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Abstract

Since long-chain fatty acids work as the primary energy source for the myocardium, radiola-

beled long-chain fatty acids play an important role as imaging agents to diagnose metabolic

heart dysfunction and heart diseases. With the aim of developing radiogallium-labeled fatty

acids, herein four fatty acid-based tracers, [67Ga]Ga-HBED-CC-PDA, [67Ga]Ga-HBED-CC-

MHDA, [67Ga]Ga-DOTA-PDA, and [67Ga]Ga-DOTA-MHDA, which are [67Ga]Ga-HBED-CC

and [67Ga]Ga-DOTA conjugated with pentadecanoic acid (PDA) and 3-methylhexadecanoic

acid (MHDA), were synthesized, and their potential for myocardial metabolic imaging was

evaluated. Those tracers were found to be chemically stable in 0.1 M phosphate buffered

saline. Initial [67Ga]Ga-HBED-CC-PDA, [67Ga]Ga-HBED-CC-MHDA, [67Ga]Ga-DOTA-

PDA, and [67Ga]Ga-DOTA-MHDA uptakes in the heart at 0.5 min postinjection were 5.01 ±
0.30%ID/g, 5.74 ± 1.02%ID/g, 5.67 ± 0.22%ID/g, and 5.29 ± 0.10%ID/g, respectively. These

values were significantly lower than that of [123I]BMIPP (21.36 ± 2.73%ID/g). For their clini-

cal application as myocardial metabolic imaging agents, further structural modifications are

required to increase their uptake in the heart.

Introduction

Long-chain fatty acids are the predominant energy substrate for the healthy myocardium and are

metabolized by β-oxidation in the heart [1]. With myocardial abnormalities, such as ischemic dis-

ease and cardiomyopathy, the alteration of cardiac fuel metabolism is mostly observed. Herein

glycolysis and glycogen metabolism become the primary energy source, whereas fatty acid oxida-

tion is suppressed. Thus, alteration in fatty acid metabolism has been identified as a biomarker

for ischemia and myocardial damage [2–4]. Hence, either single-photon emission computed

tomography (SPECT) or positron emission tomography (PET) imaging with radiolabeled long-
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chain fatty acid analogs as radiotracers has been considered as a valuable tool for the early detec-

tion of myocardial disease, such as unstable angina and severe heart ischemia [5].

With regard to SPECT tracers, one of the early radioiodinated fatty acids is 15-(p-[123I]

iodophenyl)pentadecanoic acid ([123I]IPPA, Fig 1), which exhibited fast heart uptake. How-

ever, its rapid washout from the heart has limited its clinical use. Alternatively, a radioiodi-

nated fatty acid analog with methyl-branch, β-methyl [123I]iodophenyl-pentadecanoic acid

([123I]BMIPP, Fig 1), was developed, which is slowly washed out from the heart and shows bet-

ter image quality than [123I]IPPA [6,7]. Hence, [123I]BMIPP is a more promising myocardial

metabolic imaging agent, and has been approved for the diagnosis of heart dysfunction in

Japan since 1993 [8].

Due to accurate attenuation correction, higher spatial resolution, and shorter image acquisi-

tion time, the ability to visualize myocardial conditions of PET is generally considered superior

than that of SPECT. A PET tracer [1-11C]palmitate (Fig 1) exhibited uptake and clearance pat-

terns, which were correlated with fatty acid β-oxidation, in the heart [7]. However, the short

half-life of 11C (20 min) limits its clinical use. Alternatively, radiofluorinated fatty acid analogs,

such as [18F]fluoro-6-thia-heptadecanoic acid ([18F]FTHA, Fig 1) and trans-9(RS)-[18F]fluoro-

3,4-(RS,RS)methyleneheptadecanoic acid ([18F]FCPHA, Fig 1), have been explored for the diag-

nosis of myocardial dysfunction [9,10]. However, rapid clearance by β-oxidation in the heart

and slow washout from the intracellular lipid pool limited their application in clinical practice

for the early detection of ischemic diseases. Development of radiogallium-labeled fatty acid

derivatives is an alternative for PET tracers with on-site cyclotron-produced radionuclides, such

as C-11 and F-18. 68Ga, one of the positron emitters, can be eluted on demand from a portable
68Ge/68Ga generator system, obviating a cyclotron [11]. Previously, 68Ga-labeled fatty acids with

1,4,7-triazacyclonane-1,4,7-triacetic acid (NOTA), 1,4,7-triazacyclononane-1-glutaric acid-

4,7-acetic acid (NODAGA), and diethylenetriaminepentaacetic acid (DTPA) as chelators were

reported [12–14]. However, their low heart/blood ratios and high accumulation in non-targeted

tissues, such as the liver, limited their potential as myocardial metabolic imaging agents.

Otto et al. found that an increase in the number of the carbon chain until 21 in fatty acids

has been shown to improve the myocardial uptake [15]. Besides, another study verified that

methyl-branched fatty acids can prolong cardiac retention [16]. As [123I]BMIPP with 15 car-

bon chains is well established, we chose lead compounds with similar length of carbon chains,

pentadecanoic acid (PDA) as an unbranched fatty acid and 3-methylhexadecanoic acid

(MHDA) as a methyl-branched fatty acid, for the preparation of radiogallium labeled fatty

acids for myocardial metabolic imaging.

In this study, we conjugated alkyl-unbranched and methyl-branched fatty acids with two types

of chelating agents to form stable Ga complexes, which have distinctive lipophilicities. Here, we

used N,N0-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N0-diacetic acid

(HBED-CC) as an acyclic chelating agent and S-2-(4-isothiocyanatobenzyl)-1,4,7,10,tetraazacy-

clododecane tetraacetic acid (DOTA-Bn-SCN) as a macrocyclic chelating agent. Then, four fatty

acid-based tracers, [67Ga]Ga-HBED-CC-PDA ([67Ga]5), [67Ga]Ga-HBED-CC-MHDA ([67Ga]6),

[67Ga]Ga-DOTA-PDA ([67Ga]7), and [67Ga]Ga-DOTA-MHDA ([67Ga]8) (Fig 1), with an easy-

to-handle radioisotope 67Ga, which has a longer half-life (t1/2 = 3.3 days) than 68Ga (t1/2 = 68 min)

were prepared and evaluated to assess their feasibilities as myocardial imaging agents.

