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A spinal root avulsion is the most severe proximal peripheral nerve lesion possible.
Avulsion of ventral root filaments disconnects spinal motoneurons from their target
muscles, resulting in complete paralysis. In patients that undergo brachial plexus nerve
repair, axonal regeneration is a slow process. It takes months or even years to bridge the
distance from the lesion site to the distal targets located in the forearm. Following ventral
root avulsion, without additional pharmacological or surgical treatments, progressive
death of motoneurons occurs within 2 weeks (Koliatsos et al., 1994). Reimplantation
of the avulsed ventral root or peripheral nerve graft can act as a conduit for
regenerating axons and increases motoneuron survival (Chai et al., 2000). However, this
beneficial effect is transient. Combined with protracted and poor long-distance axonal
regeneration, this results in permanent function loss. To overcome motoneuron death
and improve functional recovery, several promising intervention strategies are being
developed. Here, we focus on GDNF gene-therapy. We first introduce the experimental
ventral root avulsion model and discuss its value as a proxy to study clinical neurotmetic
nerve lesions. Second, we discuss our recent studies showing that GDNF gene-therapy
is a powerful strategy to promote long-term motoneuron survival and improve function
when target muscle reinnervation occurs within a critical post-lesion period. Based upon
these observations, we discuss the influence of timing of the intervention, and of the
duration, concentration and location of GDNF delivery on functional outcome. Finally,
we provide a perspective on future research directions to realize functional recovery
using gene therapy.

Keywords: gene therapy, peripheral nerve injury, nerve regeneration, ventral root avulsion, axonal regeneration

INTRODUCTION

Root avulsion lesions are typically part of a brachial plexus traction injury which occurs during
traffic accidents and complicated childbirth. Following an avulsion lesion, the rupture of nerve root
filaments from the surface of the spinal cord leads to a combined central and peripheral nervous
system lesion. This lesion is often not limited to only one nerve root, but consists of the avulsion
of multiple roots. Despite neurosurgical repair, the degree of recovery of function in patients
suffering a brachial plexus lesion often remains poor and results in lifelong dysfunction and pain.
Thus, in order to regain useful function following neurosurgical repair, multiple supplementary
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regenerative treatment strategies are required. Here, we will focus
on GDNF gene therapy while other intervention strategies have
been discussed elsewhere (Chu and Wu, 2009; Carlstedt, 2010;
Eggers et al., 2016).

THE VALUE OF THE VENTRAL ROOT
AVULSION AS A MODEL TO STUDY
NEUROTMETIC NERVE LESIONS AND
TREATMENT STRATEGIES

A ventral root avulsion lesion is not frequently used as a lesion
model to study axonal regeneration. This might partially be due
to the complexity of the lesion model and surgical procedures.
Additionally, from a clinical perspective, this type of lesion
might be considered beyond repair (Seddon, 1942; Robotti
et al., 1995). Most often, studies on experimental peripheral
nerve regeneration in mouse or rat models use either a crush
(axonotmesis) or transection (neurotmesis) of a mixed peripheral
nerve such as the sciatic, femoral, median or ulnar nerve. These
lesions are performed relatively close to the target organ, which
requires only a relatively short follow-up period. Following
these types of lesions, spontaneous axonal regeneration and
recovery of function is quite robust. These studies have provided
important insights in the pathophysiological understanding of
the regenerative response mechanisms in an injured peripheral
nerve. However, translation to the clinical situation with
different anatomical dimensions appears unsatisfactory. In
patients, proximal lesions lead to a prolonged denervation period
associated with a limited degree of axon regeneration and
poor recovery of function. In order to obtain translatable data,
animal models that more closely mimic the clinical situation are
required. Long denervation and regeneration time-periods have
been achieved by delaying surgical repair (Fu and Gordon, 1995;
Gordon et al., 2011; Jonsson et al., 2013; Ronchi et al., 2017)
or creating large nerve defects (Saheb-Al-Zamani et al., 2013;
Marquardt et al., 2015; Hoben et al., 2018). In agreement with
clinical observations, in these models of protracted denervation,
spontaneous recovery of function is extremely poor or even
absent. The main cause for the limited functional recovery in
these injury models is attributed to the failure of repair Schwann
cells to continue to support axon regeneration after a critical
post-lesion period of 6 to 8 weeks (Sulaiman and Gordon,
2000; Hoke et al., 2002). After this period, a state of chronic
denervation develops and the process of supported regeneration
comes to a halt.

