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Abstract Monocytes are circulating short-lived macrophage precursors that are recruited on

demand from the blood to sites of inflammation and challenge. In steady state, classical monocytes

give rise to vasculature-resident cells that patrol the luminal side of the endothelium. In addition,

classical monocytes feed macrophage compartments of selected organs, including barrier tissues,

such as the skin and intestine, as well as the heart. Monocyte differentiation under conditions of

inflammation has been studied in considerable detail. In contrast, monocyte differentiation under

non-inflammatory conditions remains less well understood. Here we took advantage of a

combination of cell ablation and precursor engraftment to investigate the generation of gut

macrophages from monocytes. Collectively, we identify factors associated with the gradual

adaptation of monocytes to tissue residency. Moreover, comparison of monocyte differentiation

into the colon and ileum-resident macrophages revealed the graduated acquisition of gut segment-

specific gene expression signatures.

Introduction
The recent past has seen major advance in our understanding of the diverse origins of tissue macro-

phages, as well as their discrete maintenance strategies. Macrophages were shown to arise from

three distinct developmental pathways that differentially contribute to the tissue compartments in

the embryo and adult (Ginhoux and Guilliams, 2016). In the mouse, embryonic tissue macrophages

first develop from primitive macrophage progenitors that originate in the yolk sac (YS). In the brain,

YS-macrophage-derived macrophages persist throughout adulthood, while in most other tissues

these cells are replaced by fetal monocytes that derive from multi-potent erythro-myeloid progeni-

tors (EMP). Definitive hematopoiesis commences from E10.5 with the generation of hematopoietic

stem cells (HSC) that first also locate to the fetal liver, but eventually seed the bone marrow (BM) to

maintain adult hematopoiesis. Most EMP-derived tissue macrophage compartments persevere

throughout adulthood without major input from HSC-derived cells; however, in certain barrier tis-

sues, as well as selected other organs, like the heart, embryonic macrophages are progressively

replaced by HSC-derived cells involving a blood monocyte intermediate (Varol et al., 2015).

Monocytes are continuously generated in the BM involving a sequence of developmental inter-

mediates, before extravasation into the circulation (Ginhoux and Jung, 2014; Mildner et al., 2016).

Once in the blood, murine classical Ly6C+ monocytes have a limited half-life (Yona et al., 2013). On

demand, Ly6C+ monocytes can be rapidly recruited to sites of injury and challenge, where they com-

plement tissue-resident macrophages and dendritic cells. In absence of challenge, some Ly6C+

monocytes give rise to vasculature-resident Ly6C- cells, which patrol the vessel walls (Auffray et al.,

2007). These cells display macrophage characteristics including extended life spans (Yona et al.,

2013; Mildner et al., 2017). In addition, Ly6C+ monocytes replenish the above-mentioned selected
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steady state tissue macrophage compartments, including the gut and skin (Ginhoux and Jung,

2014). Given their mobility, plasticity and key role in pathologies, the manipulation of monocytes

and their differentiation could bear considerable therapeutic potential. However, monocyte differen-

tiation into tissue resident cells remains incompletely understood.

Gut macrophages, which reside in the connective tissue underlying the gut epithelium, the lamina

propria, are considered key players for the maintenance of intestinal homeostasis. As such, they con-

stantly sense their environment and respond to the unique microbiota and food challenge (Bain and

Mowat, 2011; Zigmond and Jung, 2013). Recent studies revealed that monocyte-derived lamina

propria macrophages comprise in mice two populations, that is short-lived cells and long-lived cells

with self-renewing capacity (Shaw et al., 2018); the latter population might also include remnants of

embryonic populations, as could additional intestinal long-lived macrophage populations that reside

near blood vessels, nerves and in the Peyer’s Patches (De Schepper et al., 2018). Evidence for mac-

rophages with different half-lives is also emerging for the human small intestine (Bujko et al., 2018).

Collectively, these findings highlight the existence of considerable macrophage heterogeneity, not

only between different organs, but also within given tissues.

Monocyte differentiation into intestinal macrophages involves phenotypic changes with respect

to Ly6C, CD64 and MHCII expression, a sequence described as ‘monocyte waterfall’

eLife digest Macrophage cells play a crucial role in keeping the body free of disease-causing

microbes and debris. They surveille the tissues, detect and clear infections, and tidy up dead cells.