Materials and methods

General

Commercial reagents and solvents were purchased from Sigma-Aldrich (St. Louis, MO, USA),

Wako Pure Chemical Industries (Osaka, Japan), Nacalai Tesque, Inc., (Kyoto, Japan), Tokyo
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Chemical Industry, Co., Ltd., (Tokyo, Japan), and Macrocyclics (Dallas, TX, USA). All of these

were used without further purification unless otherwise stated.

[67Ga]GaCl3 and [123I]BMIPP were supplied by Nihon Medi-Physics Co., Ltd. (Tokyo,

Japan). The radioactivity was measured by an Auto Gamma System ARC-7010B (Hitachi, Ltd.,

Tokyo, Japan).

Proton nuclear magnetic resonance (1H-NMR) spectra was recorded on JEOL

JNM-ECS400 (JEOL Ltd, Tokyo, Japan). Figures of the NMR spectra are available in the Sup-

plementary Material file (S6 Fig). Electrospray ionization mass spectra (ESI-MS) were obtained

with JEOL JMS-T100TD (JEOL Ltd). TLC analysis was performed using silica plates (Art

5553, Merck, Darmstadt, Germany).

Synthesis of precursors and reference compounds

The detailed synthesis procedures of intermediate compounds, 15-aminopentadecanoic acid

(S1 File), 16-amino-3-methylhexadecanoic acid (S2 File), and HBED-CC(tBu)3-NHS ester (S3

File) were described in the Supporting Information.

15� ½3� ð3� f½ð2� f½5� ð2� CarboxyethylÞ� 2� hydroxybenzyl�ðcarboxymethylÞaminog
ethylÞðcarboxymethylÞamino�methylg� 4� hydroxyphenylÞpropanamido�
pentadecanoic acid ðHBED� CC� PDAÞ ð1Þ

A mixture of 15-aminopentadecanoic acid (4.6 mg, 18.0 μmol), N, N-diisopropylethyla-

mine (DIPEA) (15 μL, 81.0 μmol,), and HBED-CC(tBu)3-NHS ester (16.8 mg, 20.0 μmol) in

dry dichloroethane (1 mL) was stirred at 50˚C for 2 h under nitrogen atmosphere. After com-

pletion of the reaction, the reaction mixture was concentrated under reduced pressure. TFA

was added to the residue and the mixture was stirred for 2 h. After removing TFA by nitrogen

gassing, the crude product was purified by RP-HPLC using a Cosmosil 5C18-AR-II column

(10 mm ID × 250 mm; Nacalai Tesque) at flow rate of 4 mL/min with a gradient mobile phase

of 76% methanol in water with 0.1% TFA to 82% methanol in water with 0.1% TFA for 10

min. The column temperature was 40˚C. The fraction containing 1 was determined by

Fig 1. Chemical structures of [123I]BMIPP, [123I]IPPA, [1-11C]palmitate, [18F]FCPHA, [18F]FTHA, [67Ga]

Ga-HBED-CC-PDA ([67Ga]5), [67Ga]Ga-HBED-CC-MHDA ([67Ga]6), [67Ga]Ga-DOTA-PDA ([67Ga]7), and [67Ga]

Ga-DOTA-MHDA ([67Ga]8).

https://doi.org/10.1371/journal.pone.0261226.g001
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ESI-MS and collected. After removing the solvent by freeze-dryer, 1 was obtained as a colorless

solid (4.2 mg, 30%).
1H NMR (400 MHz, DMSO-d6): δ 7.75 (1H, t, J = 5.8 Hz), 7.04–6.98 (4H, m), 6.76–6.73

(2H, m), 3.91 (4H, s), 3.53 (4H, s), 3.07–2.97 (6H, m), 2.71–2.66 (4H, m), 2.51–2.43 (2H, m),

2.30–2.26 (2H, m), 2.18 (2H, t, J = 7.2 Hz), 1.49–1.11 (24H, m). LRMS (ESI+), calcd for

C41H61N3O11 [M+H+]: m/z = 772.4, found 772.3.

16� ½3� ð3� f½ð2� f½5� ð2� CarboxyethylÞ� 2� hydroxybenzyl�ðcarboxymethylÞaminog
ethylÞðcarboxymethylÞamino�methylg� 4� hydroxyphenylÞpropanamido�
� 3� methylhexadecanoic acid ðHBED� CC� MHDAÞ ð2Þ

A mixture of 16-amino-3-methylhexadecanoic acid (14.3 mg, 50.0 μmol), DIPEA (38 μL,

0.2 mmol), and HBED-CC(tBu)3-NHS ester (60 mg, 75 μmol) in dry dichloroethane (1 mL)

was stirred at 50˚C for 2 h under nitrogen atmosphere. After completion of the reaction, the

reaction mixture was concentrated under reduced pressure. TFA was added to the residue and

the mixture was stirred for 2 h. After removing TFA by nitrogen gassing, the crude product

was purified by RP-HPLC using a Cosmosil 5C18-AR-II column (10 mm ID × 250 mm) at

flow rate of 4 mL/min with a gradient mobile phase of 78% methanol in water with 0.1% TFA

to 84% methanol in water with 0.1% TFA for 10 min. The column temperature was 40˚C. The

fraction containing 2 was determined by ESI-MS and collected. After removing the solvent by

freeze-dryer, 2 was obtained as a colorless solid (14 mg, 35%).
1H NMR (400 MHz, DMSO-d6): δ 7.77 (1H, t, J = 5.2 Hz), 7.01–6.96 (4H, m), 6.74–6.70

(2H, m), 3.84 (4H, s), 3.44 (4H, s), 2.98–2.96 (6H, m), 2.71–2.65 (4H, m), 2.47–2.43 (2H, m),

2.30–2.25 (2H, m), 2.21–2.16 (1H, m), 2.01–1.96 (1H, m), 1.79 (1H, brs), 1.34–1.23 (24H, m),

0.87 (3H, d, J = 6.8 Hz). LRMS (ESI+), calcd. for C43H65N3O11 [M+H+]: m/z = 800.4, found

800.1.

