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Various all-atom molecular dynamics (MD) simulation methods have been developed to
compute free energies and crossing rates of ions and small molecules through ion
channels. However, a systemic comparison across different methods is scarce. Using
a carbon nanotube as amodel of small conductance ion channel, we computed the single-
channel permeability for potassium ion using umbrella sampling, Markovian milestoning,
and steady-state flux under applied voltage. We show that a slightly modified
inhomogeneous solubility-diffusion equation yields a single-channel permeability
consistent with the mean first passage time (MFPT) based method. For milestoning,
applying cylindrical and spherical bulk boundary conditions yield consistent MFPT if
factoring in the effective bulk concentration. The sensitivity of the MFPT to the output
frequency of collective variables is highlighted using the convergence and symmetricity of
the inward and outward MFPT profiles. The consistent transport kinetic results from all
three methods demonstrated the robustness of MD-based methods in computing ion
channel permeation. The advantages and disadvantages of each technique are discussed,
focusing on the future applications of milestoning in more complex systems.
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INTRODUCTION

Ion channels are complex biological nanopores that perform vital physiological functions with high
sensitivity and precision. Over the decades, molecular dynamics (MD) simulation has become an
indispensable tool for computing the functional properties of ion channels directly from their
dynamic structures. Various MD-based methods were developed for investigating the
thermodynamics and kinetics of ions or small-molecules permeation at the single-channel level.
Many pioneering atomistic MD simulations on ion channels have focused on computing ion
permeation from equilibrium free energy profiles, or potential of mean force (PMF), in conjunction
with electro-diffusion theory (Bernèche and Roux, 2001; Allen et al., 2004; Domene et al., 2008;
Fowler et al., 2013). The increased computing power and performance of MD engines have also
enabled researchers to simulate single-channel conduction explicitly under a constant external
electric field (Khalili-Araghi et al., 2006; Roux, 2008) or an asymmetric ionic concentration across the
channel (Kutzner et al., 2011; Khalili-Araghi et al., 2013). If the system reaches a steady-state under
voltage or concentration gradient, a mean flux rate and a steady-state density profile can be obtained
from the ensemble of nonequilibrium processes. These equilibrium and nonequilibrium MD
simulations have significantly deepened our understanding of the ion channel permeation
process at the high temporal and spatial resolution (Roux, 1998; Zheng and Trudeau, 2015;
Flood et al., 2019; Carnevale et al., 2021).
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Unlike the steady-state flux under voltage, the equilibrium
MD approaches can be generally applied to any small-molecule
permeation (neutral or charged). Several theoretical frameworks
can be used to compute crossing rates from PMF profiles
obtained from enhanced sampling simulations. Particulary, if
the PMF is dominated by a single large barrier and the permeant
diffusion is constant at the barrier region, the crossing rate can be
estimated via Kramer’s theory or transition state theory (TST)
borrowed from reaction kinetics. However, for complex
biological ion channels, the aforementioned assumptions may
be far from satisfied. Alternatively, molecule permeation may be
considered a one-dimensional nonreactive diffusive process that
can be described using the fluctuation-dissipation theorem. For
instance, PMF can be used together with the position-dependent
diffusion coefficient to estimate permeability using the
inhomogeneous solubility-diffusion (ISD) equation (Diamond
and Katz, 1974). ISD equation has been applied successfully in
studying solute permeation across the membrane (Awoonor-
Williams and Rowley, 2016; Venable et al., 2019). Herein, we
show that a slightly modified ISD equation yields a single-channel
permeability consistent with a mean first passage time (MFPT)
based method, which extracts detailed kinetics along the
molecular permeation pathway directly from rare-event
sampling methods. Recent examples of such rare-event
sampling applied on ion channels include milestoning
(Alberini et al., 2018; Cottone et al., 2020; Jiang et al., 2021a),
weighted ensemble sampling (Adelman and Grabe, 2015), and
Markov state models (Teo and Schulten, 2013; Choudhary et al.,
2014; Domene et al., 2021; Hempel et al., 2021). In theory, the
PMF-based method, MFPT-based method, and steady-state flux
under voltage should converge to the same single-channel
permeability for the same studied system. However, a systemic
comparison between different methods is still lacking.