Most internal organs contain a population of macrophages that move into the organ during

development and then persist throughout an organism’s life. However, tissues in contact with the

outside world, such as the gut, need a constant supply of fresh macrophages. This supply depends

on immune cells called monocytes moving into these tissues from the blood and maturing into

macrophages when they arrive.

The macrophages in the gut have a challenging job to do. They need to be able to detect

infections amongst healthy gut bacteria and foreign food particles. Macrophages from other tissues

would overreact if they encountered this complicated environment, but gut macrophages learn to

tolerate their surroundings by switching genes on and off as they mature. The exact combination of

genes macrophages in the gut use depends on whether they are in the small or large intestine,

which have different anatomies and resident microbes.

To understand how monocytes mature into macrophages in the gut, previous studies have

focused on what happens during an infection. However, it remains unclear how monocytes develop

into mature gut macrophages in the healthy gut. To address this question, Gross-Vered et al. have

looked at mice in which gut macrophages can be killed when a drug is applied. This made it

possible to replace the mice’s own macrophages with fluorescently labelled cells derived from

monocytes.

Fluorescent monocytes were introduced into the bloodstream and arrived in the small and large

intestine after the drug had been administered. Gross-Vered et al. then collected cells derived from

these labelled monocytes and examined the genes that they were using. This revealed that once the

monocytes entered the gut they began sensing their new environment and switching thousands of

genes on and off. These changes happened rapidly at first and continued more gradually as the

macrophages matured. Comparing the fluorescent macrophages from the small and large intestines

revealed many similarities, but there were also hundreds of genes that differed. In the small

intestine, macrophages switched on genes involved in catching and consuming bacteria, whereas

macrophages in the large intestine, which has more resident healthy bacteria, turned on fewer of

these bacteria-eating genes.

Inflammatory bowel disorders like ulcerative colitis and Crohn’s disease both involve gut

macrophages. Comparing the genes that macrophages use in the healthy and diseased gut may

reveal information about these disorders. For example, ulcerative colitis only affects the large

intestine, so understanding how and why the monocytes mature differently there could shed light on

new ways to treat the disease.
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(Tamoutounour et al., 2012). Mature steady-state gut macrophages tolerate the commensal micro-

biota and food antigens (Bain and Mowat, 2011; Zigmond and Jung, 2013). Their relative unre-

sponsiveness is thought to rely on regulatory circuits that balance the expression of pro- and anti-

inflammatory gene products, such as cytokines and molecules participating in pattern recognition

receptor signaling cascades.

Macrophages located in different tissues display characteristic enhancer landscapes and gene

expression profiles, which have been attributed to the exposure of instructing factors of the microen-

vironment they reside in Amit et al. (2016). Gut segments display distinct anatomy, function and

microbiota load (Mowat and Agace, 2014) and macrophages of small and large intestine hence

also likely differ. Despite the known distinct susceptibility of the colon and ileum to pathology, such

as to the IL10R deficiency (Glocker et al., 2009; Zigmond et al., 2014) and in ulcerative colitis, so

far no comparative analysis of their macrophages has been reported. Likewise, our general under-

standing of monocyte-derived tissue resident macrophages remains scarce and is largely restricted

to settings of inflammation.

Here we investigated monocyte differentiation into intestinal macrophages in the small and large

intestine. Using adoptive monocyte transfers into macrophage-depleted recipients (Varol et al.,

2007; Varol et al., 2009), we synchronized the macrophages in terms of development, isolated

colonic and ileal macrophages and subjected them to transcriptome profiling. Our data establish the

distinct identities of gut segment resident macrophages and shed light on the kinetics and gradual

gene expression of specific factors for their establishment of their identities.

Results

Monocyte transcriptomes acquired during differentiation into ileal and
colonic gut macrophages
Tissue macrophages display distinct gene expression profiles and enhancer landscapes (Amit et al.,

2016). This holds also for intestinal macrophages residing in small and large intestine. Transcrip-

tomes of Ly6C+ BM monocytes, that is the macrophage precursors, and transcriptomes of their

progeny in colon and ileum displayed 6200 genes differentially expressed at least 2-fold across all

analyzed data sets out of a total of 12345 detected genes (Figure 1—figure supplement 1A–C).

