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Abstract: Biostimulants, are a diverse class of compounds including substances or microorganism
which have positive impacts on plant growth, yield and chemical composition as well as boosting
effects to biotic and abiotic stress tolerance. The major plant biostimulants are hydrolysates of plant or
animal protein and other compounds that contain nitrogen, humic substances, extracts of seaweeds,
biopolymers, compounds of microbial origin, phosphite, and silicon, among others. The mechanisms
involved in the protective effects of biostimulants are varied depending on the compound and/or
crop and mostly related with improved physiological processes and plant morphology aspects such
as the enhanced root formation and elongation, increased nutrient uptake, improvement in seed
germination rates and better crop establishment, increased cation exchange, decreased leaching,
detoxification of heavy metals, mechanisms involved in stomatal conductance and plant transpiration
or the stimulation of plant immune systems against stressors. The aim of this review was to provide
an overview of the application of plant biostimulants on different crops within the framework of
sustainable crop management, aiming to gather critical information regarding their positive effects on
plant growth and yield, as well as on the quality of the final product. Moreover, the main limitations
of such practice as well as the future prospects of biostimulants research will be presented.

Keywords: biostimulants; seaweed extracts; organic farming; arbuscular mycorrhizal fungi; protein
hydrolysates; amino acids; chitosan; phosphite; plant growth promoting bacteria; humic substances

1. Introduction

The growing need for food production through sustainable cultivation practices,
without reducing crop yield and producer income, is a major objective due to increased
environmental pollution and the gradual degradation of cultivated soils [1]. In the context
of global climate change and food security, there is a need for cultivating crops under unfa-
vorable conditions, particularly in dry and semi-dry areas, as well as for the sustainable
use of valuable and finite natural resources through the protection of biodiversity [2–4].
Various farming systems have been suggested throughout the last decades with biostimu-
lants being a novel and sustainable approach towards crop production, especially under
biotic and abiotic stressors [4,5]. The expected market growth in the biostimulant sector at
a compound annual growth rate of 11.24% and up to USD 4.9 billion by 2025 [6]. Therefore,
there is increasing interest in the farming sector for new biostimulant products and a lot of
research is carried out in this gradually evolving section of the industry. There are several
commercial products available which are currently applied on various crops within the
context of sustainable and organic farming [7].

Various compounds with bioactive properties can be utilized as biostimulants to boost
plant growth and development under normal and stressful conditions [8,9], while among
the distinctive characteristics a biostimulatory product must improve nutrients use effi-
ciency, tolerance to abiotic stressors, quality of the final product and nutrients availability in
soil [10]. So far, six distinct categories of biostimulants are recognized, including microbial
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inoculants, humic substances, such as humic and fulvic acids, protein hydrolysates and
amino acids, biopolymers, inorganic compounds. and seaweed extracts, all of which are
commercially available with wide applications in agriculture [11,12]. Biostimulant applica-
tion can be considered as an effective and sustainable nutritional crop supplementation
and may alleviate the environmental problems associated with excessive fertilization [5,13].
In intensive cropping sectors such as in horticulture and floriculture, the biostimulants
can also increase nutrient use efficiency, partly substitute the chemical fertilizer inputs
and ameliorate the yield and quality of crops [14–16]. However, biostimulants are not
only considered as important substitutes to mineral fertilizers, but also notable in organic
farming systems within sustainable crop production management [17]. Increased root
and shoot growth, improved resistance against stressors, better root growth potential,
and reduction in nitrogen fertilizer inputs are some of the most noteworthy impacts of
biostimulant application in sustainable agriculture system [1]. Most of these impacts could
be attributed to their auxin-like effect, as well as to the improvement in nitrogen uptake
and metabolism, the regulation of K/Na ratio, and the proline accumulation which serves
as an osmoprotectant against salinity stress [18–20]. Moreover, biostimulatory compounds
may also have a positive impact on soil biology and they can be recognized as a good
strategy for recovering semiarid areas and degraded ecosystems [21–23]. However, the
variable composition of raw materials used for the production of biostimulant products
make the task of revealing the mechanisms of action more difficult and long-term studies
and standardization processes are needed [24]. The major biostimulant impacts on crops
are shown in Figure 1.

Figure 1. The most important biostimulant effects on crops.

Considering the numerous literature reports during the last decade related to biostim-
ulants and their effects on various crops, this review aims to present the most up-to-date
key results for biostimulant practical applications on crops and the new tools available
for the unraveling of mechanisms behind the observed effects. In the present review, all
relevant reports in English language were collected. The literature search was performed
by using the keywords of plant biostimulants, seaweed extract, leafy vegetables, phenolic
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compounds, arbuscular mycorrhizal fungi, and biofertilizers in main indexing systems
including PubMed/MEDLINE, Scopus, the search engine of Google Scholar, as well as the
Institute for Scientific Information Web of Science.

2. Biostimulant Categories

Biostimulants are classified into two distinct classes based on their origin. Therefore,
one category includes all those products that have biological origin being obtained from
pathogens or from the plant itself and the second category includes all the products that
do not have biological origin such as physical factors and chemicals [25]. Moreover, biotic
biostimulants may have a defined composition and contain molecules of known structure
or being more complex including several molecules with different structures [26]. Another
classification approach divides biostimulant products in microbial, which are obtained from
arbuscular mycorrhizal fungi and plant growth promoting bacteria, and non-microbial
biostimulants which include plant micro-algae extracts, humic substances and biopolymers
such as chitosan [27–31]. In particular, the microbial biostimulants may promote plant
growth both directly and indirectly; biofertilization, stimulation of root growth, tolerance
to plant stressors and rhizoremediation are a few examples of direct effects on plant
growth promotion [28,31], while controlling plant pathogens and enhancing the enzymatic
activity of plants may indirectly induce plant growth [29,30]. Finally, many researchers
divide the non-microbial biostimulants in phytohormonal and non-phytohormonal (those
biostimulants that include protein-containing compounds) [32].