In this work, we use a carbon nanotube (CNT) as a model
(Figure 1A) of small conductance (~2 pS) ion channel to
compare K+ permeability from milestoning, umbrella sampling
(US), and voltage simulations. This CNT system has been used to
compute K+ permeability using a transition path approach
similar to the reactive flux method (Zhou and Zhu, 2019). We
chose this system because its free energy barrier height (~4 kcal/
mol) and microsecond-timescale crossing rate are physiologically
relevant. Such a system requires nontrivial sampling (beyond the
capability of brute-force MD), but the rigidity of the CNT still
allows good convergence and unambiguous comparison of all
methods tested here.

The original milestoning simulation requires running short
trajectories in each milestone until they reach another milestone
(Faradjian and Elber, 2004). Here, we use the “soft-walls”
Voronoi-tessellated Markovian milestoning, which confines the
sampling within the Voronoi cells using flat-bottom harmonic
restraining potentials (Maragliano et al., 2009). The
implementation of this “soft-walls” version (referred to as
milestoning thereafter) resembles, to a large degree, the
conventional umbrella sampling setup. A detailed comparison
of the sampling, PMF, and MFPT results from milestoning and
umbrella sampling is the focus of this study. In addition, we tested
two bulk boundary conditions, namely the cylindrical and

FIGURE 1 | (A) Simulated CNT system, consisting of two fixed layers of
carbon atoms as water impermeable membrane. 6 K+ and 6 Cl− ions are
shown in tan and pink, CNT in orange color, and water oxygen in cyan.
Membrane carbon atoms are shown as blue spheres (B). z-coordinate
distribution of a tagged K+ from each umbrella sampling window
(corresponding data from milestoning are shown in Figure 2B). (C) PMFs
from two blocks of umbrella sampling trajectories, generated fromMBAR with
80,000 data points per window, with error bars in shaded color (D). The
position-dependent diffusion constant of K+ computed from umbrella
sampling. The transparent lines represent data from the first 20 ns and second
20 ns per window. A thick green line represents averaged and symmetrized
values. Inset is the plot of the correlation function used to compute correlation
time i and D(z) (see methods) (E). Local resistance (the integrand of Eq. 3) for
permeating K+ (F). Integration of the permeation resistance, 1/ P, as a function
of z.
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spherical boundaries, that are particularly useful for conducting
milestoning on ion channels.

The CNT system chosen here is designed to satisfy the
symmetric single barrier requirement, thus allowing us to
check the robustness of the milestoning method by computing
both inward and outward permeation rates. We also show that
the MFPT from milestoning is extremely sensitive to the
frequency of recording the relevant collective variables (e.g.,
the coordinates of the tagged ion). All physical quantities and
the obtained results are summarized in Table 1. The overall
consistent single-channel permeability demonstrated the
robustness of the theoretical and computational framework
tested here. The limitation and strengths of each method are
discussed and compared.

THEORY AND METHODS

Relation Between Single-Channel
Permeability, Mean First Passage Time, and
Conductance
Assuming permeating molecules do not interact under sufficient
low concentration, under physiological conditions, single-
channel permeability P (cm3/s) can be related linearly to the
rate of crossing k or mean first passage time (MFPT) < t>
under equilibrium, P � k/c � 1/c< t> , in which c is the
symmetric solute concentrations. Here, we use the number of
molecules per second for k, seconds per molecule for MFPT, and
molecule/cm3 for c.

For ionic permeation under voltage and/or concentration
gradient, Goldman–Hodgkin–Katz (GHK) flux equation
describes the ionic flux across a homogenous membrane as a
function of a constant electric field (voltage) and an ionic
concentrations gradient. Under symmetric concentration and
constant voltage, the current (I) and the permeability (P) can
be related by the GHK flux equation, I � Pz2VmF2

RT c, where z is the
charge of the permeant, Vm is the voltage, F is the Faraday
constant, R is the gas constant, T is the absolute temperature, and
c is the concentration (Hille, 2001). When applied to a
membrane-embedded single-channel model and ions only
cross the membrane through the channel, P in the GHK
equation corresponds to the single-channel permeability. GHK

flux equation thus relates single-channel conductance γ, a
nonequilibrium property, to the equilibrium property P.