2255 genes were expressed in monocytes and down-regulated in macrophages (cluster I). Con-

versely, cluster II comprised genes whose expression was absent from monocytes, but shared by

both small and large intestinal macrophages. Finally, 1087 and 987 genes were either preferentially

or exclusively expressed in ileal or colonic macrophages, respectively.

To further characterize adult monocyte-derived gut macrophages, we took advantage of an

experimental system involving monocyte engraftment of macrophage-depleted animals

(Varol et al., 2007; Varol et al., 2009). Analysis of transferred cells at different intervals from

engraftment allows the study of intestinal macrophage development over time, since monocyte dif-

ferentiation is synchronized. For the cell ablation we used [CD11c-DTR > WT] BM chimeras, in which

diphtheria toxin (DTx) receptor (DTR) transgenic intestinal macrophages can be conditionally ablated

by DTx injection (Varol et al., 2007; Varol et al., 2009) (Figure 1A). Two days prior to monocyte

transfer, DTx was applied to the recipients to clear their intestinal macrophage niche and mice were

subsequently treated with DTx every second day. The monocyte graft was isolated from BM of

Cx3cr1
GFP/+ mice (Jung et al., 2000) and defined as CD117- CD11b+ CD115+ Ly6C+ GFPint cells;

donor animals also harbored an allotypic marker (CD45.1) (Figure 1A, Figure 1—figure supplement

1A). Grafted cells could be visualized in recipient gut tissue and underwent expansion, as reported

earlier (Varol et al., 2009) (Figure 1—figure supplement 2). Intestinal tissues of recipient mice

were harvested on day 4, 8 and 12 post engraftment (Figure 1A) to isolate graft-derived macro-

phages according to CD45.1 and CX3CR1/GFP expression; these cells were CD11b+ CD64+ Ly6C-

and mainly CD11chi (Figure 1B). Of note, specifics of the system preclude harvest of graft-derived

cells at later time points (Varol et al., 2009). The monocyte graft and colonic and ileal macrophage

populations were subjected to bulk RNA-seq using MARS-Seq technology (Jaitin et al., 2014).

Gene expression profiling revealed robust changes already at day four post engraftment; changes

appeared to be tissue- rather than time-specific, with the exception of two day 4 samples of ileal

macrophages, which clustered with the colonic samples (Figure 1C, Figure 1—figure supplement
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Figure 1. Transcriptome analysis of CX3CR1
+ monocyte graft - derived colonic and ileal macrophages isolated from macrophage depleted animals. (A)

Experimental protocol. Briefly, [CD11c-DTR > C57BL/6] BM chimeras were treated as indicated with DTx. 2 � 106 CD117- CD11b+ CD115+ Ly6C+ GFPint

BM monocytes isolated from Cx3cr1
GFP/+ mice were injected intravenously. Macrophages were sorted from the colon and ileum at days 4, 8 and 12

post-transfer. Experiment was repeated three times, total 3–4 samples from each tissue at each time point. (B) Graft-derived macrophages were sorted

Figure 1 continued on next page

Gross-Vered et al. eLife 2020;9:e49998. DOI: https://doi.org/10.7554/eLife.49998 4 of 19

Research article Immunology and Inflammation

https://doi.org/10.7554/eLife.49998


3A). Transcriptomes of the retrieved engrafted macrophages lacked expression of pro-inflammatory

genes, such as Saa3, Lcn2, Il1b, Il6 and Tnf, as opposed to cells retrieved from colitic animals treated

with Dextran Sulfate Sodium (DSS) (Okayasu et al., 1990) (Figure 1—figure supplement 4). This

supports the earlier notion that the cell ablation results in a transient tissue response, but the mono-

cyte transfer system mimics cell differentiation close to steady-state conditions (Varol et al., 2009).