Reimplantation of the avulsed ventral root has been pioneered
by the Carlstedt laboratory and in patients has resulted in
recovery in the proximal limb similar to that achieved by
conventional nerve grafts (Carlstedt et al., 1986, 1995, 2000;
Htut et al., 2007). Reimplantation has since been used by
several laboratories worldwide (Wu et al., 2003; Bergerot et al.,
2004; Haninec et al., 2004; Hoang and Havton, 2006; Penas
et al., 2011; Barbizan et al., 2013; Pajenda et al., 2014). Directly
following avulsion progressive death of motoneurons occurs
within 2 weeks (Koliatsos et al., 1994). Acute reimplantation
of a peripheral nerve graft or avulsed ventral root enhances

motoneuron survival and acts as a conduit for regenerating axons
(Wu et al., 1994; Hoang and Havton, 2006; Ohlsson et al., 2006).
However, a spatio-temporal analysis following the trajectory
between the spinal motoneurons and distal target muscle after
experimental lumbar ventral root avulsion and reimplantation,
revealed that the beneficial effect of ventral root reimplantation
on motoneuron survival is not maintained beyond 4 weeks
(Figure 1A; Eggers et al., 2010). The initial axonal outgrowth
response is robust, but includes aberrant growth to ectopic sites
while the number of axons able to regenerate over a long distance
is low. The failure to regenerate over long distances is associated
with a loss of endogenous peripheral neurotrophic support,
including decreasing levels of glial cell line-derived neurotrophic
factor (GDNF) protein. Similar to chronic denervation models,
after a ventral root avulsion lesion, the pro-regenerative period is
limited to 6 to 8 weeks, after which the ability for long distance
axon regeneration becomes increasingly poor (Eggers et al., 2010,
2019a; Torres-Espin et al., 2013).

The regeneration distance of 12 cm which is created with a
lumbar ventral root avulsion in the rat is the longest peripheral
nerve regeneration distance possible in small animal research.
Performing a spinal root avulsion in larger species such as rabbit
(Lang et al., 2005; Reichert et al., 2015), cat (Cullheim et al.,
1989; Rafuse et al., 1992; Hoffmann et al., 1996), or macaque
(Hallin et al., 1999; Ohlsson et al., 2013; Nieto et al., 2019)
inherently results in longer regeneration distances. The proof
of concept studies in these larger animals mainly focused on
axonal regeneration into the reimplanted root, showing the
feasibility of ventral root reimplantation as a clinical treatment
option. Functionally, signs of reinnervation on electromyography
and co-contractions due to axonal misrouting are primarily
observed in the proximal musculature. Considering our and
others’ observed degree of long-distance axonal regeneration and
functional recovery following lumbar ventral root avulsion in the
rat, in our view, performing regenerative gene therapy studies
in larger animals is not warranted before meaningful functional
recovery in the rat is achieved.