2;20;200;20 00 � ð2� f4� ½3� ð14� CarboxytetradecylÞthioureido�benzylg� 1;4;7;
10� tetraazacyclododecane� 1;4;7;10� tetraylÞtetraacetic acid ðDOTA� PDAÞ ð3Þ

A mixture of 15-aminopentadecanoic acid (1.1 mg, 4.2 μmol, 1.0 eq.), DOTA-Bn-SCN (3.5

mg, 5.1 μmol, 1.2 eq.), and DIPEA (21.2 μL, 127.2 μmol, 30.0 eq.) in DMF (0.1 mL) was stirred

at rt for overnight. Upon completion of reaction, DMF was removed by nitrogen gassing. The

crude product was purified by RP-HPLC using a Cosmosil 5C18-AR-II column (10 mm

ID × 250 mm) at flow rate of 4 mL/min with a gradient mobile phase of 72% methanol in

water with 0.1% TFA to 85% methanol in water with 0.1% TFA for 10 min. The column tem-

perature was 40˚C. The fraction containing 3 was determined by ESI-MS and collected. After

removing the solvent by freeze-dryer, 3 was obtained as a colorless solid (2.8 mg, 82%).
1H NMR (400 MHz, CD3OD): δ 7.38 (2H, d, J = 6.8 Hz), 7.29 (2H, d, J = 8.0 Hz), 4.42–2.55

(27H, m), 2.28 (2H, t, J = 6.4 Hz), 1.64–1.53 (4H, m), 1.35–1.30 (20H, m). LRMS (ESI+), calcd

for C39H64N6O10S [M+H+]: m/z = 809.4, found 809.2.

2;20;200;200 0 � ð2� f4� ½3� ð15� Carboxy� 14� methylpentadecylÞthioureido�benzylg� 1;4;7;
10� tetraazacyclododecane� 1;4;7;10� tetraylÞtetraacetic acid ðDOTA� MHDAÞ ð4Þ

A mixture of 16-amino-3-methylhexadecanoic acid (1.2 mg, 4.2 μmol), DOTA-Bn-SCN

(3.5 mg, 5.1 μmol), and DIPEA (21.2 μL, 127.2 μmol) in DMF (0.1 mL) was stirred at rt for

overnight. After completion of the reaction, the reaction mixture was concentrated. The crude

product was purified by RP-HPLC using a Cosmosil 5C18-AR-II column (10 mm ID × 250

mm) at flow rate of 4 mL/min with a gradient mobile phase of 75% methanol in water with
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0.1% TFA to 88% methanol in water with 0.1% TFA for 10 min. The column temperature was

40˚C. The fraction containing 4 was determined by ESI-MS and collected. After removing the

solvent by freeze-dryer, 4 was obtained as a colorless solid (2.8 mg, 80%).
1H NMR (400 MHz, CD3OD): δ 7.37 (2H, d, J = 8.4 Hz), 7.28 (2H, d, J = 8.4 Hz), 4.31–2.56

(27H, m), 2.30–2.25 (1H, m), 2.10–2.04 (1H, m), 1.91 (1H, s-br), 1.58–1.63 (2H, m), 1.36–1.21

(22H, m), 0.94 (3H, d, J = 6.8 Hz). LRMS (ESI+), calcd for C41H68N6O10S [M+H+]: m/z

= 837.4, found 837.2.

f15� ½3� ð3� f½ð2� f½5� ð2� CarboxyethylÞ� 2� hydroxybenzyl�ðcarboxymethylÞaminog
ethylÞðcarboxymethylÞamino�methylg� 4� hydroxyphenylÞpropanamido�
pentadecanoic acidggalliumðIIIÞ ðGa� HBED� CC� PDAÞ ð5Þ

To a solution of 1 (1.0 mg, 1.3 μmol) in the mixed solvent of methanol and water (1/1)

(100 μL), was added a solution of Ga(NO3)3 (9.9 mg, 39.0 μmol) in water (50 μL). The mixture

was reacted at 40˚C for 4 h. The crude product was purified by RP-HPLC using a Cosmosil

5C18-AR-II column (10 mm ID × 250 mm) at flow rate of 4 mL/min with a gradient mobile

phase of 78% methanol in water with 0.1% TFA to 88% methanol in water with 0.1% TFA for

10 min. The column temperature was 40˚C. The fraction containing 5 was determined by

ESI-MS and collected. After removing the solvent by freeze-dryer, 5 was obtained as a colorless

solid (0.8 mg, 73%).

LRMS (ESI+), calcd for C41H57GaN3O11 [M+H+]: m/z = 837.3, found 838.1.

f16� ½3� ð3� f½ð2� f½5� ð2� CarboxyethylÞ� 2� hydroxybenzyl�ðcarboxymethylÞaminog
ethylÞðcarboxymethylÞamino�methylg� 4� hydroxyphenylÞpropanamido�
3� methylhexadecanoic acidggalliumðIIIÞ ðGa� HBED� CC� MHDAÞ ð6Þ

To a solution of 2 (3.0 mg, 3.8 μmol) in mixed solvent of methanol and water (1/1)

(200 μL), was added a solution of Ga(NO3)3 (28.7 mg, 112.5 μmol) in water (100 μL). The mix-

ture was reacted at 40˚C for 4 h. The crude product was purified by RP-HPLC using a Cosmo-

sil 5C18-AR-II column (10 mm ID × 250 mm) at flow rate of 4 mL/min with a gradient mobile

phase of 78% methanol in water with 0.1% TFA to 84% methanol in water with 0.1% TFA for

10 min. The column temperature was 40˚C. The fraction containing 6 was determined by

ESI-MS and collected. After removing the solvent by freeze-dryer, 6 was obtained as a colorless

solid (2.0 mg, 77%).

LRMS (ESI+), calcd for C43H61GaN3O11 [M+H+]: m/z = 865.4, found 865.9.

½2;20;200;200 0 � ð2� f4� ½3� ð14� CarboxytetradecylÞthioureido�benzylg� 1;4;7;10� tetraazacy
clododecane� 1;4;7;10� tetraylÞtetraacetic acid�galliumðIIIÞ ðGa� DOTA� PDAÞ ð7Þ

To a solution of 3 (0.8 mg, 1.0 μmol) in mixed solvent of methanol and water (1/1)

(100 μL), was added a solution of Ga(NO3)3 (7.6 mg, 30.0 μmole) in water (50 μL). The mixture

was reacted at 40˚C for 4 h. The crude product was purified by RP-HPLC using a Cosmosil

5C18-AR-II column (10 mm ID × 250 mm) at flow rate of 4 mL/min with a gradient mobile

phase of 72% methanol in water with 0.1% TFA to 85% methanol in water with 0.1% TFA for

10 min. The column temperature was 40˚C. The fraction containing 7 was determined by

ESI-MS and collected. After removing the solvent by freeze-dryer, 7 was obtained as a colorless

solid (0.5 mg, 50%).
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LRMS (ESI+), calcd for C39H62GaN6O10S [M+H+]: m/z = 876.4, found 876.3.