Comparative transcriptome analysis of grafted monocytes, their progeny retrieved from the recip-

ient intestines, and resident ileal and colonic macrophages that were independently retrieved from

Cx3cr1
GFP/+ mice revealed 4213 differentially expressed genes (DEG) (>4 fold differences in any pair-

wise comparison among a total of 12878 genes) (Figure 1D). 748 genes were exclusively expressed

in the monocyte graft, including Ly6c2, Ccl6 and Cebpe (Cluster I) (Figure 1D,E). 793 genes shared

expression in graft-derived cells and gut macrophages in colon and ileum (Cluster II). These included

Irf6, Gata6, Ly6A and Smad7. Cluster III comprised 634 genes that were either exclusively or prefer-

entially expressed in colonic macrophages, such as Pparg, Foxa1 and Tlr1 (Figure 1E). Cluster IV

comprised 539 genes exclusively or preferentially expressed in ileal macrophages, such as Nos2,

Sox4 and Mmp9 (Figure 1E). Metascape analysis (Zhou et al., 2019) highlighted that genes associ-

ated with cluster II, II and IV were associated with distinct pathways, particularly with respect to epi-

thelial cell communication and cell metabolism (Figure 1—figure supplement 3B). We also

identified genes that differed in expression between engrafted and resident macrophages. Specifi-

cally, 796 and 467 genes displayed high or low expression levels in monocytes, respectively, were

highly expressed in resident colonic macrophages, but either low or absent in the graft-derived cells

(Cluster V and VI). Finally, cluster VII comprised 236 genes that were expressed in monocytes, and

down-regulated in resident gut macrophages, but not in the grafted cells.

Volcano plot analysis revealed that early monocyte differentiation (graft vs day 4) was character-

ized by abundant changes in gene expression in both colon and ileum. In the colon 3407 genes were

up- and 3608 genes were down-regulated; in the ileum 2975 genes were up- and 3206 genes were

down-regulated, with up to 10 fold change (Figure 1F). Later time points (day 4 to day 8 and day 8

to day 12) were characterized by less pronounced alterations, both with respect to the number of

DEG and their fold change (Figure 1G,H). In the colon 289 genes (66% of all significantly-changed

genes) were induced between day 4 and 8 and only 111 genes (19%) were up-regulated between

day 8 and 12. In the ileum this trend was reversed, with 95 genes (21%) up-regulated between day 4

and 8, but 321 genes (85%) induced between day 8 and 12. Collectively, this establishes that mono-

cytes that enter distinct gut segments rapidly acquire characteristic transcriptomic signatures.

Transcriptomes of engrafted cells differ from resident macrophages
Our experimental set up allows us to focus on cells that entered the gut in a defined time window.

Interestingly, even by day 12, monocyte graft-derived cells differed in expression profiles when com-

pared to resident ileal and colonic macrophages (Figure 2A). Differences included genes absent

from, and exclusively expressed by engrafted cells (Figure 1D clusters V - VII, Figure 2B–D). These

differences might be attributable to incomplete macrophage maturation or to the recently reported

heterogeneity of the intestinal macrophage compartment (Shaw et al., 2018; De Schepper et al.,

Figure 1 continued

at days 4, 8 and 12 post transfer based on CD45.1 and CX3CR1 (GFP) expression. GFP+ cells also express CD64, CD11b and variable levels of CD11c,

and lacked Ly6C expression. (C) Principal component analysis (PCA) of transcriptomes of BM monocytes and grafted cells from colon and ileum at 4, 8

and 12 days post-transfer. Analysis performed in MATLAB. (D) Expression heat map of 4213 genes that show at least four fold change across all

samples in the dataset, divided to seven clusters by the unbiased K-means algorithm in MATLAB. (Supplementary file 1, data sets 1,2, 5–11). (E)

Representative genes from heat map in (D). (F–H) Double volcano plots of genes that change from monocytes to day 4, day 4 to day 8 and day 8 to day

12 in the colon (green dots) and ileum (blue dots). Blue and green squares indicate genes that are significantly (Student’s T-test, p-value<0.05) changed

between the different time points. Numbers within blue and green squares represent the number of genes in the square, namely genes that

significantly change. Arrows indicate up –or down-regulation.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Comparison of gene expression in monocytes and resident colonic and ileal macrophages.

Figure supplement 2. Analysis of host tissue for graft-derived cells.

Figure supplement 3. Pathway analysis of graft-derived cells.