It can be seen from the equations above that the crossing rate
k, MFPT, and conductance γ are all concentration-dependent;
only P is independent of concentration. Experimentally, P is
usually measured relative to the potassium ion permeability, thus
representing an intrinsic property of each channel. It is hence an
ideal quantity for rigorous comparison between different
computational methods.

System Setup and Equilibrium Protocols
The coordinates of the carbon tube (CNT) were taken from Zhou
and Zhu (2019). Briefly, it is an uncapped armchair CNT with
13.5 Å in length and 5.4 Å in radius. Two carbon sheets form an
artificial membrane to separate the solution (Figure 1A).
Constraints were applied to all carbon atoms to keep the
system rigid. The CHARMM36 force field was used
(MacKerell et al., 1998; Mackerell et al., 2004). After solvation,
the box size was 38 × 38 × 75 Å3, which contained 2503 TIP3P
water molecules, six K+, and six Cl−. All MD simulations were
performed using 1 fs time step using NAMD2.13 package under
NVT ensemble, with 1 atm and 300 K temperature using
Langevin thermostat (Hoover et al., 1982; Evans, 1983). Cutoff
for calculating vdW interaction and short-range electrostatic
interaction was set at 12 Å and force-switched at 10 Å. Long-
range electrostatic interactions were calculated using the particle
mesh Ewald algorithm (Darden et al., 1993). The system was
equilibrium for 100 ns before conducting umbrella sampling,
milestoning, and voltage simulations.

Umbrella Sampling Simulations
A total of 28 windows (−27Å < z < +27 Å) were sampled. Each
window was separated by 2 Å apart. The tagged K+ was restraint
by a harmonic restraint on z and a flat-bottom harmonic
cylindrical restraint. The force constant for harmonic restraint
was 2.5 kcal/mol/Å, and that for cylindrical restraint was 10 kcal/
mol/Å within 6 Å on the X-Y radius plane. The reference dummy
atom to pull the K+ was set at (0, 0, 0). The harmonic distance
restraint was determined by the projected vector along z between
the dummy atom and tagged K+. The cylindrical restraint was
determined by the center of mass of all carbon atoms from CNT.
Each window was run for 40 ns (Figure 1B). The PMF
(Figure 1C) was computed using Pymbar 3.0.3 (Chodera

TABLE 1 | Summary of the three methods for computing single-channel permeability.

Method Umbrella sampling Markovian milestoning Steady-state flux

Permeability equation
P � πr2(∫z2

z1
eβw(z)
D(z) dz)−1

P � πr2 ∫Z2

Z1
e
−w(Z)/kBT dz

2 × MFPT P � γkBT
q2C

Effective bulk conc. 0.77 M 0.77 M 0.52 M
Biasing potential Harmonic Flat-bottom harmonic Voltage ±0.4 V
Biasing force constant 2.5 kcal/mol 100 kcal/mol —

Lateral restraint in bulk 6 Å 6 Å —

PMF barrier (kcal/mol) 3.8 ± 0.17 4.1 ± 1.7 —

Key parameters D(z) 0.004 ~0.028 Å2/ps MFPT: 2.6 μs Conductance 2.3 ± 1.2 pS
Permeability (cm3/s) (8.96 ± 0.02) ×10−16 2.92 × 10–16 (11.7 ± 6.3) ×10−16

Total sampling time (μs) 1.12 4.98 0.60

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8609333

Lin and Luo Single-Channel Permeability From Atomistic Simulations

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


et al., 2007; Shirts and Chodera, 2008). The output frequency was
0.5 ps per frame.