Among the various compounds with biostimulatory activity, protein hydrolysates are
in the spotlight of scientific research due to their promising properties. Such compounds
are actually a mixture of amino acids and soluble peptides, which are mainly produced
after enzymatic, thermal and chemical processes and derived from animal or plant origin
proteins [33,34]. Their positive effects are associated with the up-regulation of metabolites
involved in plant growth processes and the elicitation of hormone-like activities which
altogether affect plant growth and productivity [20,35]. The most important benefits of
protein hydrolysates are presented in Figure 2.

Figure 2. Protein hydrolysates biostimulatory effects.

Similarly, seaweed extracts are also a widely known category of biostimulants with
a steadily increasing penetration into the farming sector during the last decades. These
compounds have found applications in various crops since they may induce tolerance
against abiotic stressors and boost crop performance while they may also improve the
shelf-life of various crop products [36]. They are largely prepared from brown seaweeds,
such as Ascophyllum nodosum, Ecklonia maxima, and Macrocystis pyrifera and they consist
of promoting hormones or trace elements such as Fe, Cu, Zn, and Mn [37,38]. Other
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compounds such as phloroglucinol and eckol are active biomolecules obtained from the
brown seaweed Ecklonia maxima, which is one of the most common species of Kelp which
is widely utilized as liquid fertilizer [39]. Moreover, the use of extracts from seaweeds that
are industrially processed for other purposes (e.g., the production of carrageenan from
Kappaphycus alvarezii) may reduce the carbon footprint of industrial sector and increase at
the same time the added value of seaweeds [40].

Trichoderma–based biostimulants are another important category of microbial bios-
timulants that have found applications in crop production since they may improve plant
nutrient status and tolerance against environmental stressors stress via the boost of root
growth, the increased nutrient uptake and the production of auxins and secondary metabo-
lites (e.g., peptides, volatile organic compounds) [41–45]. However, several other fungi
have shown biostimulatory activity on crops with beneficial effects on plant growth and
yield and response to oxidative stress [46].

On the other hand, the number of plant growth promoting bacteria (PGPB) used in
various formulation is quite low when considering their great biodiversity [47]. PGPB and
symbiotic microorganisms may act through various mechanisms related to hormone release
or changes in hormonal balance within plants, the improvement in nutrients availability, the
biosynthesis of volatile organic compounds, and the increased tolerance to abiotic stressors
through the induction of systemic tolerance [17,48–50]. The main negative effects of abiotic
stressors (e.g., salinity, drought) on plants are related to changes in endogenous hormones
balance (e.g., ethylene production, increase of absicic acid and decrease of cytokinins
levels) which results to reduced shoot and root growth as a means to plant homeostasis
regulation [51]. This is the key point where PGPB come into play since they promote the
production of indole acetic acid which in turn alters root architecture and induce root
development resulting to a larger root area and to more root tips. In more detail, these
additional (exogenous) phytormones along with the already existing hormones in plant
tissues (endogenous) regulate cell proliferation (especially in the roots) which facilitate
the uptake of water and minerals from required to support plant growth [52]. Roots and
shoots may communicate through hormonal signaling and actually roots may regulate
the development and growth of the aerial parts of the plant by transferring endogenous
hormones via the xylem to the shoots which act as hormonal sinks [53]. However, apart
from the endogenous hormones which plant may produce itself, several other phytormones
have been detected in the root-soil environment related to the soil microbiome which may
enter the plant through the transpiration flow (e.g., xylem) and regulate plant growth
depending on their balance [54]. Soil detected phytormones may be produced from
plant roots acting as signals for root functioning, or by soil microbiome (bacteria and
fungi) [55]. The overall balance of these ex planta hormones is regulated by biosynthesis
and uptake from roots, as well as by production, uptake and degradation of hormones
from soil microbes [54], and interacts with in plant hormones, thus regulating plant growth
and development [51]. Moreover, arbuscular mycorrhizal fungi (AMF) and rhizosphere
microflora combinations seem to be effective not only in improving crop productivity but
also in preserving soil health and fertility [56].

Humic-like substances such as humic and fulvic acids may also exhibit biostimulatory
activity, since various reports have suggested improved crop performance attributed
mostly to auxin- and cytokinin-like effects [57,58]. They are derived from organic matter
decomposition and metabolic products of soil microbes and they contribute to plant growth
through the improvement of soil physic-chemical properties and the increased availability
of nutrients in rhizosphere [7]. The main effects of humic substances are in general the
improvement in root growth and morphology, the increase in the uptake of nutrients
and their use efficiency, the better crop performance, and finally the increase in fruit
quality and in tolerance against abiotic stressors [59,60]. The actual mechanisms of action
seem to be the result of synergistic between the various bioactive compounds that raw
material include, although the effects may differ depending on the crop, the soil type
and soil microbes present in the rhizosphere [61]. In addition, humic and fulvic acids



Biomolecules 2021, 11, 698 5 of 23

may promote plant growth through hormone-like effects, since the breakdown of these
substances releases auxins and other pre-cursors [58,62–64]. Moreover, Canellas et al. [65]
suggested a hormone-like activity of humic substances fraction on tomato plants through
the release of auxin-like biomolecules. Considering that humic-like substances and humic
acids in particular can be obtained from various raw materials such as natural organic
matter, plant tissues and bio-waste, they present a variable composition with heterogenous
effects, depending on their molecular weight [65,66].

Phosphite (Phi) and biopolymers such as chitosan were also reported to possess
biostimulant properties with several applications on horticultural crops [67,68]. Regarding
Phi, it is widely used as fungicide against various pathogens or as a supplement of P
nutrition in crops; however, its application is also associated with plant growth promoting
effects which are attributed to promoted root growth and better uptake and assimilation
of nutrients from plants [67,69]. On the other hand, chitosan is a biopolymer produced
after the deacetylation of chitin and is in the research focus during the last decades due
to the interesting effects on crops [68]. It is commercially produced from seafood shells
and its main application is related to plant defense against pathogens, since it may induce
the production of protective molecules against pathogens [70]. Biostimulant activities
have also been reported being mainly associated with increased photosynthetic activity,
tolerance to drought, salinity, and extreme temperatures stress and activity of antioxidant
enzymes [71,72]. However, considering that chitosan is a biopolymer that comprises
compounds of different deacetylation and polymerization degree there is a great variability
in the composition of the commercially available products which may also result in variable
effects on crops [73].