Figure supplement 4. Analysis of expression of pro-inflammatory genes in adoptive transfer model and DSS-induced colitis model.
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Figure 2. Differences between acute monocyte graft -derived macrophages and resident intestinal macrophages. (A) Volcano plots of genes that

change from engrafted macrophages at day 12 and resident macrophages in the colon (left) and ileum (right). Gray dots represent genes that do not

significantly change (p-value>0.05), black dots represent genes that significantly change (p-value<0.05). Green and blue squares mark genes with at

least 2-fold log fold change (equals 4-fold read change). Numbers inside squares indicate number of genes in square, namely genes that significantly

change. Arrows indicate up- or down-regulated genes in resident macrophages compared to engrafted macrophages at day 12 post transfer. (B)

Example genes characterizing long-lived intestinal macrophages according to Shaw et al. (C) Example genes highly expressed in resident macrophages

compared to engrafted cells. (D) Example genes highly expressed in engrafted cells compared to long-lived macrophages. (E) Example genes

participating in IL10/IL10R axis.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure 2 continued on next page

Gross-Vered et al. eLife 2020;9:e49998. DOI: https://doi.org/10.7554/eLife.49998 6 of 19

Research article Immunology and Inflammation

https://doi.org/10.7554/eLife.49998


2018). Notably, the majority of the cells we retrieve likely comprise lamina propria/mucosa resident

macrophages, rather than the less abundant macrophages of the submucosa or muscularis layer

(Shaw et al., 2018; De Schepper et al., 2018). Generation of a CD4+ Timd4+ subpopulation of lam-

ina propria macrophages was reported to require prolonged residence in the tissue (Shaw et al.,

2018). Although grafted cells in both colon and ileum acquired with time some expression of a hall-

mark of the long-lived cells, the phosphatidyl serine receptor Timd4 (Tim4) (Figure 2B, Figure 1D

cluster VI), other signature genes, such as Cd209f, C2 and Rusc2 (Shaw et al., 2018), were not

expressed in the time frame analyzed here (Figure 2B). The hypothesis that 12 days were insufficient

for engrafted macrophages to acquire the full gene expression profile of resident cells was further-

more corroborated by the delayed onset of MHCII (encoded by H2-ab1) expression, one of the

markers for intestinal macrophage maturation (Tamoutounour et al., 2012; Schridde et al., 2017)

(Figure 2C). Engrafted macrophages were also characterized by lack of expression of Irf1 and the

member of the TAM receptor kinase family Axl (Figure 2C).

Genes, whose expression was low to absent in resident macrophages from both colon and ileum,

but prominent in the engrafted cells (Figure 1D cluster VII), included the ones encoding ribosome-

associated proteins and histones (Figure 2D). As previously shown (Varol et al., 2009), the reconsti-

tution of emptied intestinal tissue with monocyte-derived cells involves clonal expansion, that is less

likely to occur in physiological setting. In line with this notion, out of the 6383 genes significantly dif-

fering between engrafted and resident macrophages from either colon or ileum, 897 were annotated

with a Gene Ontology (GO) term associated with ‘proliferation’ and ‘cell cycle’; 99 of these DEG

were low to absent in resident macrophages from both tissues retrieved from non-engrafted

Cx3cr1
GFP/+ mice, such as Hmga1 (Figure 1D).

We recently reported the requirement of IL10Ra on colonic macrophages for gut homeostasis.

Mice lacking this cytokine receptor on intestinal macrophages develop severe gut inflammation in

the colon, but not the ileum (Zigmond et al., 2014; Bernshtein et al., 2019), as do children that har-

bor an IL10RA deficiency (Glocker et al., 2009). Interestingly, Il10ra was not induced in engrafted

colonic macrophages, even 12 days after tissue entry, while engrafted ileal macrophages displayed

Il10ra transcripts as early as day 4 (Figure 2E). Expression of the cytokine IL10 itself was almost

absent from monocytes and engrafted macrophages in both tissues, but significantly present in resi-

dent macrophages retrieved from non-engrafted Cx3cr1
GFP/+ mice, to a larger extent in the colon

than the ileum (Figure 2E). Of note, Il1b expression displayed a similar pattern in line with an earlier

suggestion that IL1 might induce macrophage IL-10 expression (Foey et al., 1998). Likewise, genes

induced following macrophage exposure to Il10, such as Ccr5 (Houle et al., 1999) and Socs3

(Cassatella et al., 1999) displayed similar expression patterns. This suggests that in our model the

IL10/IL10R axis is inactive in newly differentiated macrophages and established only after further

maturation in the tissue.