½2;20;200;2000 � ð2� f4� ½3� ð15� Carboxy� 14� methylpentadecylÞthioureido�benzylg� 1;4;7;10� tetraaza
cyclododecane� 1;4;7;10� tetraylÞtetraacetic acid�galliumðIIIÞ ðGa� DOTA� MHDAÞ ð8Þ

To a solution of 4 (2.0 mg, 2.4 μmol) in mixed solvent of methanol and water (1/1)

(200 μL), was added a solution of Ga(NO3)3 (18.2 mg, 72 μmol) in water (100 μL). The mixture

was reacted at 40˚C for 4 h. The crude product was purified by RP-HPLC using a Cosmosil

5C18-AR-II column (10 mm ID × 250 mm) at flow rate of 4 mL/min with a gradient mobile

phase of 75% methanol in water with 0.1% TFA to 88% methanol in water with 0.1% TFA for

10 min. The column temperature was 40˚C. The fraction containing 8 was determined by

ESI-MS and collected. After removing the solvent by freeze-dryer, 8 was obtained as a colorless

solid (1.0 mg, 48%).

LRMS (ESI+), calcd for C41H66GaN6O10S [M+H+]: m/z = 904.4, found 904.6.

Radiolabeling

Radiotracers, [67Ga]Ga-HBED-CC-PDA ([67Ga]5), [67Ga]Ga-HBED-CC-MHDA ([67Ga]6),

[67Ga]Ga-DOTA-PDA ([67Ga]7), and [67Ga]Ga-DOTA-MHDA ([67Ga]8) were prepared by

reaction between [67Ga]GaCl3 with 20 μg of precursors (1, 2, 3, and 4, respectively) in 1.0 M

HEPES buffer or 0.2 M ammonium acetate buffer pH 5.0 at 85˚C for 10 min. The radiotracers,

[67Ga]5, [67Ga]6, [67Ga]7, and [67Ga]8 were isolated by RP-HPLC using a Cosmosil 5C18AR-II

column (4.6 mm ID × 150 mm; Nacalai Tesque) at the flow rate of 1 mL/min with a gradient

mobile phase of 70% methanol in water with 0.1% TFA to 95% methanol in water with 0.1%

TFA for 20 min. The column temperature was maintained at 40˚C. Radiochemical yield and

purity were determined by an auto well gamma counter.

Determination of partition coefficients

Partition coefficients of [67Ga]5, [67Ga]6, [67Ga]7, and [67Ga]8 into n-octanol and 0.1 M phos-

phate buffered saline (PBS) pH 7.4 were determined according to previously described proce-

dures [17]. The partition coefficient was calculated by the ratio of cpm/mL in n-octanol to that

in PBS, and expressed as a common logarithm (log P).

In vitro stability assay in buffer and plasma

The stabilities of radiotracers, [67Ga]5, [67Ga]6, [67Ga]7, and [67Ga]8, in buffer and murine

plasma, were analyzed according to previous procedures [18].

In vitro protein-binding assays

The protein-binding of radiotracers, [67Ga]5, [67Ga]6, [67Ga]7, and [67Ga]8, in HSA were per-

formed using ultrafiltration (vivacon1 500, Sartorius, Goettingen, Germany). In vitro protein-

binding assays were carried out according to previous procedures [19].

Animal study

The animal experimental protocols used were approved by the Committee on Animal Experi-

mentation of Kanazawa University (AP-204165). All experiments with animals were conducted

in strict accordance with the Guidelines for the Care and Use of Laboratory Animals of Kana-

zawa University. Mice were housed together in individually ventilated cages with three mice per

cage. The animals were housed at 23˚C with a 12 h light/dark schedule with free access to a stan-

dardized mouse diet and provided drinking water ad libitum water. Autoclaved wood chips
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were applied as bedding material. The behavior of the mice during the experimental period was

normal. Seventy-five ddY mice (male; 6-week-old; 29–33 g) were purchased from Japan SLC

Inc., Hamamatsu, Japan. The mice were randomly divided into five groups (n = 15 mice per

group) with five different time points for each group (n = 3 mice per time point).

Biodistribution study

Radiotracers, [67Ga]5, [67Ga]6, [67Ga]7, or [67Ga]8, in saline containing 5% ethanol and 0.1%

tween-80, or [123I]BMIPP (74 kBq/100 μL, respectively) was intravenously injected into mice

via the tail. The ddY mice were sacrificed by decapitation at 0.5, 2, 5, 20, and 60 min. Tissues of

interest were removed and weighed. The radioactivity of the tissues was determined using an

auto well gamma counter. The data were expressed as percent injected dose per gram tissue (%

ID/g).

Metabolite analysis

According to the previous procedure, the metabolite analysis of radiotracers was carried out

with slight modification [20]. Liver, heart, and blood were collected at 10 min postinjection of

[67Ga]5, [67Ga]6, [67Ga]7, or [67Ga]8 (1.85 MBq/100 μL,) into ddY mice. The blood was centri-

fuged at 2,000g for 10 min at 4˚C. An equal volume of cold acetonitrile was added to the

plasma, and liver and heart were homogenized in a 1:1 mixture of acetonitrile and water (1 g

organ/10 mL mixed solvent) followed by centrifugation at 2,000g for 10 min at 4˚C. All super-

natants (plasma, liver, and heart) were analyzed by TLC and RP-HPLC.

Results and discussion

Synthesis of reference compounds and precursors

Long-chain fatty acid derivatives, unbranched fatty acid (15-aminopentadecanoic acid,

APDA) and methyl-branched fatty acid (16-amino-3-methylhexadecanoic acid, AMHDA),

were readily synthesized according to detailed procedures in Supporting Information. Precur-

sors 1 and 2 were prepared by incorporating 15-aminopentadecanoic acid or 16-amino-

3-methylhexadecanoic acid with synthesized chelator HBED-CC-tris(tBu)-NHS ester, fol-

lowed by removing the protecting group using TFA (Fig 2). Meanwhile, precursors 3 and 4

were synthesized by conjugating 15-aminopentadecanoic acid or 16-amino-3-methylhexade-

canoic acid with DOTA-Bn-SCN as a chelating agent (Fig 3). Thus, the precursors were pre-

pared with high purities. The high purities of the precursors were confirmed by HPLC. The

chromatograms of the precursors are shown in S1 Fig. Subsequently, non-radioactive com-

plexes (5, 6, 7, and 8) were synthesized with yields of 73%, 77%, 50%, and 48%, respectively.