Apart from these well-established categories, there is significant interest from the
biostimulant sector for waste and by-products which exhibit important biological activities
and they could be considered as a new category among the existing ones creating alternative
pathways in for by-products management [74,75]. In this context, the production of
dissolved organic matter (DOM) through anaerobic digestion has shown promising results
for the design of new biostimulatory products that may improve plant health through
an auxin-like mode of action [66]. According to Messias et al. [76], shale water, which
is generated after the pyrolysis of pyrobituminous shale rock, has also shown important
biostimulant effects in horticultural crops and could be used as a yield enhancer and
biofortifying agent. Finally other compounds such as melatonin and vitamins have shown
biostimulatory activities, especially under abiotic stress conditions, and apart from the
induction of secondary metabolites biosynthesis they also improve the quality and the
functional properties of the final products [77–79].

Considering the novel status of the biostimulants sector, as well as the fact that various
substances and organisms can be classified as biostimulants by definition, biosafety criteria
are important for choosing new microorganisms as biostimulants, and biosafety measures
should be addressed according to bioassays rather than on taxonomy and based on en-
vironmental and human safety indices (EHSI; [80]) [81]. Moreover, any negative effects
associated with unintended effects on reactive nitrogen losses need more attention [82].
The main research topics for the biostimulant characterization of new substances and com-
pounds characterization include, (1) evaluation of the biostimulant composition; (2) stan-
dardization of the production methods; (3) characterization of plant responses especially in
combination with environmental conditions; (4) identification of crop-specific responses
to biostimulants products; and (5) fine-tuning of application timing and doses [83]. The
principal classification of plant biostimulants are shown in Table 1.
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Table 1. Classification of plant biostimulants.

Plant Biostimulants Key Points References

Protein hydrolysates (PHs) and other N-containing compounds (amino acids) a. Mixtures of peptides and amino acids which are produced via enzymatic, chemical or thermal hydrolysis of
animal- or plant-derived proteins. [34,84]

b. Effective in increasing yield and quality of various crop products. [85]

c. Categorization based on proteins, sources and the hydrolysis system; PHs boost both primary and secondary
plant metabolism biochemical and physiological procedures. [86,87]

d. Effective in alleviating negative abiotic stress effects. [24]

Humic substances a. Include fulvic acids and humic acids which they differ in color, molecular weight, carbon content and the
degree of polymerization. [88]

b. They could increase cationic exchange capacity (CEC) of the soil and interact with root membrane transporters. [65]

Seaweed extracts a. Extracts from brown seaweeds, e.g., Ascophyllum, Fucus, and Laminaria genera. [89]

b. They are rich in polysaccharides, polyphenols and compounds with hormonal activity that affect plant
growth and development. [90,91]

Biopolymers (Chitosans and other polymers) a. Chitosans are naturally occurring components in fungi nematodes, insects and crustaceans. [68]

b. They regulate plant-defense mechanisms related to phytoalexins biosynthesis, reactive oxygen species, and
pathogenesis-related proteins making plants more resistant to biotic and abiotic stressors. [92]

Microbial biostimulants (Mycorrhizal and non-mycorrhizal fungi, Rhizobium,
Trichoderma, and Plant Growth-Promoting Rhizobacteria (PGPR)) a. Symbiotic fungi, especially arbuscular mycorrhizal fungi (AMF) within the genus Glomus. [14,16]

b. Trichoderma genus [44]

c. Beneficial bacteria with plant growth promoting properties also known as PGPBs (Bacillus, Rhizobium,
Pseudomonas, Azospirillum, Azotobacter, and many others). [48]

Phosphite (Phi) a. A phosphate (H2PO4
−) analog which affects various plant growth and development processes. [93]

b. Several beneficial effects have been reported in various vegetable crops. [69,94–97]

c. Biostimulatory impacts on fruit such as avocado, banana, citrus, peach, raspberry and strawberry. [69,98–100]

Silicon a. Effective against abiotic and biotic stressors. [11]

Vermicomposts a. Hormonal activity of vermicompost leachates due to content in trace elements of hormones such as cytokinins,
indolo-acetic acid (IAA), eighteen gibberellins (GAs) and brasinosteroids. [101]

b. Phytohormones from three different classes, including cytokinins, auxins and gibberellins provide plant
growth promoting activities in vermicompost [102]
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3. Practical Applications of Biostimulants and Biostimulatory Products on
Horticultural Crops

Various biostimulant products have been studied in numerous research reports. Asco-
phyllum nodosum extracts are among the most commonly studied biostimulants with varied
effects on several crops such as the yield and nutritional quality of spinach [16,103–105],
the nutritional status and shelf-life of lettuce [106], increased the drought tolerance in
tomato plants [107], improved plant growth and yield in carrot and strawberry [108–111],
or alleviated the water stress effects on common bean [15,112]. The mechanisms behind
these beneficial effects of A. nodosum extracts are still under investigation, although various
studies postulated hormonal effects on plant growth through the up- or down-regulation
of auxin-responsive genes [113]. This argument is supported by the composition of A. no-
dosum extracts which contain several hormones (e.g., abscisic acid, auxins, brassinosteroids,
cytokinins, ethylene, gibberellins, and strigolactones) [113], although the opposition sug-
gests that the low hormones content along with the low application doses of biostimulants
cannot justify these positive effects on plant growth [90,114]. However, the recent study
of Dookie et al. [115] came to confirm the hormonal effects of seaweed extracts, since the
foliar application of A. nodosum and Sargassum sp. extracts on tomato plants up-regulated
the expression of six flowering genes. Other recent studies highlight the protective effects
of seaweed extracts against oxidative stress in plants subjected to environmental stress,
thus reducing electrolyte leakage and lipid peroxidation [116].