Position-Dependent Diffusion
Coefficient D(z)
D(z) of K+ inside the CNT was calculated from umbrella
sampling trajectories (Figure 1D). The correlation time was
extracted from each umbrella window i using τi �∫∞

0
〈δz(t)δz(0)〉i

〈δz〉2i
dt , where δz(t) � z(t) − 〈z〉 is the deviation

of the z-position of the ion at time t, z(t), from the time-
averaged position z in each window. 〈δz2〉i � 〈z2〉i − 〈z〉2i is
the variance. Following the formulation of Berne et al.
(1988), Woolf and Roux (1994), Hummer (2005), the
Laplace transformation of the velocity autocorrelation
function along the reaction coordinate z in the
harmonically restrained umbrella sampling
gives D(zi) � 〈δz2〉

τi
.

MarkovianMilestoningWith Cylindrical Bulk
Restraint
The same as in umbrella sampling, the z-coordinate of the tagged
ion was used to define a set of Voronoi cells along the channel
pore and identify the milestones as the boundaries between the
cells. To facilitate the comparison in analysis, we kept the
Voronoi cell setup (28 cells and 2 Å apart) and the bulk
cylindrical restraint (6 Å radius) identical to our umbrella
sampling windows (Figure 2A). The only difference is that a
flat-bottom harmonic restraint of force constant 100 kcal/mol/Å,
instead of the weak harmonic restraint, was used to confine the
sampling within each cell (Figure 2B vs. Figure 1B). We then ran
28 local simulations confined in each cell and collected the
kinetics of transitions between milestones. More specifically,
let us introduce a set of M Voronoi cells Bi, i = 1, . . . ,M.
Since the total flux in and out of each cell is zero at statistical
equilibrium, the rate of attempted escape from cells Bj to Bi, kj→i ,

FIGURE 2 | (A). Raw data plotted along the channel z-axis and radial distanceR � ������
x2 + y2

√
from channel center axis (x, y = 0, 0) from 28milestoning sampling cells.

(B) Distribution of the milestoning data along the z-axis (same plot from the US is shown in Figure 1A). (C) PMF from Milestoning sampling. Different color represents
different Colvars frequency (i.e., the frequency of recording the z-coordinates of the tagged ion). The bold purple (0.5 ps) is the data used for the final comparison. (D)
MFPT plot with the same color representation as PMF plot. The curves with dot solid lines are outward directions of tagged ion, and dash curves present inward
direction. (E)Maximum waiting time between successive transitions (F). Minimum waiting time between successive transitions (G). z-position decorrelation time in each
milestoning cell. (H) Convergence of the variables in Eq. 2 for computing the rate matrix. Milestoning cell 11 is chosen as an example here.
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and the equilibrium probability πi for the tagged ion to be in cell
Bi satisfies a balance equation:

∑
j�1,j≠i πjkj→i � ∑

j�1,j≠i πiki→j , ∑
i�1 πi � 1 (1)

The free energy of each cell can be obtained from the solution
of Eq. 1 as −kBTln(πi) (Figure 2C). By defining a milestone Sij as
the boundary between two adjacent Voronoi cells Bi and Bj, the
dynamics of the system is reduced to that of aMarkov chain in the
state space of the milestone indices (Vanden-Eijnden and
Venturoli, 2009). The MFPT between any pair of milestones
Sij and Sik can hence be calculated from the rate matrix whose
elements qij,ik, the rate of moving from milestone Sij to Sik, are
given by

qij,ik �
πiniij,ik

πiriij + πjr
j

i _J

(2)

where niij,ik is the number of transitions from Sij to Sik,
normalized by the time spent in cell Bi . riij is the time
passed in cell Bi after having hit Sij before hitting any other
milestone, normalized by the total time spent in cell Bi . The
inward and outward MFPT profiles were obtained by reversing
the milestone indices when constructing the rate matrix
(Figure 2D). The niij,ik and riij can be used to monitor the
convergence of the rate matrix (Figure 2H).

The total sampling time of all 28 cells was 4.9 μs, where each
cell was sampled between 150 and 300 ns. The NAMD Colvars
output frequency was 0.5 ps. The PMF andMFPT were computed
using a set of in-house python scripts https://github.com/
yichunlin79/CNT_milestoning_method with different frame

sizes. In order to check whether the Colvars output frequency
has any effect on MFPT, additional milestoning simulations were
conducted with the Colvars output frequency of 0.2 ps and a total
sampling time of 2.74 μs.