These non-radioactive gallium complexes were used as reference compounds for radiolabeled

fatty acid derivatives.

Synthesis of radiolabeled compounds

Four novel radiogallium-labeled fatty acid derivatives ([67Ga]5, [67Ga]6, [67Ga]7, and [67Ga]8)

were prepared. The comparable retention times in the chromatograms (S2–S5 Figs) indicate

that the radiolabeled products ([67Ga]5, [67Ga]6, [67Ga]7, and [67Ga]8) were identical to their

nonradioactive counterparts (5, 6, 7, and 8), determined using mass spectrometry. [67Ga]5

and [67Ga]6 with a HBED ligand were prepared with high radiochemical yields (>90%) and

high radiochemical purities (>99%), whereas [67Ga]7 and [67Ga]8 with a DOTA ligand were

prepared with moderate radiochemical yields, 33% and 36%, respectively, and high radio-

chemical purity (>98%) (Table 1). The radiolabeling was performed with carrier-free
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radionuclides and under non-carrier-added conditions. [67Ga]5 and [67Ga]6 were entirely sep-

arated from the corresponding precursors, 1 and 2, by the HPLC purification. Thus, the molar

activity of [67Ga]5 and [67Ga]6 was estimated to be approximately 1.5 × 1018 Bq/mol. Mean-

while, the molar activity of [67Ga]7 and [67Ga]8 was determined to be 1.1 × 1015 Bq/mol and

1.2 × 1015 Bq/mol, respectively. These values were much lower than that of [67Ga]5 and [67Ga]

6 because [67Ga]7 and [67Ga]8 were not entirely separated from the corresponding precursors.

Previously, HBED-CC and DOTA have been reportedly used as a chelate site with different

active molecules. For example, Eder et al. prepared a [68Ga]Ga-HBED-CC complex conjugated

with a prostate specific membrane antigen (PSMA) ligand, with a radiochemical yield and

purity of>99% [21]. This complex is known as PSMA-11 and it has been approved as a PET

radiopharmaceutical for prostate cancer imaging by European Medicines Agency (EMA) in

2019 and Food and Drug Administration (FDA) in 2020 [22]. High radiochemical yields (~

95%) of [68Ga]Ga-DOTA conjugated with octreotide, [68Ga]Ga-DOTA-TOC, were also

Fig 3. Synthesis of DOTA-PDA (3) and DOTA-MHDA (4). i) DIPEA, DMF, rt, overnight.

https://doi.org/10.1371/journal.pone.0261226.g003

Fig 2. Synthesis of HBED-CC-PDA (1) and HBED-CC-MHDA (2). i) DIPEA, dichloroethane, 50˚C, 2 h; ii) TFA, rt, 2 h.

https://doi.org/10.1371/journal.pone.0261226.g002
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reported [23]. [68Ga]Ga-DOTA-TOC has been approved as a PET radiopharmaceutical agent

by EMA in 2016 and FDA in 2019 for SSTR-positive neuroendocrine tumor imaging [24].

Previous basic researches demonstrated that HBED-CC conjugated bioactive molecules can

be labeled with radiogallium in high radiochemical yields in the majority of papers. HBED-CC

was proposed as an efficient radiogallium chelator with fast complexing kinetics and high stabil-

ity [25,26]. Meanwhile, some DOTA-conjugated bioactive molecules can be labeled with radio-

gallium in high radiochemical yields; however, some DOTA-conjugated bioactive molecules can

be labeled by radiogallium in moderate radiochemical yields [27–30]. Some bioactive molecules

may interfere with the high yield of Ga-DOTA complexation. Different radiochemical yields

between Ga-DOTA and Ga-HBED-CC complexes in this study and in previous studies may be

derived from the difference of stability constants (log K), i.e., 21.3 and 38.5 respectively [31].

Lipophilicity of 67Ga-labeled fatty acid derivatives

Not only log P-values of compounds but also their retention times using same HPLC condi-

tions must be considered as indexes for lipophilicity. The order of lipophilicity of the four
67Ga-labeled fatty acid derivatives based on their log P-values and retention times was similar:

[67Ga]6 > [67Ga]8 > [67Ga]5 > [67Ga]7 (Table 1).

As expected, the lipophilicity of radiogallium-labeled methyl-branched fatty acid ([67Ga]6

and [67Ga]8) was higher than that of radiogallium-labeled unbranched fatty acid ([67Ga]5 and

[67Ga]7). The lipophilicity of HBED-CC-conjugated long-chain fatty acids ([67Ga]5 and [67Ga]

6) was higher than that of DOTA-Bn-SCN-conjugated corresponding long-chain fatty acids

([67Ga]7 and [67Ga]8). Two benzyl groups of HBED-CC could contribute to this result.

In vitro stability assay

After the incubation of radiotracers in phosphate buffered saline (PBS) for 24 h at 37˚C, more

than 90% of all radiogallium-labeled fatty acid derivatives, [67Ga]5, [67Ga]6, [67Ga]7, and

[67Ga]8, remained intact (Table 2). Murine plasma stabilities in were also not low; however,

they were not as high as in PBS.

Rapid imaging protocol for myocardial imaging agent acquired over four to five-minute

period using standard camera and over 10-minute period for SPECT camera. An entire stress/

rest procedure can be completed in 1 hour. Therefore, in vitro analysis in murine plasma for 1

hour is considered sufficient in this study.

In vitro protein-binding assays

Bound percentages of [67Ga]5, [67Ga]6, [67Ga]7, and [67Ga]8 to human serum albumin (HSA)

were 99.5 ± 0.0%, 99.9 ± 0.0%, 99.9 ± 0.0%, and 99.9 ± 0.0%, respectively. These results

Table 1. Physical properties for radiogallium complex conjugated fatty acid derivatives.