Ecklonia maxima is another brown microalgae the extracts of which have found several
application in crop production via various biostimulatory products. The effects of these
extracts have shown positive results on crop yield and leaf color of lettuce plants [117], on
mung bean germination and plant growth [118], and on growth and nutritional quality of
spinach [119]. The application of E. maxima extracts on potato plants also had varied effects
including the increase of marketable yield [120] the improved tolerance to abiotic stress and
total assimilation area [121] whereas contrasting effects on quality were reported with no
effects on dry matter, protein, total sugars and vitamin C content [122] or increasing trends
on total and true proteins content being observed [123]. The detailed analysis of the extracts
identified new plant growth biostimulants, namely eckol and phloroglucinol [119,124,125],
while other plant growth regulators such as abscicic acid, gibberellins and brassinosteroids
were also detected in commercial products indicating a hormone-like activity [126]. Apart
from these two algae species, several other macro- and microalgae extracts have been
incorporated in commercial formulation that are currently used in various horticultural
crops [127]. However, despite the scientific evidence regarding the hormonal effects
of seaweed extracts, several factors associated with the variability in experimental set-
ups, the plethora of seaweed-based products and their species-specific effects, the lack
of information regarding the analytical composition of such products and the variable
composition of raw material throughout the year make the definition of mechanisms of
action difficult [113].

Another category of biostimulants widely used in horticulture is protein hydrolysates
and nitrogen-containing compounds. There are several commercial products available de-
rived from plant or animal proteins with various applications in horticultural crops during
the last few years [128–130]. For example, one of the first studies was conducted on common
bean with protein hydrolysates derived from tomato plant residues and reported a signifi-
cant increase in nitrogen assimilation of bean [131]. Other crop residues were also promis-
ing sources of protein hydrolysates and have found practical applications in vegetable
crops, e.g., tomato grown in organic [132,133] and conventional farming systems [134],
or common bean plants grown under water-stress conditions [135]. Other application of
protein hydrolysates refer to plants subjected to stress conditions such as in the study of
Koleška et al. [136] who tested the effectiveness of biostimulants in alleviating macronu-
trient deficiency effects on tomato plants, or Casadesús et al. [137] and Ertani et al. [138]
who studied the hormonal effects of plant biostimulants on water-stressed tomato plants.
It is suggested that foliar or root applications of protein hydrolysates may improve root
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development, C and N assimilation and nutrients uptake from plants [33,139,140], regulate
the metabolic processes through a multi-level signaling that involves auxin-like activi-
ties [141–143], as well as to increase the effectiveness of plant defense mechanisms against
abiotic stressors in a sustainable manner [144]. However, apart from increased tolerance to
stressors the application of protein hydrolysates may enhance quality parameters in fruit
and leafy vegetables [35,105,145].

On the other hand, nitrogen containing products have also shown promising results in
alleviating stress effects on horticultural crops, as in the case of spinach [16] and common
bean [15]. Gelatin is another compound included in animal-derived protein hydrolysates
which may improve vegetable crops performance through the up-regulation of nitrogen
assimilation by plants [146]. The application of amino acids has also shown positive effects
on plant growth, photosynthetic processes and nutritional quality of lettuce [147,148], nu-
tritional quality and physiological parameters of common bean [149,150], plant growth and
nutritional status of fennel [151], physiological parameters and chlorophyll content of broc-
coli [152], and plant growth and fruit quality of tomato grown under iron deficiency [19] or
macronutrients deprivation regimes [153].

Humic substances (HS) include humic and fulvic acids which are present in soil or-
ganic matter as well in aquatic environments and the atmosphere and differ with each other
in their molecular weight [88]. Their application in pepper plants resulted to an increase in
plant growth and to accelerated fruit development without significant difference in terms of
fruit yield being observed from the untreated plants [154]. In tomato plants, the exogenous
application of HS in combination with chelated FeEDDHA increased iron uptake, while
it also improved phosphorus content in leaves [155]. Moreover, HS application increased
early yield in potato crop when plants were grown under low temperatures and water
availability [156], while the incorporation of HS in growing medium increased seed germi-
nation and seedling growth in tomato and okra [157,158]. Similar positive effects of HS
application were observed on garlic through the stimulation of N and S uptake [159,160], or
on onion plants without however significant correlations between the yield and nutrients
uptake [161]. The increased yield and quality of potato tubers after the incorporation
of HS in soil was attributed to the better availability use efficiency of nutrients due to
reduced leaching, as well as to increased water holding capacity of soil [162,163]. Humic
substances may also alleviate negative effects of high salinity, as reported by Shalaby and
El-Messairy [164] in melon plants. In contrast, Ibrahim and Ramadan [165] reported incon-
sistent results for the foliar application of zinc combined with humic acid and chitosan on
common bean plants, while Hartz and Bottoms [166] suggested no significant effect of HS
application on dry matter accumulation or fruit yield in lettuce and tomato, respectively.
However, these contradicting reports could be associated with application time and doses,
as already suggested by Bettoni et al. [167] for onion crop, or the application methods in
the case of mung bean [168]. According to De Hita et al. [60], root application showed more
consistent effects than foliar application of HS, since although hormone-like activities in
both methods of application the foliar spraying has transient impact and has to be repeated
during the growing period.

