð1� shpÞ þ l6ðtÞmv � l7ðtÞb’ðNvÞ
�
1� sf

�
W ;

l7’ðtÞ ¼ � vH
vW

¼ �
(
l4ðtÞðSv þ Ev þ IvÞ

"
b’ðNvÞð1� shpÞ þ bðNvÞ

 
� sh

Sv þ Ev þ Iv
N2
v

!#)

�l7ðtÞ
h
b’ðNvÞ

�
1� sf

�
W þ bðNvÞ

�
1� sf

�
� ðmv þ DÞ

i
:

D. Explicit form of B1 and B2 in the definition of E5.
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B1 :¼ m1

�
Db0b1b2k1k2sf sh � Db0gk1k2m2sf sh � Db0gk1m

2
2sf sh � Db0gk2m1m2sf sh

�Db0gm1m
2
2sf sh � Db0k1k2m1m2sf sh � Db0k1m1m

2
2sf sh � Db0k2m

2
1m2sf sh

�Db0m
2
1m

2
2sf sh þ Dgk1k2m

2
2sf sh þ Dgk1m

3
2sf sh þ Dgk2m1m

2
2sf sh

þDgm1m
3
2sf sh þ Dk1k2m1m

2
2sf sh þ Dk1m1m

3
2sf sh þ Dk2m

2
1m

2
2sf sh

þDm21m
3
2sf sh � b0b1b2k1k2m2s

2
f þ b0b1b2k1k2m2sf sh � b0gk1k2m

2
2sf sh

�b0gk1m
3
2sf sh � b0gk2m1m

2
2sf sh � b0gm1m

3
2sf sh � b0k1k2m1m

2
2sf sh

�b0k1m1m
3
2sf sh � b0k2m

2
1m

2
2sf sh � b0m

2
1m

3
2sf sh þ gk1k2m

3
2sf sh

þgk1m
4
2sf sh þ gk2m1m

3
2sf sh þ gm1m

4
2sf sh þ k1k2m1m

3
2sf sh

þk1m1m
4
2sf sh þ k2m

2
1m

3
2sf sh þ m21m

4
2sf sh þ D2b1b2k1k2sh

�Db0b1b2k1k2sf � Db0b1b2k1k2sh þ Db0gk1k2m2sh þ Db0gk1m
2
2sh

þDb0gk2m1m2sh þ Db0gm1m
2
2sh þ Db0k1k2m1m2sh þ Db0k1m1m

2
2sh

þDb0k2m
2
1m2sh þ Db0m

2
1m

2
2sh � Db1b2k1k2m2sf þ 2Db1b2k1k2m2sh

�Dgk1k2m
2
2sh � Dgk1m

3
2sh � Dgk2m1m

2
2sh � Dgm1m

3
2sh

�Dk1k2m1m
2
2sh � Dk1m1m

3
2sh � Dk2m

2
1m

2
2sh � Dm21m

3
2sh

þb0b1b2k1k2m2sf � b0b1b2k1k2m2sh þ b0gk1k2m
2
2sh þ b0gk1m

3
2sh

þb0gk2m1m
2
2sh þ b0gm1m

3
2sh þ b0k1k2m1m

2
2sh þ b0k1m1m

3
2sh

þb0k2m
2
1m

2
2sh þ b0m

2
1m

3
2sh � b1b2k1k2m

2
2sf þ b1b2k1k2m

2
2sh

�gk1k2m
3
2sh � gk1m

4
2sh � gk2m1m

3
2sh � gm1m

4
2sh � k1k2m1m

3
2sh

�k1m1m
4
2sh � k2m

2
1m

3
2sh � m21m

4
2sh � D2b1b2k1k2 þ Db0b1b2k1k2 � Db1b2k1k2m2

�

B :¼ b k
�
k þ m

��
Db b k s s þ Db k m s s þ Db m m s s � Dk m m s s
2 2 1 1 1 0 1 2 f h 0 2 1 f h 0 1 2 f h 2 1 2 f h

�Dm1m
2
2sf sh � b0b1k2m2s

2
f þ b0b1k2m2sf sh þ b0k2m1m2sf sh

þb0m1m
2
2sf sh � k2m1m

2
2sf sh � m1m

3
2sf sh þ D2b1k2sh

�Db0b1k2sf � Db0b1k2sh � Db0k2m1sh � Db0m1m2sh

�Db1k2m2sf þ 2Db1k2m2sh þ Dk2m1m2sh þ Dm1m
2
2sh

þb0b1k2m2sf � b0b1k2m2sh � b0k2m1m2sh � b0m1m
2
2sh

�b1k2m
2
2sf þ b1k2m

2
2sh þ k2m1m

2
2sh þ m1m

3
2sh

�D2b1k2 þ Db0b1k2 � Db1k2m2
�
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