Flow cytometric analysis of colon tissue of WT C57BL/6 mice identifies a small population of

CD11b+ Ly6C+ MHCII- cells that likely represent recent monocyte immigrants into the tissue (Fig-

ure 2—figure supplement 1A). These rare cells probably entered the lamina propria to maintain the

steady state macrophage pool of the intestine, before differentiating and have been referred to as

P1 population of a ‘monocyte waterfall’ (Tamoutounour et al., 2012). Global RNAseq analysis of

this population, alongside the Ly6C+ MHCII- macrophages revealed that, like the day four graft,

these endogenous gut immigrants down-regulated monocyte markers and gained a gut macro-

phage signature, including expression of the Forkhead transcription factor (TF) FoxD2 and the

nuclear receptor Nr3c2 (Figure 2—figure supplement 1B,C). Endogenous gut immigrants did not

display a signature indicating proliferation, such as Rpl10 or Hmga1. However, like the grafted cells,

these early colonic immigrants lacked signature genes associated with long-lived gut macrophages,

including Timd4 and CD209f, as well as expression of Il10ra and Il10.

Figure 2 continued

Figure supplement 1. Comparison of graft and engrafted cells to recent monocytic infiltrates in the colon, identified by their Ly6C surface expression.

Figure supplement 2. Comparison of colonic macrophages generated upon monocyte transfer into [CD11c-DTR > WT] and [CX3CR1-DTR > WT] BM

chimeras treated with DTx.
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To further corroborate our data, we used a distinct cell ablation model and performed adoptive

monocyte transfers into DTx-treated [CX3CR1-DTR > WT] BM chimeras (Diehl et al., 2013;

Aychek et al., 2015). The gene lists of upregulated and down regulated genes in macrophages

retrieved from engrafted [CD11c-DTR > WT] and [CX3CR1-DTR > WT] chimeras showed with 71%

and 59%, respectively, considerable overlap (Figure 2—figure supplement 2). While our adoptive

transfer inherently aims at the reconstitution of ablated cells which differ in the two models, the

observed coherence suggests robustness of the approach.

Collectively, these data show that despite some differences, monocyte graft-derived cells recapit-

ulate the ‘monocyte waterfall’ (Tamoutounour et al., 2012).

Monocyte differentiation into gut segment-specific macrophages
We next focused on factors that might be involved in the generation of segment-specific macro-

phages, that is genes whose expression differed between colonic and ileal macrophages.

458 genes were up-regulated during monocyte differentiation in a segment-specific manner –

351 in colonic macrophages and 107 in ileal macrophages (Figure 3A). Monocyte differentiation into

ileal macrophages was accompanied by induction of Gata and Hbox TF family members, such as

Gata5 and Hbox3 (Figure 3A), as well as genes encoding the chemokine Ccl5 and the chemokine

receptor CCR9. Monocytes that entered colon tissue preferentially up-regulated Foxd2, the nuclear

receptor Nr3c2, and the dominant negative helix-loop-helix protein Id2 (Figure 3A).

Of the genes, which were specifically down-regulated in only one intestinal segment, 78 genes

followed this trend in colonic and 99 in ileal macrophages. The latter down-regulated genes included

7 TFs, such as Foxp1 and Trim16, while Arid5a and Elk3 were specifically down-regulated in the

colon (Figure 3B).

Many genes related to immune reaction and response to challenge displayed higher expression

in ileal macrophages than their colonic counterparts. Examples are: Arid5a, whose gene product reg-

ulates IL6 (Masuda et al., 2016); Elk3, which encodes a member of the ETS TF family and was

reported to modulate the phagocytosis of bacteria by macrophages (Tsoyi et al., 2015) and Ano6,

that is down-regulated in colonic macrophages (Figure 3B), and reportedly supports microbiocidal

activity of macrophages involving P2X7 receptor signaling (Ousingsawat et al., 2015). In contrast,

the enzyme Sod1, which was reported to impair macrophage-related parasite killing in cutaneous

Leishmaniasis (Khouri et al., 2009), showed lower expression in ileal macrophages (Figure 3B).