A ventral root avulsion lesion has several unique
characteristics, which are distinct from most peripheral nerve
regeneration models. First, avulsion is an extensive proximal
nerve lesion, which combines a longitudinal spinal cord lesion
with denervation of the complete peripheral nerve (Carlstedt
and Havton, 2012). Second, axotomy close to the motoneuron
cell body results in progressive degeneration and death of spinal
motoneurons, which does not occur if axotomy is performed
more than 4 mm distal from the cell body (Gu et al., 1997).
Third, ventral root avulsion is a selective motor axon lesion,
while the afferent sensory axons remain intact. Fourth, in delayed
surgical repair models, a chronically denervated distal nerve
is achieved by halting regeneration until a second additional
repair surgery is performed allowing regeneration to proceed.
This contrasts with acute root avulsion and reimplantation,
which allows for uninterrupted axonal regeneration, while the
required long regeneration distance leads to a prolonged period
of distal Schwann cell denervation. Clinically, brachial plexus
lesions can be variable consisting of a combined axonotmetic
and neurotmetic nerve lesion of multiple adjacent motor and
sensory nerve roots (Narakas, 1985). Although our selective
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ventral root avulsion and acute reimplantation does not reflect
this heterogeneity, by performing a complete motor nerve lesion,
this methodology provides us with a highly reproducible and
predictable model for long-distance motor axon regeneration
accompanied with chronic denervation. Compared to chronic
peripheral nerve lesion models, an avulsion lesion more closely
represents the severe pathogenesis as observed in the clinic after
a proximal nerve lesion such as a brachial plexus injury.

GDNF GENE THERAPY AS A POWERFUL
TREATMENT STRATEGY

To improve recovery of function, supplementary regenerative
treatment strategies are required. We and others have shown
that Glial cell line-derived neurotrophic factor (GDNF) is a
compelling treatment candidate due to its role in neuronal
differentiation and identification as a potent motoneuron
survival and axon outgrowth factor (Henderson et al., 1994; Li
et al., 1995). Furthermore, in motoneurons following axotomy,
the GDNF receptors c-RET and GFRα-1 are strongly upregulated
(Hammarberg et al., 2000). In Schwann cells, GDNF-mediated
signaling cascades play an important role in myelination,
proliferation and migration (Iwase et al., 2005).

However, GDNF and other neurotrophic factors have a
short half-life, exhibit poor tissue penetration and systemic
or topical delivery of GDNF results in unwanted side effects
in non-targeted tissues. Here, the advantage of gene therapy
is the sustained production of GDNF protein by viral vector
transduced cells, resulting in the constant availability of
biologically active therapeutic protein restricted to the site of
viral vector application. Despite these advantages, persistent
high local levels of GDNF expression lead to impaired axon
regeneration by inducing coil formation at the site of GDNF
expression (Blits et al., 2004; Love et al., 2005; Eggers et al.,
2008, 2013; Tannemaat et al., 2008; Santosa et al., 2013;
Shakhbazau et al., 2013; Marquardt et al., 2015; Ee et al., 2017;
Wang et al., 2018). Application of a 4 cm long increasing
proximo-distal GDNF gradient in a lesioned peripheral nerve,
demonstrated that an increasing GDNF concentration enhanced
distal axonal sprouting and axon numbers (Eggers et al., 2013).
However, coil formation was observed already at relatively
low GDNF concentrations (Figure 1B) and the degree of
coil formation strongly correlates to the level of expression.
These observations indicate that it is important to control the
timing, dose and location of neurotrophic factor expression in
order to achieve successful long-distance axonal regeneration
(Harvey et al., 2015).

In recent proof of concept studies, transplantation of
engineered Schwann cells in the peripheral nerve allowed for
doxycycline-inducible GDNF expression (Shakhbazau et al.,
2013; Marquardt et al., 2015). In contrast to the disrupted
axonal regeneration following persistent GDNF expression, time
restricted GDNF expression was beneficial for axonal growth.
These findings are in agreement with studies showing the
paramount importance of achieving control over neurotrophic
factor delivery (Kemp et al., 2011; Pajenda et al., 2014;

Marquardt et al., 2015; Santos et al., 2016; Tajdaran et al.,
2016). Although the doxycycline-inducible system is a robust
platform for therapeutic gene regulation in vivo, in rodents
and non-human primates long-term therapeutic gene regulation
is hampered due to an immune response directed against the
foreign rtTA transactivator, resulting in an immune-mediated
removal of transduced cells (Favre et al., 2002; Ginhoux et al.,
2004; Le Guiner et al., 2014). This compromises the experimental
in vivo use and clinical translation.