Markovian Milestoning With Spherical Bulk
Restraint
For spherical bulk restrained milestoning, a total of 14 Voronoi
cells were used, including eight cells inside the channel (identical
to the milestoning above) and three layers of spherical shell on
each side of the channel (Figure 3A). The distance between the
tagged K+ ion and two dummy atoms fixed at the Cartesian
coordinates of (0, 0, −8) and (0, 0, 8) are used to set up the
spherical shells in bulk with radius increments of 3, 3, and 4 Å.
Additional z > |8|Å restraint is applied to keep the ion outside the
channel. All restraint force constant is 100 kcal/mol/Å. The
length of each bulk window is 150 ns with Colvars output
frequency of 0.5 ps−1.

Voltage Simulations
After 100 ns equilibrium simulation, constant electric fields
corresponding to the transmembrane potential of ±0.3 and
±0.4 V were applied perpendicular to the membrane to all the
atoms using NAMD2.13. In order to be consistent with the
umbrella sampling and milestoning, a cylinder restraint of 6 Å
radius was applied to a tagged K+ in bulk with 10 kcal/mol/Å
force constant for ±0.4 V systems. All other ions moved freely
beyond the cylinder restraint region. The K+ conductance was
computed by counting the total number of crossing events and
computing the charge displacement along the z-axis (Figure 4).
Error bar was computed from three independent replicas of
200 ns. For ±0.3 V systems, all six K+ were restrained inside
the same cylindrical bulk boundary, and a single replica of 60 ns
was conducted. The time step was 1 fs, and the output frequency
was 5 ps for all voltage systems.

RESULTS AND DISCUSSION

Single-Channel Permeability From
Inhomogeneous Solubility-Diffusion (ISD)
Equation
Molecular permeation through ion channel can be described by
ISD if the one-dimensional free energy and diffusion along
channel normal is sufficient to describe the diffusion process
(relaxation of orthogonal degrees of freedom is fast relative to the
reaction coordinate) and the permeant velocity relaxation time is
instantaneous (on the scale of integration time step). The only
difference with the ISD equation used for membrane permeation
is that a flat-bottom lateral potential u(x, y) is often used to
confine a single tagged ion in a cylindrical bulk region outside the
ion channel. The effective cross-sectional area due to the lateral
restraint is thus ∫∫ e−βu(x,y)dxdy, which can be approximated to
πr2 in a homogenous bulk, where r is the radius of the cylinder.
Hence, πr2 defines the effective bulk concentration in the

FIGURE 3 | (A) Sampling plot with spherical restraint at two bulk ends.
The three spherical radius intervals are 3 Å, 3 Å, and 4 Å from channel to bulk
(B). PMF of the spherical restraint system. The x-axis represents the cell index
number. (C) MFPT of the spherical restraint system. x-axis represents
the cell index numbers.
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simulated region, which led the probability of the ion inside the
channel p(z) over the true bulk density ρ to be p(z)

ρ � πr2e−βw(z) ,
where w(z) is the PMF with the bulk value set to zero at the
cylindrical region and β � 1/kBT (Allen et al., 2004; Zhu and
Hummer, 2012). T is the temperature, and kB is Boltzmann’s
constant. Therefore, at low ionic concentration, single-channel
permeability can be estimated using a slightly modified ISD
equation:

P � πr2⎛⎜⎜⎜⎝∫z2

z1

eβw(z)

D(z) dz
⎞⎟⎟⎟⎠

−1

(3)

In Eq. 3, D(z) is the position-dependent diffusion constant
of the studied permeant along the z-axis (Figure 1D). The
interval of the integration, [z1, z2], is the lower and upper
boundaries of the channel pore, beyond which PMF reaches
the bulk value. r is the radius of the cylindrical restraint when
the ion is outside of the [z1, z2] interval. It is necessary to set r
larger than the maximum pore radius so that it has no
energetic contribution inside the pore. The radius of the
cylindrical restraint defines the effective bulk concentration.
Thus, it offsets the bulk PMF value and ensures that the
single-channel permeability from Eq. 3 is concentration-
independent.