Radiotracers Physical properties

RC yield RC purity tR (min) Log P
[67Ga]Ga-HBED-CC-PDA ([67Ga]5) 96.9% 99.5% 12.95 –1.64 ± 0.00

[67Ga]Ga-HBED-CC-MHDA ([67Ga]6) 94.5% 99.3% 16.16 –1.33 ± 0.02

[67Ga]Ga-DOTA-PDA ([67Ga]7) 33.9% 99.0% 10.36 –2.07 ± 0.02

[67Ga]Ga-DOTA-MHDA ([67Ga]8) 36.3% 98.7% 13.30 –1.39 ± 0.01

tR means retention time.

RC means radiochemical.

https://doi.org/10.1371/journal.pone.0261226.t001

PLOS ONE Radiogallium-labeled long-chain fatty acid derivatives as myocardial metabolic imaging agents

PLOS ONE | https://doi.org/10.1371/journal.pone.0261226 December 15, 2021 9 / 17

https://doi.org/10.1371/journal.pone.0261226.t001
https://doi.org/10.1371/journal.pone.0261226


indicated that all radiogallium fatty acid complexes have extensive binding ability to HAS-like

unmodified fatty acids. HSA is the primary binding protein for fatty acids in the blood to

transport them to other tissues [32,33].

Biodistribution studies

Results of biodistribution of [67Ga]5, [67Ga]6, [67Ga]7, [67Ga]8, and [123I]BMIPP in normal

mice are listed in Tables 3–5. The initial myocardial uptakes of four radiogallium-labeled

tracers were similar, 5.01 ± 0.30%ID/g, 5.74 ± 1.02%ID/g, 5.67 ± 0.22%ID/g, and 5.29 ±
0.10%ID/g for [67Ga]5 [67Ga]6 [67Ga]7, and [67Ga]8, respectively, at 0.5 min postinjection.

These uptakes were much lower than that of [123I]BMIPP (21.36 ± 2.73%ID/g) and that of

even technetium-labeled fatty acid, [99mTc]Tc-MAMA-conjugated hexadecenoic acid

(11.22 ± 0.25%ID/g), in a previous study [34]. Long-chain fatty acids are incorporated into

myocardial cells through passive diffusion and mainly protein-mediated mechanisms, such

as fatty acid transport protein and fatty acid translocase/CD36 [35,36]. The lower myocar-

dial uptake of [67Ga]5, [67Ga]6, [67Ga]7, and [67Ga]8 would be attributed to their lower

affinity for fatty acid transporters due to steric hindrance of the Ga-complex site to trans-

porters and a negative charge caused by a free carboxyl group in HBED-CC and DOTA

chelates.

On the other hand, it was reported that radiogallium labeled fatty acid analogs, [68Ga]Ga-

NOTA conjugated 11C fatty acid ([68Ga]Ga-NOTA-FA11), [68Ga]Ga-NOTA conjugated 12C

fatty acid ([68Ga]Ga-NOTA-FA12), [68Ga]Ga-NODAGA conjugated 11C fatty acid ([68Ga]Ga-

NODAGA-FA11), [68Ga]Ga-DTPA conjugated 11C fatty acid ([68Ga]Ga-DTPA-FA11), and

[68Ga]Ga-NOTA conjugated 16C fatty acid ([68Ga]Ga-NOTA-FA16) (Fig 4) showed the initial

heart uptakes of 7.4%ID/gram, 6.4%ID/gram, 3.8%ID/gram, 1.3%ID/gram, and 3.7% ID/

gram, respectively, in previous studies [12–14]. In the case of [68Ga]Ga-NOTA-FA11 and

[68Ga]Ga-NOTA-FA12, although their initial heart uptakes seem to be higher than those of

[67Ga]5, [67Ga]6, [67Ga]7, and [67Ga]8, [68Ga]Ga-NOTA-FA11 and [68Ga]Ga-NOTA-FA12 are

also not enough for myocardial metabolic imaging because they showed the high radioactivity

in the blood and liver and fast clearance from the heart.

An introduction of a β-methyl group in fatty acid analogs, such as [123I]BMIPP, has been

known to delay the washout from the heart due to interference with its β-oxidation [37]. Thus,

we synthesized radiogallium-labeled fatty acid analogs with and without β-methyl group and

compared their biodistribution. However, tracer retention in the heart was not greatly changed

against our expectation. This may be caused by their low initial uptakes.

High radioactivity in the blood was observed immediately after an i.v. injection of all trac-

ers. Relatively rapid clearance from the blood was observed for [67Ga]5 and [67Ga]6 with an

acyclic chelator (HBED), whereas [67Ga]7 and [67Ga]8 with a macrocyclic chelator (DOTA)

showed slower blood clearance. The difference of structures between [67Ga]5 and [67Ga]7 and

Table 2. In vitro stability for radiogallium fatty acid complexes.

Radiotracers In vitro stability

In PBS pH 7.4 (24 h) In murine plasma (1 h)

[67Ga]Ga-HBED-CC-PDA ([67Ga]5) 96.4 ± 0.5% 85.0 ± 1.0%

[67Ga]Ga-HBED-CC-MHDA ([67Ga]6) 91.5 ± 1.1% 88.8 ± 1.4%

[67Ga]Ga-DOTA-PDA ([67Ga]7) 91.1 ± 0.6% 83.2 ± 1.2%

[67Ga]Ga-DOTA-MHDA ([67Ga]8) 93.3 ± 0.5% 85.3 ± 1.1%

Expressed as percentage of remained intact of radiotracer. Data were presented as the mean (SD) for three samples.

https://doi.org/10.1371/journal.pone.0261226.t002
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between [67Ga]6 and [67Ga]8 is only the chelating site. Previously, Jain et al. reported that

[68Ga]Ga-NODAGA-FA11 and [68Ga]Ga-NOTA-FA11, which are 68Ga-labeled fatty acids with

macrocyclic chelators, prolonged the blood clearance compared to [68Ga]Ga-DTPA-FA11, a
68Ga-labeled fatty acid with an acyclic chelator (12). Results of this study and a previous study

indicate that the kind of chelator used for radiogallium-labeled fatty acids greatly affects the

blood clearance of the tracers. Meanwhile, the radioactivity of [67Ga]7 and [67Ga]8 in the heart

was retained, compared to that of [67Ga]5 and [67Ga]6. The retention in the heart should be

caused by the delayed blood clearance.