To obtain sustained control over GDNF expression, an
immune-evasive doxycycline-inducible GDNF gene switch (dox-
i-GDNF) has been previously developed (Hoyng et al., 2014;
Eggers et al., 2019b). Using this dox-i-GDNF system, we
investigated whether time-restricted GDNF expression improves
motoneuron survival and attenuates coil formation following
a ventral root avulsion lesion. Injection into the reimplanted
lumbar ventral root close to the motoneuron pool and a
4 week timed GDNF expression was sufficient to enhance
motoneuron survival up to 45 weeks (Figures 1C–E). This
achievement is clinically relevant because increased motoneuron
survival significantly augments the chance of axonal outgrowth
and extends the time window for long-distance regeneration.
In contrast to persistent GDNF expression, time-restricted
GDNF expression attenuated coil formation and leads to a two-
fold increase in axonal outgrowth over a distance of 10 cm. This
increased outgrowth facilitated an earlier and enhanced muscle
reinnervation as shown by the improved electromyographical
recovery in the distal denervated musculature (Figure 1C;
Eggers et al., 2019b). Despite these promising results, the degree
of recovery remained insufficient to enable voluntary hind
paw function. The regenerating axons present in the distal
sciatic nerve originate from only 8 to 10% of the surviving
motoneurons, whereas the remaining surviving motoneurons
were unable to project an axon toward and beyond a 10 cm
distance from the spinal cord. Although it remains difficult
to determine the threshold that needs to be overcome to
obtain functional recovery, it has been suggested that more
than 25% of the motoneurons need to regenerate an axon
and successfully innervate a target muscle (Rafuse et al., 1992;
Gordon and Tyreman, 2010). A possible mechanism limiting
long distance regeneration is the development of a chronically
denervated distal nerve after a critical period of 6 to 8 weeks
post-lesion. During the protracted long distance regeneration
period, denervated Schwann cells gradually fail to support axon
regeneration and a non-permissive environment develops.

To investigate the influence of prolonged regeneration time,
an identical dox-i-GDNF treatment was performed following
avulsion and re-implantation of cervical ventral roots. By
performing a root avulsion in the brachial plexus instead of
the lumbar plexus, the regeneration distance toward the distal
muscles was reduced by half and thus the deleterious effects of
chronic denervation were diminished (Figure 1D). We replicated
previous observations that timed dox-i-GDNF treatment leads to
sustained motoneuron survival and a twofold increase in motor
axon regeneration. In addition, timed GDNF treatment leads to
enhanced reinnervation of the forelimb paw musculature and
recovery of voluntary grip function (Eggers et al., 2019a). The first
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FIGURE 1 | Summary of our recent GDNF treatment strategies. (A–E) Schematic overview of motoneurons located in the spinal ventral horn and axonal projections
toward the distal target muscle. For each study, the experimental strategy and primary experimental outcomes are shown. Depicted are schematic representations
of the degree of motoneuron loss, axonal outgrowth, muscle atrophy and target reinnervation based upon histological or electrophysiological observations.
(A) Ventral root avulsion or reimplantation only leads to severe motoneuron loss and poor axonal regeneration. (B) An increasing GDNF gradient in the peripheral
nerve resulted in coil formation already at relatively low GDNF concentrations and the degree of coil formation strongly correlates to the level of expression. Proximal
timed GDNF treatment inside the reimplanted ventral root using a regulatable gene switch in a lumbar ventral root avulsion (C) or cervical ventral root avulsion
(D) results in enhanced motoneuron survival and axonal outgrowth. The degree of muscle reinnervation and functional recovery is enhanced following short-distance
(D) axonal regeneration. (E) As a first step toward improving distal axonal regeneration we combined proximal timed GDNF treatment and peripheral ChABC
mediated CSPG digestion to overcome the inhibitory chronically denervated peripheral nerve environment. (VRA, ventral root avulsion; CNS, central nervous system;
PNS, peripheral nervous system; CSPG, chondroitin sulfate proteoglycan; ChABC, chondroitinase ABC; GDNF, glial cell line-derived neurotrophic factor).
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signs of improved muscle reinnervation were observed before
the critical state of chronic denervation has fully developed,
demonstrating that beneficial effects of timed GDNF-gene
therapy are more robust if target muscle reinnervation can occur
within a relatively short time window post-lesion. This further
suggests it is erroneous to assume that interventions that were
shown to be successful in short distance regeneration models
will also be effective in long distance regeneration or in human
patients. These observations support the value and the necessity
of chronic denervation and long-distance regeneration models in
studies on nerve regeneration.