Biostimulants based on plant growth promoting microorganisms include microbial
inocula from bacteria and fungi of various genera and have also found practical appli-
cations in horticultural crops, either alone or in combination with each other [169]. In
the case of fungi, Trichoderma-based products are the most widely used in horticultural
crops [170–173], although other fungi such as Glomus sp. are also applied in sustainable hor-
ticulture [15,27,41,174–176]. Regarding the plant growth promoting rhizobacteria (PGPR),
the strategy to choose the appropriate ones includes six steps: (i) Determination of the
target crop and commercial strategy; (ii) selection of growth media for the isolation of
microbial candidates; (iii) screening for traits giving considerable agronomical advantages;
(iv) screening for traits belonged to product development; (v) characterization of the mode
of action of PGPR; and (vi) evaluation of plant growth efficacy [177]. However, consider-
able variability is observed in the obtained results and considering that mechanisms of
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action are not fully understood and the importance of soil physicochemical parameters it
is advisable to analyze soil characteristics and then apply those PGPRs that best suit the
conditions [48]. The application of PGPR is associated mostly with stress alleviation effects
in various crops such as common bean, potato, and lettuce which consequently results to
better plant growth and yield [48,178–180]. The plant growth promoting effects are related
to hormonal regulation in plants, since soil microbes produce various phytohormones
which enter the plant from roots via the transpiration flow and reach the shoot sinks where
they can induce alterations in shoot and leaf morphology and physiology [181].

Phosphite is a novel biostimulant which may function as a phosphate source affecting
plant growth and performance, as well as a biocide against various pathogens and abiotic
stress reliever [67,97,182]. It is usually applied with foliar spraying or through the nutrient
solution with drip irrigation in the form of potassium phosphite or phosphorus acid, result-
ing to beneficial effects on plant growth and yield in several vegetable crops [67,69]. The
most profound effects were observed in potato crop, where the foliar spraying or potato
seed treatment with potassium Phi-improved plant growth and yield and earliness of tuber
maturity through the induction of defense mechanisms and the increase of mycorrhizal
colonization [94,96,97]. However, there are also studies where negative effects were re-
ported for Phi application on tomato and pepper due to phytotoxicity effects, especially
when plants are subjected to P-deficient conditions [182]. According to the same study, the
positive or negative effects of Phi are highly associated with the P availability of plants,
since Phi per se is not an effective form for P supplementation of plants and positive effects
are due to pathogens control [182].

Biopolymers, such as chitosan, have been widely used in horticultural crops cultivation
for many years mostly for pathogen control purposes [85]. The modes of application
include foliar spraying, direct incorporation in soil or coating of vegetable products [68,71].
In particular, chitosan application was found beneficial for lettuce and tomato plants
growth [71,183] and increased phytochemicals defensive metabolites content in spinach
leaves [72]. However, there is evidence that bulk chitosan is associated with root growth
inhibition when applied in non-optimal concentrations, therefore, alternative forms have
been suggested including chitosan micro- and nanoparticles which are safer for agricultural
use [184,185].

Silicon (Si) has many biostimulant activities such as enhancing growth and develop-
ment of horticultural crops, especially under abiotic stress conditions; Si mechanisms of
action are involved in oxidative damage, water relations, photosynthesis, ion uptake, hor-
mones, and acts mostly via silica deposition in tissues providing mechanical strength [10].
Although Si effects are mostly visible under stressful conditions, its application may also
have beneficial effects on crops grown under optimal conditions since it improves photo-
synthetic activity and plant growth [186]. The main application form is the foliar spraying,
soil incorporation or fertigation of silicic acid and silicates [187], although new forms have
also been suggested, such as silicon nanoparticles, for better uptake of Si from plants
compared to the bulk form [188]. There are several examples of beneficial effects of Si on
vegetable crops, such as tomato [189–191], cucumber [192], pepper [193], and squash [194],
where Si application alleviated the negative effects of abiotic stressors on plant growth.

A great variety of biostimulant products with different active compounds have been
suggested for application in the agricultural sector, including phenolic acids [195], triglyc-
erides [196], titanium [2,197], or zeatin from Moringa oleifera leaves [198]. Moreover, chi-
tosan is another important biopolymer with biostimulant activities which has been used to
alleviate water stress negative effects and increase shelf life on horticultural crops such as
basil [92], lettuce [71], spinach [72], tomato [183], and pepper [184], among others.

Apart from single product effects, there are several reports where the combination of
biostimulants resulted in beneficial effects on horticultural crops which usually are better
than those of single biostimulants [145]. For example, microalgae combined with humic
acids improved the growth and yield of onion [161], plant growth promoting bacteria
acted synergistically with humic acids to improve the growth of tomato [199,200] and
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potato plants [201], A. nodosum extracts combined with humic acids enhanced plant growth
and shelf life of lettuce and spinach [202], or the interaction of plant growth promoting
rhizhobacteria with seaweed extracts from E. maxima which increased plant growth and
photosynthetic pigments content in Amaranthus hybridus plants [203]. In this context,
Rouphael and Colla [204] suggested complex synergistic and additive effects of microbial
and non-microbial biostimulants with mechanisms of action that have to be unraveled at a
molecular level aiming to design the new generation of biostimulant products.

The main effects of biostimulants on vegetable crops are summarized in Table 2.

Table 2. Selected biostimulants effects on various vegetable crops.

Plant Common Name Key Points Effects References

Allium cepa L. Onion
a. Biostimulants containing humic acids,
organic substances, amino acids, carbon

and boron or algae extracts

Improved plant growth and yield, and
shelf life of bulbs [205]

b. Application of diluted bee-honey
extract (DHE)

Increased photosynthetic parameters,
biomass production and yield, and

antioxidants activity
[206]

Allium cepa var.
aggregatum L. Shallot a. Application of seaweed extracts,

vermicompost and mixture of animal waste Improved yield and bulb traits [207]

b. Soaking of seeds in PGPB biostimulants Increased germination percentage,
plant growth and bulb parameters [208]

Allium sativum L. Garlic
a. Foliar application of liquid humic

substances obtained from
vermicompost extracts

Improved yield and quality
parameters of bulbs [160]

Amaranthus hybridus L. Amaranth
a. Foliar application of vermicompost

leachate, smoke-water, karrikinolide, eckol
and Kelpak

Increased growth, higher chlorophylls,
carotenoids and proteins content [209]

b. Combination of plant growth-promoting
rhizobacteria (PGPRs), and

Ecklonia maxima extracts

Improved plant growth and
photosynthetic pigment content,

stress relief
[203]