Another interesting group of genes are those, which are expressed in monocytes, but further up-

regulated in one tissue upon differentiation and down-regulated in the other. These genes might

encode factors whose expression is incompatible with segment-specific macrophage fates. 54 such

genes were expressed in colonic engrafted macrophages and silenced in their ileal counterparts; 15

genes followed an opposite trend (Figure 3C). Only one TF was found in both groups, KLF4

(Figure 3C). Aldh2 encoded by Aldh2, mostly known for its role in alcohol detoxification, was

recently reported to play a role in repression of ATP6V0E2, which is critical for proper lysosomal

function, autophagy, and degradation of oxidized LDL (Zhong et al., 2019) (Figure 3C). Hdac7

encoded by Hdac7 and up-regulated in ileal macrophages and down-regulated in colonic macro-

phages, was reported to interfere with the myeloid gene expression pattern and to inhibited macro-

phage-specific functions (Barneda-Zahonero et al., 2013) (Figure 3C). Finally, Fmnl3 participates in

filopodia generation (Harris et al., 2010) (Figure 3C).

Collectively, these data establish that monocytes establish gut segment specific gene expression

patterns, likely under the influence of local cues.

Monocyte differentiation into generic tissue macrophages
Transcriptomes of colonic and ileal macrophages 4 days after monocyte tissue entry were alike, with

many genes sharing expression in both tissues when compared to their monocyte progenitors. Over-

all, by day 4, expression of 2007 genes was down-regulated more than 2-fold in the monocyte graft

following differentiation into macrophages in both tissues (out of 12485 genes expressed). 2404

genes were induced in both the colon and ileum, arguably as part of a generic transcriptome signa-

ture of intestinal macrophages (Figure 4A).

Notably, 919 of the genes induced during monocyte differentiation into generic intestinal macro-

phages displayed very low prior expression in monocytes – below 50 reads (Figure 4B). In contrast,
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Figure 3. Changes in gene expression during conversion of monocytes into colonic or ileal macrophages. (A) Example genes that are significantly up-

regulated in intestinal macrophages from monocytes to day 4: either up-regulated in the colon but do not change in the ileum, or significantly up-

regulated in the ileum but do not change in the colon. Numbers indicate number of genes to follow the trend. Only genes which have significantly

different levels between colonic and ileal macrophages at all time points (monocytes > day 4, day4 > day8, day8 > day12) were selected. (B) Example

Figure 3 continued on next page
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expression of fewer transcripts (183) seemed to be actively silenced during the differentiation pro-

cess, as seen in the violin blot in Figure 4B. This implies that monocytes actively acquire macro-

phage identities by de novo mRNA synthesis, while much of the monocytic gene expression is

compatible with the differentiation process.

The top 5 GO-terms associated with genes up-regulated in intestinal macrophages related to cell

adhesion and migration processes (Figure 4C), including the chemokine Cxcl1, Ptprk which regu-

lates cell contact and adhesion, and the integrin Itga6 (Figure 4D). The top 5 GO-terms associated

Figure 3 continued

genes that are significantly down-regulated from monocytes to day four in intestinal macrophages: either down-regulated in the colon but do not

change in the ileum, or significantly down-regulated in the ileum but do not change in the colon. Numbers indicate number of genes to follow the

trend. (C) Example genes that are either up-regulated in the colon from monocytes to day four and down-regulated in the ileum from monocytes to

day four or vice versa.
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Figure 4. Changes in gene expression during conversion of monocytes into generic intestinal macrophages. (A) Dot plot for genes whose expression

changes at least 2-fold between both monocytes to engrafted colonic macrophages at day four and monocytes to engrafted ileal macrophages at day

4. Black dots: genes that significantly change in the transition to both tissues. Blue dots: genes that significantly change in monocytes to engrafted

ileum macrophages only. Green dots: genes that significantly change from monocytes to engrafted colon macrophages only. Only genes that

significantly changed from monocytes to both colonic and ileal macrophages at day 4, but expression levels not distinct between colon and ileum at

day 4, were selected. (B) Log averages of all genes that are up-regulated (left) or down-regulated (right) in generic intestinal macrophages compared to

monocytes. Red line marks threshold (50 reads, 5.672 in log2) of very low/no expression levels. (C) Top 5 GO pathways that are related to genes that are

’selectively expressed in generic intestinal macrophages compared with monocytes (left) or selectively expressed in monocytes compared with

macrophages (right). Bars show percent of genes (out of total genes) that are related to each GO term, red markers illustrate the p-value of each GO

term. (D) Example genes from GO pathways. Bars indicate mean normalized reads, error bars represent SEM.
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with down-regulated genes in macrophages included cell cycle and division, as well as mRNA proc-

essing and DNA repair (Figure 4C,D), for example DNA polymerase beta (Polb), a cell cycle check-

point regulator (Rad17) and an RNA helicase (Setx). Collectively, these data are in line with the

transformation of circulating monocytes into non-migratory tissue resident cells and suggest a role

for DNA damage-associated molecules during the differentiation process.