As a first step toward improving distal axonal outgrowth,
combined proximal timed dox-i-GDNF gene therapy with
a chondroitinase-ABC (ChABC) expression treatment in
the distal peripheral nerve (Figure 1E) was performed.
Inhibitory chondroitin sulfate proteoglycans (CSPG) accumulate
throughout the extracellular matrix of the chronically denervated
peripheral nerve and form a major obstacle for regenerating
axons. Successful digestion of the inhibitory CSPG sidechains
occurs in the distal stump using LV-ChABC (Eggers et al.,
2020). Despite successful CSPG digestion and a modest
electrophysiological improvement after 45 weeks, distal
regeneration was not significantly improved after ChABC
treatment and GDNF and ChABC do not display synergistic
effects. These results showed that the proximal application
of dox-i-GDNF treatment leads to an earlier enhanced
electrophysiological response, whereas the distal ChABC
treatment effect is modest and occurs during the later stages of
the regeneration process.

In summary, the beneficial effect of GDNF gene therapy
on motoneuron survival, attenuating motoneuron death up
to 1 year is robust and reproducible. Despite increased distal
axonal outgrowth, remaining factors that obstruct regeneration
and functional recovery still need to be addressed. Here, the
chronically denervated Schwann cells and axonal misrouting are
considered the primary obstructing factors (Brushart, 1991; Fu
and Gordon, 1995; Hoke et al., 2002; Sulaiman and Gordon, 2002;
English, 2005; de Ruiter et al., 2008; Sulaiman and Gordon, 2009;
O’Daly et al., 2016; Ronchi et al., 2017). A combined treatment
strategy aimed at improving motoneuron survival and limiting
the deleterious effect of chronic denervation could provide
essential support to achieve functional recovery. In the next two
sections we discuss the influence of GDNF treatment timing,
duration, concentration and location and provide a perspective
on future steps to accomplish improved recovery of function.

INFLUENCE OF INTERVENTION TIMING,
DURATION, CONCENTRATION AND
LOCATION

Based on the results obtained with different gene therapy
strategies (Figure 1), we propose that there is a relationship
between the experimental outcome: (i) GDNF treatment duration
and timing, (ii) GDNF concentration, and (iii) location of GDNF
delivery. To aid in this discussion, a graphical representation

of the proposed relation between GDNF treatment duration,
concentration and experimental outcome is depicted in Figure 2.

GDNF Treatment Timing and Duration
In patients, the lesion severity and possibility of spontaneous
recovery needs to be assessed first, which is a challenging
task, requires time and delays the decision for surgical repair.
Although in experimental studies, delayed surgical repair or
GDNF treatment still leads to some motoneuron survival and
axonal regeneration, delayed treatment greatly diminishes the
degree of motoneuron survival (Wu et al., 2004; Zhou and Wu,
2006). The effect of delayed treatment strongly supports strategies
that aim at early neurosurgical repair and GDNF treatment in
order for patients to benefit from a maximal degree of axonal
outgrowth (Pondaag et al., 2018). Until surgical repair can
be performed, bridging the post-lesion period with a systemic
pharmacological treatment that delays the acute motoneuron
death could result in a more favorable final functional outcome
(Nogradi and Vrbova, 2001; Zhang et al., 2005; Hoang et al., 2008;
Romeo-Guitart et al., 2017).