Brassica juncea L. Mustard green

a. Foliar application of vermicompost
leachate, smoke-water, indole-3-butyric

acid and Ecklonia maxima extracts on
seedlings grown in soils from goldmines

Increased phytoremediative activities
though the accumulation of heavy metals [210]

Brassica oleraceae L. Broccoli

a. Combination of foliar spraying with
Ascophyllum nodosum extracts and watering

with amino acids on broccoli plants
subjected to water stress and re-watering

Increased photosynthetic parameters
under water stress conditions [152]

b. Combination of foliar spraying with
Ascophyllum nodosum extracts and watering

with amino acids on broccoli plants

Increased total phenolic compounds,
sinapic acid and quercetin content [211]

Brassica oleraceae L. Cabbage a. Foliar application of eckol from Ecklonia
maxima extracts

Increased root and shoot length,
photosynthetic pigments and proteins,

proline and iridoid glycosides;
inhibition of infestation from aphids

[39]

b. Thiosulfate application through the
nutrient solution in cabbage plants

subjected to Cd toxicity

Improved phytoremediative properties
of Cd without biostimulant effects on

cabbage plants
[212]

Capparis spinosa L. Caper
a. Incorporation of crushed maize seeds in
growing medium of caper plants subjected

to salinity stress

Increased activity of soil enzymes,
Na exclusion from plant tissues [213]

Capsicum annuum L. Pepper
a. Application of a lipo-complex
biostimulant containing mainly

polysaccharides, polypeptides and vitamins

Increased phenylalanine and
metabolites associated with fruit

ripening (organic acids,
monosaccharides, carotenoids)

[214]

Capsicum frutescens L. Chilli pepper a. Foliar application of oligochitosan Increased plant growth, chlorophyll
content and fruit weight [215]

Coriandrum sativum L. Coriander a. Seed inoculation with Azotobacter
chroococcum and Azospirillum lipoferum Increased biomass production [216]
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Table 2. Cont.

Plant Common Name Key Points Effects References

b. Foliar spraying with biostimulants
(Asahi SL or Goemar Goteo) on plants

subjected to chilling stress

Increased photosynthetic parameters,
L-ascorbic acid and total phenolic

compounds content and total
antioxidant activity

[217]

Cynara scolymus L. Globe artichoke a. Application of A. nodosum extracts and
trace elements. Increased number and weight of heads [218]

Daucus carota
subsp. sativus Carrot a. Foliar application of Kelpak SL and

Asahi SL
Kelpak SL improved nutritional value

and increased storage life of carrots [219]

Lactuca sativa L. Lettuce
a. Foliar and root application of protein

hydrolysates in lettuce plants grown under
salinity conditions

Mitigation of oxidative stress, increased
osmolytes and glucosinolates content [220]

b. Foliar application of liquid humic
substances obtained from vermicompost

Improved earliness of plants, increased
the number of leaves per plant and

total yield
[221]

c. Application of crude seaweed extracts
(Gracilaria caudate and Gracilaria
domingensis) on lettuce seedlings

Increased root growth [222]

d. Inoculation of growth substrate with
Bacillus spp.

Positive effects on plant growth
nitrate content [223]

Manihot esculenta
Crantz Cassava

a. Foliar application of Moringa oleifera
leaves extracts. The plant height and leaf
number of cassava plant were increased

because of foliar application of MLE.

Improved plant growth and decreased
incidence of Zonocerus variegatus attacks [219]

Nasturtium officinale Watercress
a. Foliar spraying of algal biostimulant on

watercress plants grown in Cd
contaminated soil

Increased plant growth and reduced
Cd accumulation in plant tissues [208]

Ocimum basilicum L. Basil a. Foliar application of Moringa oleifera
leaves extracts

Increased growth and yield, and
estragole and eucalyptol contents [224]

b. Foliar spraying with palm pollen grains
extract alleviated the negative effects of

deficit irrigation on basil plants.

Improved plant growth and essential
oils content and antioxidant enzyme
activities; maintained relative water

content, electrolyte leakage and water
use efficiency; improved leaf and

stem anatomy

[225]

Phaseolus vulgaris L. Common bean

a. Foliar application of protein
hydrolysates from pumkin seeds on

Phaseolus vulgaris plants grown under
saline conditions

Maintained plant growth, yield and
anatomical features; mitigated
negative effects of salt stress on
macronutrients, photosynthetic

pigments, relative water content and
stability of cell membranes

[135]

b. Foliar and soil application of Nomoren,
EKOprop, Veramin Ca on Phaseouls vulgaris
plants grown under normal irrigation and

water stress conditions

Positive effects on yield, nutritional
parameters, chemical composition and

bioactive properties of fresh pods
and seeds

[14,15]

c. Seed soaking and foliar spraying with
licorice root extract on common bean

plants subjected to salinity stress

Improved growth, yield and
physicochemical parameters [226]

d. Seed soaking and foliar spraying with
salicylic acid and Moringa oleifera leaves

extracts on common bean plants subjected
to salinity stress

Improved growth, yield and
physicochemical parameters [227]

Phaseolus vulgaris L. Snap bean a. Foliar spraying with Moringa oleifera
leaves extracts

Improved plant growth and yield
components, increased total phenolic
compounds and minerals content in

pods

[228]

b. Foliar spraying with garlic cloves
extracts

Improved plant growth parameters,
yield and chemical composition of

pods
[229]



Biomolecules 2021, 11, 698 12 of 23

Table 2. Cont.