In both umbrella sampling and milestoning, the same
cylindrical restraint with r = 6 Å is applied in the bulk
region, and the same window size of 2 Å was used. The
only difference is that a weak harmonic restraint with a
force constant of 2.5 kcal/mol is applied for all umbrella
windows to ensure sufficient overlapping between
neighboring samplings, but a strong flat-bottom harmonic
restraint with a force constant of 100 kcal/mol is applied for
all milestoning cells to confine the sampling within each cell.
Figure 1B and Figure 2B illustrate the biased sampling
distribution imposed by these two types of restraints. The
PMFs from the US are shown in Figure 1C. With bulk value
offset to zero, a broad energy barrier of 3.8 kcal/mol located
inside the channel region is consistent with a previously
reported PMF (Zhou and Zhu, 2019).

Using the PMF or w(z) in Figure 1C and D(z) in Figure 1D,
the permeability estimated from Eq. 3 is (8.96 ± 0.02) ×
10−16 cm3/s. We can also plot local resistance (the integrand of
Eq. 3) for permeating K+ through CNT (Figure 1E) and the
integration of the permeation resistance, 1/ P(z), as a function of
the z-axis (Figure 1F). It is not surprising that the 1/ P(z) bears
the same feature as the outward MFPT in Figure 2D.

Permeability Computed From Mean First
Passage Time
The MFPT of a single K+ crossing the CNT is computed from
Voronoi-tessellated Markovian milestoning simulations (see
Methods). The distributions of the tagged K+ confined in each
2 Å cell by flat-bottom harmonic restraint are shown in Figures
2A,B.Milestoning simulation yields a consistent PMFprofile with the
highest energy barrier of 4.1 kcal/mol at the center of the CNT
(Figure 2C). As the CNTused here is symmetric by design, a rigorous
check of sampling convergence is the perfect symmetricity (mirror
image) of the inward and outward MFPT profiles (Figure 2D). The
inward and outward MFPT profiles can be obtained by reversing the
milestone indices when constructing the transition rate matrix.

We found that while PMF is nearly insensitive to the Colvars
frequency (i.e., the frequency of recording the z-coordinates of
the tagged ion) tested here, MFPT is susceptible to this frequency.
In the current study, the frequency of 5 ps−1 severely
overestimates the MFPT due to the missing transition events.
Lower frequency also yields less data, which leads to asymmetric
MFPTs. Here, theMFPT from the sampling saved per 5 ps has ten
times fewer data points than the one from 0.5 ps. Thus, it failed to
converge even after 18 μs of sampling. The ideal frequency has to
be system-dependent (local diffusion and shape of the underlying
free energy landscape). For our CNT system, the Colvars
frequencies of 0.2 ps−1 and 0.5 ps−1 yield an identical and
symmetric MFPT of 2.6 ± 0.03 μs for K+ permeation.

Using the PMF, w(z), and MFPT, t, from the milestoning (with
0.5 ps−1 Colvars frequency), the single-channel permeability computed
from Eq. 4, derived from Eq. 3 and Eq. 5, (Votapka et al., 2016) is
2.92 × 10−16 cm3 s−1, in fairly good agreement with the permeability

FIGURE 4 | Current-voltage (I–V) plot for a single K+ with a cylinder restraint of radius 6 Å in bulk. The slope of the linear fitting defines the conductance (A). K+

current computed using direct counting method. (B). K+ current computed using charge displacement method. The error bars are calculated from three replicas of
200 ns at each voltage.
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of 8.96 × 10−16 cm3s−1 computed from ISD equation (Eq. 3) using
umbrella sampling data:

P � πr2∫z2

z1
e−βw(z)dz

2〈t〉 (4)