In addition to timing, the duration of GDNF delivery affects
the experimental outcome. Delivery of GDNF for a short period
results in poor axonal regeneration, whereas prolonged GDNF
treatment results in axonal trapping (Marquardt et al., 2015).
Our studies extend previous observations where treatment using
GDNF protein improved motoneuron survival up to 12 weeks (Li
et al., 1995; Yuan et al., 2000; Wu et al., 2003; Bergerot et al., 2004;
Zhou and Wu, 2006; Chu et al., 2009, 2012; Pajenda et al.,
2014; Ruven et al., 2018). Due to the method used to apply
GDNF protein in these studies, the exposure of motoneurons to
biologically active GDNF was limited to 2 to 14 days. In these
studies, a single topical GDNF protein application, however, is
less beneficial for motoneuron survival compared to continued

FIGURE 2 | Graphical representation of the proposed relation between GDNF
treatment duration and concentration. This graph summarizes our
observations that (i) Short and low levels of endogenous GDNF expression
(red line) is ineffective in achieving motoneuron survival (Eggers et al., 2010),
whereas prolonged low dose GDNF results in coil formation (Eggers et al.,
2013). (ii) Moderate 4 week timed GDNF expression enhanced motoneuron
survival and attenuates coil formation (Eggers et al., 2019a,b). (iii) This
contrasts higher GDNF expression levels for 4 weeks, which leads to coil
formation (Eggers et al., 2020).
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local infusion therapy (Li et al., 1995; Wu et al., 2003; Chu
et al., 2009), suggesting a relationship exists between the duration
of GDNF treatment and the degree of motoneuron survival.
Following 2 weeks of local GDNF protein infusion, the degree
of motoneuron survival is identical to our 4 week viral vector-
based treatment period (Wu et al., 2003; Eggers et al., 2019b).
It is possible that our 4 week timed dox-i-GDNF treatment
could be reduced to 2 weeks and still achieve robust motoneuron
survival. Based upon our hypothesis of factors influencing the
GDNF treatment outcome, however (Figure 2), reducing the
treatment duration without adjusting the local GDNF treatment
concentration could result in a gradual loss of motoneurons.

GDNF Treatment Concentration and
Motoneuron Survival
Endogenous GDNF expression following ventral root avulsion
is elevated for a period of 2 to 4 weeks (Eggers et al., 2010).
This is a similar duration compared to above mentioned GDNF
protein delivery studies, where frequently a strong reduction of
exogenously applied GDNF is observed after 2 weeks (Pajenda
et al., 2014). However, only the exogenous application leads
to increased motoneuron survival, whereas reimplantation of a
ventral root expressing endogenous GDNF prevents motoneuron
death for a limited period of 2 weeks (Eggers et al., 2010).
An important difference between endogenous and exogenous
applied GDNF, is the high local GDNF concentrations that are
obtained following local protein application or viral expression.
This suggests supraphysiological local GDNF concentrations
are essential to achieve successful and prolonged motoneuron
survival (Figure 2).

GDNF Treatment Concentration and
Axonal Coil Formation
Regulating the duration of GDNF expression, could potentially
overcome axonal coil formation. Although coil formation was
attenuated significantly in our first study, with only incidental
small isolated coils observed (Eggers et al., 2019b), in a second
study increased coil formation was observed in 34% of the dox-
i-GDNF treated animals (Eggers et al., 2020). Between these
studies, two differences exist which could underlie the observed
coil development in the second study. In the study where only
small incidental coils were observed, GDNF expression levels
were increased 3-fold compared to controls and animals were
followed up to 25 weeks post-reimplantation. In contrast, during
the first 4 weeks GDNF expression levels were increased 5 fold in
the second study where larger coil formation was observed and
animals were followed up to 45 weeks post reimplantation.