The high stability of four 67Ga-labeled fatty acids in vitro as mentioned above was reflected

in the biodistribution. High accumulation in the bone and delayed blood clearance can be an

index of the Ga-complex decomposition in biodistribution studies [38]. Low radioactivity lev-

els in the bone indicate that the Ga-complex decomposition to free Ga metal hardly occurred

in four radiotracers.

Table 3. Biodistribution of [67Ga]Ga-HBED-CC-PDA ([67Ga]5) and [67Ga]Ga-HBED-CC-MHDA ([67Ga]6) at 0.5, 2, 5, 20, and 60 min after i.v. injection in ddY

mice.

Tissues Time after injection

0.5 min 2 min 5 min 20 min 60 min

[67Ga]5

Blood 29.91 (2.03) 17.33 (1.44) 7.60 (1.04) 1.10 (0.22) 0.61 (0.23)

Liver 12.92 (2.48) 27.82 (1.66) 37.27 (1.10) 19.01 (2.74) 6.17 (0.99)

Kidney 5.14 (0.40) 3.37 (0.49) 1.71 (0.16) 1.00 (0.17) 1.20 (0.88)

Small intestine 0.98 (0.19) 1.16 (0.13) 2.44 (0.23) 23.09 (2.40) 26.40 (3.69)

Large intestine 0.34 (0.02) 0.48 (0.02) 0.39 (0.01) 0.23 (0.03) 0.17 (0.01)

Spleen 1.80 (0.18) 1.81 (0.26) 1.15 (0.20) 0.35 (0.14) 0.15 (0.03)

Pancreas 1.57 (0.28) 1.94 (0.28) 1.48 (0.16) 0.55 (0.13) 0.31 (0.09)

Lung 18.70 (3.31) 6.31 (1.92) 3.97 (0.56) 0.94 (0.09) 0.54 (0.20)

Heart 5.01 (0.30) 2.89 (0.53) 1.75 (0.34) 0.63 (0.06) 0.25 (0.08)

Stomach† 0.41 (0.03) 0.50 (0.04) 0.69 (0.38) 0.60 (0.10) 0.40 (0.02)

Bone 2.13 (0.46) 1.91 (0.19) 1.39 (0.04) 0.82 (0.12) 0.81 (0.10)

Muscle 0.79 (0.09) 0.59 (0.14) 0.33 (0.08) 0.30 (0.01) 0.23 (0.02)

Brain 0.70 (0.07) 2.46 (0.15) 0.23 (0.03) 0.04 (0.01) 0.02 (0.00)

[67Ga]6

Blood 36.78 (3.90) 27.01 (3.28) 13.03 (0.12) 2.53 (0.73) 0.59 (0.09)

Liver 8.22 (0.86) 16.39 (1.07) 20.60 (0.66) 26.03 (2.46) 6.80 (0.62)

Kidney 5.57 (0.21) 4.53 (0.46) 1.95 (0.22) 0.88 (0.05) 0.38 (0.12)

Small intestine 0.63 (0.07) 0.77 (0.10) 0.74 (0.22) 6.26 (2.01) 23.06 (3.22)

Large intestine 0.33 (0.05) 0.36 (0.07) 0.39 (0.05) 0.23 (0.03) 0.14 (0.01)

Spleen 1.82 (0.11) 2.78 (0.08) 1.84 (0.20) 0.35 (0.07) 0.11 (0.00)

Pancreas 1.05 (0.08) 1.27 (0.09) 0.97 (0.08) 0.54 (0.06) 0.23 (0.06)

Lung 15.31 (3.39) 12.23 (2.54) 4.68 (0.32) 1.25 (0.27) 0.44 (0.03)

Heart 5.74 (1.02) 4.51 (0.23) 2.57 (0.19) 0.86 (0.12) 0.33 (0.04)

Stomach† 0.32 (0.04) 0.39 (0.04) 0.29 (0.15) 0.61 (0.20) 1.41 (0.77)

Bone 2.60 (0.07) 2.40 (0.27) 1.33 (0.29) 0.51 (0.05) 0.30 (0.08)

Muscle 0.94 (0.19) 0.67 (0.24) 0.50 (0.09) 0.20 (0.01) 0.15 (0.05)

Brain 0.96 (0.01) 0.81 (0.10) 0.41 (0.12) 0.06 (0.01) 0.01 (0.00)

Data were presented as %injected dose/gram tissue. Each value represents mean (SD) for three mice.
† presented as %ID/organ.

https://doi.org/10.1371/journal.pone.0261226.t003
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Metabolite analysis

The results of the metabolite analyses in the blood, heart, and liver at 10 min postinjection of

each radiotracer were listed in Table 6. From 64% to 96% of radiotracers were intact in blood,

liver, and heart. Two metabolic radioactivity peaks were observed in the heart and liver for

[67Ga]7 and liver for [67Ga]8 at HPLC analyses (S7 Fig). In other cases, only one metabolite

radioactivity peak was observed below 5 min (S7 Fig).

The results showed that the radiogallium fatty acid analogs were metabolized to more polar

radiometabolites. It is known that long-chain fatty acids are metabolized to shorter chain resi-

dues by β-oxidation in the heart as well as in the liver [39,40]. Therefore, although the more

polar radiometabolites were not determined in this study, the metabolite radioactivity peaks

may be shorter chain radiometabolites by β-oxidation of the radiogallium fatty acid analogs.

Meanwhile, we assumed that the peak below 5 min is not free [67Ga]Ga3+ because Ga-complex

decomposition to free Ga metal hardly occurred as above-mentioned.

Table 4. Biodistribution of [67Ga]Ga-DOTA-PDA ([67Ga]7) and [67Ga]Ga-DOTA-MHDA ([67Ga]8) at 0.5, 2, 5, 20, and 60 min after i.v. injection in ddY mice.