Decorrelation Time Versus Waiting Time in
Milestoning
Vanden-Eijnden et al. have shown that Markovian milestoning
yields exact MFPTs if the milestones are chosen such that
successive transitions between them are statistically
independent (Vanden-Eijnden et al., 2008; Vanden-Eijnden
and Venturoli, 2009) and thus no definition of lag time is
needed. To check this assumption for transitions between two
neighboring milestones, in each cell, the maximum and
minimum waiting time between two neighboring milestones is
extracted and plotted in Figures 2E,F. The mirror image-like
relation between these two plots manifests that the transition
down the slope of PMF is the fastest, and the one against the slope
is the slowest. Hence, the longest waiting time of 94.0 ps and the
shortest waiting time of 9.0 ps are in the same cell where the PMF
is steepest. The velocity decorrelation time is less than the
smallest frame size (0.2 ps). The z-position decorrelation time
for the tagged K+ in each cell is plotted in Figure 2G. The
maximum positional decorrelation time (7.6 ps) is also located at
the steepest PMF region. Hence, for all pairs of milestones, the
velocity decorrelation time and position decorrelation time are
both less than the minimum waiting time for successive
transitions between milestones.

Mean First Passage Time Computed From
Spherical Boundary Condition
Laterally confining the ion in the bulk region (cylindrical
restraint) is convenient for describing the thermodynamics
and kinetics of the ions across the channel along the channel
pore axis (z-axis). However, the geometries of ion channels are
diverse. For funnel-shaped channel pores [e.g., connexin
hemichannel (Jiang et al., 2021a)] or pores connected with
lateral fenestration [e.g., Piezo1 channel (Jiang et al., 2021b)],
a spherical boundary may be a better choice to capture the
distribution and dynamics of ions near the channel entrance.
Hence, we further tested milestoning simulation using spherical
restraint for ions in the bulk region (Figure 3A). Unlike the
cylindrical restraint, which yields constant ionic concentration
along the z-axis, the effective ionic concentration in the current
spherical bulk cells decreases as the radius of the sphere increases.
Thus, the PMF and MFPT are plotted against the milestoning cell
index rather than the z-axis (Figures 3B,C).

At low concentration, single-channel permeability (cm3/s) can
be related linearly to the mean first passage time (MFPT) < t>
under equilibrium p = 1/c〈t〉, in which c is the symmetric solute
concentrations. Because single-channel permeability is an intrinsic
property of a channel, independent of solute concentration or the
shape of the bulk cells, the ratio of MFPT from spherical restraint

over cylindrical restraint should be equal to the reciprocal bulk
concentration ratio. The concentration of a single ion in a
hemisphere with a radius of 10 Å is 1.26M and in a cylinder
with a radius of 6 Å and length of 10 Å is 0.68M. Therefore, the
concentration ratio of ~2 is indeed consistent with the MFPT of
2.6 μs from cylindrical restraint (Figure 2E) and 1.3 μs from
spherical restraint (Figure 3C).

Mean First Passage Time Computed From
Umbrella Sampling
In the high diffusion limit, the MFPT of diffusive motion of K+

from the lower to upper boundaries of the channel pore, [z1, z2] ,
can be written as

MFPT � ∫Z2

Z1

eβw(Z)

D(z) dz ∫Z

Z1
e−βw(Z′)dz′ (5)

Eq. 5 was originally developed for computing the average
reaction time for diffusion processes governed by a
Smoluchowski-type diffusion equation (Szabo et al., 1980). It
is also used to derive Eq. 4 from Eq. 3 (Votapka et al., 2016). To
cross-validate our results, we apply the w(z) and D(z) from
umbrella sampling to Eq. 5 and obtain an MFPT of 2.2 ± 0.02 μs,
fairly similar to the 2.6 μs MFPT computed directly from
milestoning. This consistency further demonstrated the
robustness of the tested MD methods for computing transport
kinetics.

Permeability Computed From Steady-State
Flux
As mentioned above, under low concentration and constant
electric field, we can simplify the GHK flux equation for
computing the single-channel permeability P from
conductance measurement. Under symmetric concentration,
the GHK flux equation can be written as

P � γRT

q2F2C
� γkBT

q2C
(6)

where γ is the unitary conductance of a single channel, R is the gas
constant, q is the charge of the permeating ion, F is the Faraday
constant, C is the bulk concentration of the ion, and kBT has the
same meaning above, except that the unit is eV here (0.026 eV at
300 K). At sufficiently small voltage, the current-voltage (I-V) relation
is expected to be linear, and the slope defines the conductance.