Axonal outgrowth and coil formation is influenced by the
local GDNF concentration (Eggers et al., 2013; Santos et al.,
2016; Wang et al., 2018), showing that endogenous or moderate
supraphysiological GDNF expression levels for an appropriate
period do not result in large axon coils. If, in contrast to moderate
GDNF expression, further increasing GDNF concentration
during the first 4 weeks stimulates an earlier or advanced state of
coil formation, it could be possible that these structures remain
present throughout the experiment. Alternatively, it is known

that the rtTA transactivator retains some degree of affinity for its
DNA binding site, which in the absence of the dox inducer results
in low levels of “leaky” expression (Urlinger et al., 2000; Loew
et al., 2010; Roney et al., 2016). If local coil formation is the result
of continuous GDNF secretion from a leaky vector, based upon
Figure 2, there might be a higher chance for the development
and observation of coils after a period of 45 weeks rather
than after 25 weeks. Although both mechanisms individually or
combined could underlie local coil formation, the creation of
an immune-evasive rtTA transactivator by fusing with a GlyAla-
repeat greatly reduced the leak expression (Hoyng et al., 2014).
We were unable to detect leaky expression above endogenous
GDNF concentrations using ELISA and immunohistochemical
staining, suggesting that leak expression is a less likely cause for
residual coil formation.

Our proposed relation between the GDNF concentration,
treatment duration and experimental outcome as depicted in
Figure 2, suggests that a delicate balance exists to achieve
therapeutic GDNF levels for motoneuron survival and axonal
outgrowth. Low levels of GDNF appear to not support prolonged
motoneuron survival (Eggers et al., 2010), whereas sustained high
or low levels of GDNF leads to axonal coil formation (Eggers
et al., 2008, 2013). To determine the precise causal mechanism for
coil development, more research needs to be performed focusing
on GDNF treatment concentration and duration (Santos et al.,
2016; Wang et al., 2018).

Gene Therapy Treatment Location
To support regenerating axons, GDNF treatment in the distal
chronically denervated peripheral nerve following ventral root
avulsion was unsuccessful in significantly advancing axonal
growth and function recovery (Eggers et al., 2013). It is possible
that the distal treatment location explains the limited beneficial
effect. Distal GDNF expression did not lead to enhanced
motoneuron survival, which contrasts proximal GDNF treatment
(Eggers et al., 2008, 2019b). A spatially distinct effect of GDNF
treatment in vitro at the cell body or axon has been shown
previously (Zahavi et al., 2015), revealing axon growth and
innervation occurred only when GDNF was applied to the axons.
As discussed above, increased loss of motoneurons greatly limits
the degree of distal axonal outgrowth.

Similarly, although ChABC treatment does not enhance
motoneuron survival, our distal ChABC treatment might have
been more beneficial when applied more proximally at the
reimplantation site (Figure 1E; Eggers et al., 2020). This was
shown recently in a study delivering a peptide inhibiting CSPG
signaling near the reimplanted nerve root (Li et al., 2015).
Increased axonal outgrowth following ChABC treatment is
only observed following a transection lesion and not following
a crush lesion (Zuo et al., 2002; Muir, 2010; Graham and
Muir, 2016). Inhibitory CSPGs are present in the endoneurium
surrounding the basal lamina tubes, while the tube itself is
relatively permissive. At a transection site, axons will exit the
basal lamina tube and are exposed to CSPGs, whereas following
a nerve crush axons remain within the pro-regenerative tube.
Thus, it is possible that in our avulsion model, most axons enter a
basal lamina tube at the implantation site and will not be in close
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proximity to the distal inhibitory environment, explaining why
distal CSPG digestion only has a limited additional effect.

PERSPECTIVE ON FUTURE STEPS TO
ACCOMPLISH RECOVERY OF
FUNCTION

In future studies, keeping the distal nerve in a pro-regenerative
state should be the next priority. The key factors responsible
for obstructed axonal regeneration in the peripheral nerve are
the loss of neurotrophic support (Funakoshi et al., 1993; Hoke
et al., 2002; Eggers et al., 2010), fragmentation of the Schwann
cell basal lamina (Brushart et al., 2013) and increased deposits of
inhibitory matrix molecules such as CSPGs in the nerve fascicle
(Zuo et al., 1998, 2002; Muir, 2010; Graham and Muir, 2016).
The unifying component between these growth-promoting and
inhibitory factors is the loss of repair Schwann cells. Keeping
these cells in a repair phenotype state could therefore be an
effective strategy to promote axonal outgrowth (Jessen and
Arthur-Farraj, 2019). This requires the ability to specifically target
all denervated Schwann cells and to introduce one or multiple
factors that are able to achieve this.