Plant Common Name Key Points Effects References

Pisum sativum L. Pea a. Foliar spraying with Moringa oleifera
leaves extracts

Increased biomass production, pod
and seed yield, proteins and nutrients

content in seeds
[230]

b. Seed soaking in licorice root extract
Increased seedling growth,

photosynthetic activity and antioxidant
enzymes activity

[231]

Solanum lycopersicum L. Tomato a. Incorporation of humic acids and/or
crushed maize grain

Improved shoot and root growth,
increased relative water content and
membrane stability of transplants,
improved macronutrients uptake

[232]

b. Seed pretreatment with liquid extracts of
Chaetomorpha antennina green seaweed

Increased germination percentage and
vegetative growth, improved

biochemical profile
[233]

c. Foliar spraying with
Chitosan microparticles

Improved seed germination and
seedling vigor, modulation of
antioxidant enzymes activities

[234]

d. Foliar treatment with saffron extract
Improvement in morphological and
biochemical parameters, antifungal
effects against Phytophthora infestans

[234]

e. Foliar application of humic (Megafol)
and amino acids (Viva) biostimulants

Improved plant growth under normal
fertilization rates and minimized yield

loses under nutrients deprivation
[153]

f. Foliar application of Tecamin Brix®

and/or Tecamin Flower ® in tomato plants
grown in saline conditions.

Improved yield and fruit quality [235]

g. Deed treatment and foliar spraying of
microalgal extracts

Improved germination and seedling
growth rates [236]

h. Soil application of compost and
arbuscular mycorrhizal fungi

Improved plant growth and
photosynthetic parameters,

reduced incidence of
Verticillium dahliae infestations

[237]

i. Soil application of biostimulants
containing plant extracts, Ascophyllum

nodosum extracts or animal derived protein
hydrolysates in tomato plants

after transplantation

Reduced transplantation shock
through the increase of root and

shoot development
[238]

j. Fertigation with
microalgae polysaccharides

Improved vegetative growth, increased
nutrients, protein and sterols content

in leaves
[239]

k. Foliar application of brown seaweed
extracts from A. nodosum and Sargassum sp.

Induced flower formation and
fruit setting [115]

Solanum melongena L. Eggplant a. Foliar application of A. nodosum extracts Improved flower and fruit set, fruit
yield and chemical composition [240,241]

b. Foliar application of aqueous garlic bulb
Single application increased plant

growth, photosynthetic parameters
and antioxidant enzymes activity

[242]

Solanum tuberosum L. Potato
a. Combined application of Ecklonia

maxima extracts and Asahi SL
with herbicides

Increased content of true and total
proteins, increased marketable yield

and yield parameters
[120,123]

b. Soil spraying of biostimulant containing
N-fixing microbes (NFM0 combined or not

with an amino acid blend
Unintended impacts on nitrogen losses [82]

c. Potato seed pretreatment and foliage
spraying with phosphite

Induced structural and biochemical
changes in tuber periderm and cortex,
increased tolerance to UV-B, enhanced
sprouts emergence and early growth

[94,95,97]
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Table 2. Cont.

Plant Common Name Key Points Effects References

d. Foliar application of biostimulants
containing A. nodosum extracts, E. maxima

extracts or humic and fulvic acids

Increased yield under drought stress,
increased marketable yield [156]

Spinacia oleracea L. Spinach a. Foliar spraying of smoke-water and
Ecklonia maxima extracts,

Increased growth and biochemical
parameters (antioxidant enzymes
activity and sinapic acid content)

[119]

b. Application of various biostimulants
(Megafol, Aminovert, Veramin Ca, Twin
Antistress and irrigation treatments on

spinach plants grown under normal and
water stress conditions

Improved nutritional value and
bioactive properties [16]

Vicia faba L. Broad bean

a. Foliar spraying with Bacillus licheniformis,
yeast (5 g/L), extracts form algae and

humic acid (20 g/L), increased pigments,
carotenoids concentrations and

total carbohydrates.

Improved photosynthesis and
nutrients uptake, induced endogenous

hormones and protein biosynthesis
[243]

4. Future Remarks and Conclusions

Sustainable farming of vegetables is the focal point of research within the last decade
considering the ongoing climate change and the increasing incidences of weather extremi-
ties as well as the pressure on crops from other abiotic and biotic stressors e.g., water and
salinity stress or pathogens infestations. Moreover, food security and the efficient use of
natural resources are in a tug-of-war with increasing food demands on the one side and
replenishment of natural resources and their efficient use on the other side. Conventional
cultivation of vegetables under these conditions becomes more and more difficult and
farmers throughout the world start to adapt sustainable cultivation practices seeking al-
ways new methods. Biostimulants application is proven a useful tool towards this aim,
allowing vegetable producers to cultivate under unfavorable conditions without adverse
effects on crop yield. Moreover, the great variety of biostimulant products means there are
commercially available products suitable for various conditions and crops. The present
review gathered the most up-to-date information regarding the classification of biostimula-
tory agents and their main mechanisms of action, as well as their practical applications on
vegetable crops. Although there are several cases where biostimulant application resulted
to beneficial effects on plant growth and yield, more studies are needed to fine-tune ap-
plication practices, since it seems there are product and crop specificities to be addressed
and negative or no effects are also reported. These variable effects reported in the literature
are usually due to the variable composition of biostimulants which are natural matrices
that include various compounds from different classes and different activities, as well as
to uncertainties in application times, methods and doses. Finally, the crop factor is also
important since the genotype has a great effect on the response to biostimulant products,
especially under stressful conditions.

Considering the above, the production and application of is an evolving process and
new biostimulant products are needed. However, this should be realized under a new
approach focusing on the synergistic effects of various biostimulatory agents instead of
single-product application. Moreover, studying the molecular mechanisms behind the
observed activities will help to reveal those physiological and plant metabolism pathways
involved in this process and provide farmers with tailor-made products suitable for variable
conditions. The application of biostimulants is not just a promising and environmentally-
friendly practice, but it may also lead to increased use efficiency of natural resources
through water deficit irrigation regimes and the reduced input of agrochemicals (e.g.,
mineral fertilizers and chemical for pests and pathogen control). It can also increase the
sustainability of agricultural and horticultural production systems as well as improve the
quality and quantity of food for the ever-growing world’s population.
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195. Przybysz, A.; Gawrońska, H.; Gajc-Wolska, J. Biological mode of action of a nitrophenolates-based biostimulant: Case study.