Ionic conductance from MD simulations can be computed
using two approaches. The most commonly used is a direct
counting method, in which the currents were computed from
the number of permeation events (N) over a simulation period
(τ), I = N/τ. In our code (see Github link inMethods), the channel
is split into upper, inner, and lower regions. A positive
permeation event of K+ is counted if the time evolution of ion
coordinates follows a lower-inner-upper sequence, and a negative
permeation event is in reverse order. The carbon nanotube is
applied with positive and negative 0.4 V voltage with 200 ns per
replica. Each voltage simulation was repeated three times with
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different initial velocities. A least-square fitting of the I/V curve
gave the conductance of 2.7 ± 0.94 ps by the direct counting
method (Figure 4A).

A more efficient approach that does not rely on completed
permeation events is to compute the instantaneous ionic
current from charge displacement along the z-axis, I(t) �∑n

i�1qi[z1(t + Δt) − zi(t)]∕ ΔtL , in which qi and zi are the
charge and z coordinate of ion i and L is the length of the
channel pore (Aksimentiev and Schulten, 2005). This charge
displacement method yielded a similar conductance of 2.3 ±
1.2 pS, indicating a good convergence of the voltage simulations
(Figure 4B).

With an ionic concentration of 0.52 M (one single K+ in a
cylinder bulk of radius 6 Å and length 28 Å), the permeability is
(11.9 ± 6.36) × 10−16 cm3/s by the charge displacement method,
and (13.6 ± 4.81) × 10−16 cm3/s by the direct counting method. In
addition to ± 0.4 V simulations, ionic current calculated from
60 ns of ±0.3 V with sixfold higher concentration yields a similar
permeability of 10.9 × 10−16 cm3/s. Only the results from low
concentration are reported in Table 1.

DISCUSSIONS

In this study, we used a carbon nanotube (CNT) as a toy model of
a small conductance ion channel and computed the single-
channel permeability from umbrella sampling, Markovian
milestoning, and steady-state flux under voltage (Table 1).
The PMF and MFPT for a single K+ permeating through the
CNT produced from Markovian milestoning and umbrella
sampling are in good agreement. Milestoning with cylindrical
bulk restraint and spherical bulk restraint were tested and yielded
consistent MFPTs when the effective bulk concentration is
accounted. The single-channel permeability from voltage
simulation is also within the same order-of-magnitude as
those obtained from PMF-based and MFPT-based methods.
These results are also in the same range as the previously
reported K+ permeability of (25 ± 7) ×10−16 cm3/s computed
using a transition path approach with the CHARMM22 force
field (Zhou and Zhu, 2019).

It should also be noted that the current CNT model is chosen
because it reproduces macroscopic properties (e.g., free energy,
conductance) similar to common small-conductance ion
channels. However, two carbon sheets were used as an
artificial membrane to separate the solution. In the absence of
a dielectric medium surrounding the channel transmembrane
region, this toy model is unsuitable for investigating detailed
electrostatic interaction between the ions and the channel.

In terms of computational resources, umbrella sampling has
the advantage because PMF converges much faster than MFPT.
However, MFPT allows extracting the kinetics directly from

sampling. Thus, it does not rely on the assumption of ISD
formulism and does not require additional calculations of
position-dependent diffusion coefficient. Steady-state flux is
straightforward to apply if the permeant is charged and
sufficient sampling is achievable under reasonable voltages.
However, if the permeant is not charged, a constant
concentration gradient needs to be applied. Furthermore, the
effect of an unphysiologically large voltage bias or
electrochemical gradient on channel property is likely
system-dependent and difficult to predict over a long
simulation time. Compared with the steady-state flux
approaches, the milestoning approach does not depend on
the charge of the permeant. Thus, it can be used to study
any type of small molecular permeation, such as the
transport of a second messenger, cAMP, through a
connexin26 hemichannel (Jiang et al., 2021a). Therefore, the
use of milestoning has a significant promise for future
applications on complex systems that are challenging to
extract kinetics from unbiased MD or PMF-based enhanced
sampling approaches.
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