Overexpression of a transcription factor could result in a
wide range of downstream pro-regenerative molecular changes.
As an important regulator in the Schwann cell injury response,
the transcription factor c-Jun is such a promising candidate
for targeted therapeutic intervention (Parkinson et al., 2008;
Arthur-Farraj et al., 2012; Jessen and Mirsky, 2016; Huang et al.,
2019). C-Jun has a central role in to promoting expression of
the repair program and absence of c-Jun results in the failure
of axon growth, functional recovery and neural death (Arthur-
Farraj et al., 2012). Recent findings show that moderate c-Jun
overexpression levels are beneficial, but supraphysiological levels
of c-Jun perturbs myelination (Fazal et al., 2017). Similar to our
GDNF treatments, we therefore expect that c-Jun application
for therapeutic purposes requires a tightly controlled treatment
approach (Huang et al., 2019). We have shown the advantages
and potency of viral vector mediated gene therapy and the
ability to regulate gene expression. With the development of our
immune-evasive stealth gene switch, the gene therapy system was
further improved, rendering it even safer. For future research in
which factors such as GDNF or C-Jun are applied, it remains to
be determined whether the potential low levels of leak expression
are detrimental for the treatment strategy or whether the required
level of control is sufficient.

To prevent unwanted side effects, gene therapy provides us
with the ability to target specific areas or cells with a high
degree of precision. LV vectors outperform AAV vectors in
transducing Schwann cells in the rat peripheral nerve (Hoyng
et al., 2015). However, LV vectors integrate their genetic
material in the host cell genome and this could potentially
interfere with the function of cellular genes. Adeno-associated
viral vectors are increasingly regarded as safe and are well-
tolerated following application to the human brain. AAV2 and
8 transduce primate and rat Schwann cells (Girard et al.,
2005; Homs et al., 2011). As a first step toward optimizing

AAV-mediated gene transfer to Schwann cells we performed
a screen of all 9 common serotypes and showed that AAV2
vectors outperform other serotypes in transducing Schwann
cells in human peripheral nerve explants, whereas several
AAV serotypes efficiently transduced rat Schwann cells (Hoyng
et al., 2015). In future studies we will build on these findings
and investigate the use of AAV vectors in peripheral nerve
repair paradigms.

To keep the peripheral nerve in a pro-regenerative state,
ideally, all denervated Schwann cells between the motoneuron
and denervated muscle are precisely and equally targeted. This
poses a technical challenge, as surgically injecting the entire nerve
length including all its thin terminal branches is highly invasive,
leads to unwanted additional nerve damage, whereas small
diameter nerves are impossible to inject. The recent generation
of vector capsids that following intravenous administration can
selectively pass the blood brain barrier and transduce neurons
located in the brain, spinal cord and DRG is a promising new
development (Chan et al., 2017). It is conceivable that comparable
viral vectors will be developed that are able to selectively
transduce all Schwann cells along an injured peripheral nerve
using non-invasive intravenous delivery. When combined with
a promotor specific for denervated Schwann cells, this would
create the ultimate viral vector, which allows for non-invasive, cell
specific, precise control of therapeutic gene expression along the
entire denervated peripheral nerve.

CONCLUSION

Gene therapy is a powerful tool to improve motoneuron survival
and axonal regeneration, and advancements are being made to
bring this treatment strategy closer to clinical application. To
achieve long distance axonal regeneration, control over treatment
location, timing and dose is, however, required. Combined, our
data provide a basis to better understand this delicate balance.
Although all treatment strategies will need to be tailored to
individual patients, ultimately, this and future research could lead
to a guiding template which aids the nerve surgeon in selecting
the additional gene therapy treatment strategy.
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