Tissues Time after injection

0.5 min 2 min 5 min 20 min 60 min

[67Ga]7

Blood 32.14 (1.41) 28.60 (1.65) 26.36 (2.41) 16.43 (0.55) 10.30 (1.03)

Liver 4.52 (0.20) 4.75 (0.17) 4.88 (0.62) 5.23 (0.56) 6.50 (0.89)

Kidney 5.19 (0.51) 4.88 (0.45) 6.18 (0.20) 4.31 (0.47) 4.74 (0.53)

Small intestine 1.15 (0.07) 1.67 (0.15) 1.90 (0.26) 1.64 (0.25) 1.94 (0.30)

Large intestine 0.54 (0.09) 0.87 (0.15) 1.14 (0.18) 1.14 (0.14) 0.90 (0.05)

Spleen 1.81 (0.26) 3.03 (0.45) 4.29 (0.15) 2.67 (0.23) 1.67 (0.09)

Pancreas 2.14 (0.37) 3.11 (0.54) 3.70 (0.34) 2.34 (0.16) 1.71 (0.26)

Lung 20.57 (1.02) 14.9 (2.10) 16.48 (3.59) 10.89 (1.14) 7.03 (0.87)

Heart 5.67 (0.22) 4.76 (0.85) 6.12 (0.39) 5.03 (0.36) 3.28 (0.19)

Stomach† 0.55 (0.06) 0.62 (0.08) 0.67 (0.06) 0.61 (0.04) 0.71 (0.06)

Bone 2.33 (0.54) 3.07 (0.38) 4.14 (0.42) 3.18 (0.43) 0.23 (0.26)

Muscle 0.66 (0.12) 0.79 (0.13) 1.56 (0.17) 1.63 (0.29) 1.29 (0.08)

Brain 1.05 (0.15) 0.89 (0.11) 0.94 (0.03) 0.69 (0.33) 0.34 (0.03)

[67Ga]8

Blood 37.07 (0.81) 33.26 (0.33) 28.38 (10.58) 21.65 (2.96) 13.25 (1.18)

Liver 5.02 (0.24) 5.16 (0.47) 4.99 (0.37) 6.74 (0.31) 7.88 (1.03)

Kidney 5.71 (0.36) 6.66 (0.99) 5.35 (0.34) 5.18 (0.72) 4.20 (0.23)

Small intestine 0.98 (0.05) 1.41 (0.04) 1.57 (0.04) 1.92 (0.30) 2.19 (0.29)

Large intestine 0.38 (0.08) 0.55 (0.10) 0.72 (0.04) 0.96 (0.05) 0.84 (0.09)

Spleen 1.83 (0.33) 3.43 (0.20) 3.31 (0.14) 3.11 (0.41) 1.74 (0.11)

Pancreas 1.40 (0.08) 2.21 (0.04) 2.09 (0.08) 2.56 (0.34) 1.85 (0.15)

Lung 20.04 (0.52) 18.10 (2.99) 16.54 (1.36) 11.95 (0.62) 7.98 (1.41)

Heart 5.28 (0.10) 5.83 (0.27) 5.01 (0.30) 4.91 (0.39) 3.62 (0.15)

Stomach† 0.42 (0.00) 0.51 (0.05) 0.82 (0.46) 0.59 (0.04) 0.66 (0.04)

Bone 1.96 (0.06) 3.17 (0.27) 2.73 (0.31) 2.74 (0.34) 2.18 (0.44)

Muscle 0.59 (0.04) 0.73 (0.23) 0.81 (0.22) 1.17 (0.14) 1.14 (0.10)

Brain 1.03 (0.23) 0.98 (0.25) 0.83 (0.03) 0.70 (0.25) 0.43 (0.07)

Data were presented as %injected dose/gram tissue. Each value represents mean (SD) for three mice.
† presented as %ID/organ.

https://doi.org/10.1371/journal.pone.0261226.t004
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Conclusion

In this study, four novel radiogallium-labeled unbranched and methyl-branched fatty acids

([67Ga]5, [67Ga]6, [67Ga]7, and [67Ga]8) were synthesized and evaluated to assess their feasibil-

ity as myocardial metabolic imaging agents. Contrary to our expectation, they cannot be

applied as PET myocardial metabolic imaging agents due to their low accumulation in the

heart. Therefore, structural modifications, especially in the chelate site, are required to develop
68Ga-labeled fatty acids with adequate accumulation in the heart as myocardial metabolic

imaging agents.

Table 5. Biodistribution of [123I]BMIPP at 0.5, 2, 5, 20, and 60 min after i.v. injection in ddY mice.

Tissues Time after injection

0.5 min 2 min 5 min 20 min 60 min

[123I]BMIPP

Blood 20.30 (1.55) 6.01 (0.74) 6.75 (1.07) 10.84 (0.20) 10.38 (2.03)

Liver 12.44 (2.40) 21.35 (0.89) 16.33 (4.41) 6.54 (0.43) 4.34 (0.61)

Kidney 5.21 (0.42) 5.27 (0.61) 5.93 (1.23) 8.03 (0.09) 6.24 (0.62)

Small intestine 0.91 (0.15) 1.33 (0.23) 1.39 (0.27) 1.97 (0.11) 1.88 (0.29)

Large intestine 0.42 (0.07) 0.68 (0.14) 0.66 (0.11) 1.20 (0.04) 1.20 (0.15)

Spleen 4.91 (1.27) 3.76 (1.18) 3.09 (1.26) 1.73 (0.55) 1.68 (0.81)

Pancreas 2.43 (0.68) 6.11 (1.90) 5.66 (4.30) 9.80 (3.25) 8.04 (3.89)

Lung 24.09 (4.19) 15.88 (1.94) 16.87 (3.08) 16.21 (1.50) 13.11 (3.05)

Heart 21.36 (2.73) 27.60 (3.15) 28.03 (5.37) 23.41 (3.39) 20.92 (3.67)

Stomach† 0.60 (0.11) 0.70 (0.17) 0.95 (0.28) 1.06 (0.05) 1.06 (0.17)

Bone 2.63 (0.33) 1.97 (0.03) 2.29 (0.27) 2.66 (0.22) 2.42 (0.33)

Muscle 2.85 (0.69) 3.24 (0.49) 3.42 (1.06) 3.51 (0.21) 3.87 (0.80)

Brain 0.51 (0.11) 0.22 (0.03) 0.25 (0.03) 0.43 (0.07) 0.39 (0.04)

Data were presented as %injected dose/gram tissue. Each value represents mean (SD) for three mice.
† presented as %ID/organ.

https://doi.org/10.1371/journal.pone.0261226.t005

Fig 4. Chemical structures of [67Ga]Ga-NOTA-FA11, [67Ga]Ga-NOTA-FA12, [67Ga]Ga-NODAGA-FA11, [67Ga]Ga-NOTA-FA16, and [67Ga]Ga-

DTPA-FA11.

https://doi.org/10.1371/journal.pone.0261226.g004
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