Front. Plant Sci. 2014, 5, 1–15. [CrossRef]
196. Elmarie, V.D.W.; Johan, C.P.; Van Der Watt, E.; Pretorius, J.C. A triglyceride from Lupinus albus L. seed with bio-stimulatory

properties. Afr. J. Biotechnol. 2013, 12, 5431–5443. [CrossRef]
197. Wadas, W.; Kalinowski, K. Effect of Tytanit on the dry matter and macroelement contents in potato tuber. J. Central Eur. Agric.

2018, 19, 557–570. [CrossRef]
198. Rady, M.M.; Varma, C.B.; Howladar, S.M. Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of

presoaking in Moringa oleifera leaf extract. Sci. Hortic. 2013, 162, 63–70. [CrossRef]
199. Galambos, N.; Compant, S.; Moretto, M.; Sicher, C.; Puopolo, G.; Wäckers, F.; Sessitsch, A.; Pertot, I.; Perazzolli, M. Humic

Acid Enhances the Growth of Tomato Promoted by Endophytic Bacterial Strains Through the Activation of Hormone-, Growth-,
and Transcription-Related Processes. Front. Plant Sci. 2020, 11, 1–18. [CrossRef]

200. Olivares, F.L.; Aguiar, N.O.; Rosa, R.C.C.; Canellas, L.P. Substrate biofortification in combination with foliar sprays of plant growth
promoting bacteria and humic substances boosts production of organic tomatoes. Sci. Hortic. 2015, 183, 100–108. [CrossRef]

201. Ekin, Z. Integrated Use of Humic Acid and Plant Growth Promoting Rhizobacteria to Ensure Higher Potato Productivity in
Sustainable Agriculture. Sustainability 2019, 11, 3417. [CrossRef]

http://doi.org/10.1016/j.scienta.2015.09.002
http://doi.org/10.1007/s00344-014-9414-4
http://doi.org/10.3390/agronomy10101569
http://doi.org/10.1016/j.micres.2020.126672
http://doi.org/10.1007/s11104-013-1981-9
http://doi.org/10.3389/fpls.2017.00141
http://www.ncbi.nlm.nih.gov/pubmed/28224000
http://doi.org/10.1016/j.micres.2015.12.003
http://doi.org/10.1071/FP14066
http://doi.org/10.1111/j.1747-0765.2009.00365.x
http://doi.org/10.28940/terra.v38i3.671
http://doi.org/10.1016/j.plaphy.2018.04.013
http://doi.org/10.1021/acs.jafc.9b00907
http://doi.org/10.3389/fpls.2017.00411
http://doi.org/10.3390/plants7020045
http://doi.org/10.1007/s13205-019-1626-7
http://doi.org/10.1016/j.plaphy.2014.02.009
http://www.ncbi.nlm.nih.gov/pubmed/24607576
http://doi.org/10.1016/j.jplph.2005.05.010
http://www.ncbi.nlm.nih.gov/pubmed/16777532
http://doi.org/10.3389/fpls.2016.00196
http://doi.org/10.1007/s00299-015-1814-9
http://www.ncbi.nlm.nih.gov/pubmed/26021845
http://doi.org/10.1002/etc.2697
http://doi.org/10.3389/fpls.2014.00713
http://doi.org/10.5897/AJB12.2851
http://doi.org/10.5513/JCEA01/19.3.1996
http://doi.org/10.1016/j.scienta.2013.07.046
http://doi.org/10.3389/fpls.2020.582267
http://doi.org/10.1016/j.scienta.2014.11.012
http://doi.org/10.3390/su11123417


Biomolecules 2021, 11, 698 22 of 23

202. Sandepogu, M.; Shukla, P.S.; Asiedu, S.; Yurgel, S.; Prithiviraj, B. Combination of Ascophyllum nodosum Extract and Humic Acid
Improve Early Growth and Reduces Post-Harvest Loss of Lettuce and Spinach. Agriculture 2019, 9, 240. [CrossRef]

203. Ngoroyemoto, N.; Kulkarni, M.G.; Stirk, W.A.; Gupta, S.; Finnie, J.F.; van Staden, J. Interactions Between Microorganisms and a
Seaweed-Derived Biostimulant on the Growth and Biochemical Composition of Amaranthus hybridus L. Nat. Prod. Commun. 2020,
15, 1–11. [CrossRef]

204. Rouphael, Y.; Colla, G. Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable
Agriculture. Front. Plant Sci. 2018, 9, 1655. [CrossRef]

205. Shehata, S.A.; AbdelGawad, K.F.; Elmogy, M. Quality and Shelf-life of Onion Bulbs Influenced by Bio-stimulants. Int. J. Veg. Sci.
2017, 23, 362–371. [CrossRef]

206. Semida, W.M.; El-Mageed, T.A.A.; Hemida, K.; Rady, M.M. Natural bee-honey based biostimulants confer salt tolerance in onion
via modulation of the antioxidant defence system. J. Hortic. Sci. Biotechnol. 2019, 94, 632–642. [CrossRef]

207. Anbarasi, D.; Haripriya, K. Response of aggregatum onion (Allium cepa L. var. aggregatum Don.) to organic inputs, bio fertilizers and
biostimulants. Plant Arch. 2020, 20, 759–762.

208. Agung, I.G.A.M.S.; Diara, I.W. Biostimulants Enhanced Seedling Root Growth and Bulb Yields of True Seed Shallots (Allium cepa
var aggregatum L.). Int. J. Environ. Agric. Biotechnol. 2019, 4, 598–601. [CrossRef]

209. Ngoroyemoto, N.; Gupta, S.; Kulkarni, M.; Finnie, J.; Van Staden, J. Effect of organic biostimulants on the growth and biochemical
composition of Amaranthus hybridus L. S. Afr. J. Bot. 2019, 124, 87–93. [CrossRef]

210. Arthur, G.D.; Aremu, A.O.; Kulkarni, M.G.; Okem, A.; Stirk, W.A.; Davies, T.C.; Van Staden, J. Can the use of natural biostimulants
be a potential means of phytoremediating contaminated soils from goldmines in South Africa? Int. J. Phytoremediation 2015, 18,
427–434. [CrossRef] [PubMed]
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