Gene expression changes are driven by TFs. In the case of intestinal macrophages, three major

TF families seem to participate in monocyte-macrophage differentiation: CCAAT-enhancer-binding

proteins (C/EBPs), E2 transcription factors (E2F) and early growth response TFs (Egr). Four of the

Cebp family members (Cebpa, b, d, g) and 5 E2F family members (E2f2, 4, 6, 7, 8) were significantly

2
#
"3
+
,/4
'
(
*"
'
+
(
$

2
#
"3
+
,/4
'
(
*"
'
+
(
$

2
#
"3
+
,/4
'
(
*"
'
+
(
$

5

!"#$%&'( 6#7#89#,#7/:*3+:- 6#7#8;,'+, 3+:-

9'<=+ 1->?@%AB >-CD@%AB

9'<=< B-DE@%AD F-GA@%AB

9'<=( D->>@%AF F-?A@%AD

9'<=0 C-DB@%AD >-F1@%AB

!"#$%&'( 6#7#89#,#7/:*3+:- 6#7#8;,'+,*3+:-

@FHF F-CC@%AD >-EG@%A1

@FHD 1-?F@%AB D->D@%A1

@FH? B-1?@%AD F-1B@%AD

@FHC 1-CD@%AB F->?@%AB

@FHG >-?C@%AD B-A>@%A1

!"#$%&'( 6#7#89#,#7/:*3+:- 6#7#8;,'+,*3+:-

@0"> G-FG@%A1 C->E@%AB

@0"F ?-F?@%AB >-B>@%AF

@0"B ?-FG@%AD F-A>@%AD

I

JJJ JJJ

JJ JJ
JJ JJJ

JJ JJ

JJJ JJJ

2
#
"3
+
,/4
'
(
*"
'
+
(
$

! ;,'K3*3+:"#=L+0'$! 9#,#7*3+:"#=L+0'$! 6#7#:M)'$

!"#"$ %&'(

JJ
JJ

JJJ JJJ
JJJ

JJJJJ JJJ
JJ JJ

2
#
"3
+
,/4
'
(
*"
'
+
(
$

!)*+ ,-&#./0

1#23+ 12&4 .5'6 7'#"2$ 7'89+

9

JJ

JJ
JJJ

JJJ JJJ JJ JJJ JJJ JJ

J

2
#
"3
+
,/4
'
(
*"
'
+
(
$

! ;,'K3*3+:"#=L+0'$! 9#,#7*3+:"#=L+0'$! 6#7#:M)'$

2
#
"3
+
,/4
'
(
*"
'
+
(
$

JJJ

JJ JJ

JJ

JJ
JJJ

J JJJ

JJ

:#"#4 ;-<+ =)#5# !>?+$ =9?+

.<? @>?#+ ;>?#A ;B'+# 75+3$

Figure 5. Transcription factors which change during intestinal macrophage differentiation. (A) Expression graphs of 3 TF families: Cebp (left), E2f

(middle) and Egr (right). Lines mark average normalized reads, error bars represent SEM. (B) Representative TFs that are down-regulated in generic

intestinal macrophages. (C) Representative TFs that are up-regulated in generic intestinal macrophages.

Gross-Vered et al. eLife 2020;9:e49998. DOI: https://doi.org/10.7554/eLife.49998 11 of 19

Research article Immunology and Inflammation

https://doi.org/10.7554/eLife.49998


down-regulated upon monocyte differentiation into macrophages (Figure 5A). In contrast, Egr1, 2

and 3 were up-regulated. Other down-regulated TFs included the regulators of immune response

Bach1, Bcl6, Irf9, Nfatc3, Nfkb1 and Rela, as well as the master macrophage TF Spi1 (PU.1)

(Figure 5B). The list of induced genes was enriched with homeobox TFs such as Sox13, Pbx1, Foxa1

and others (Figure 5C). In addition, this group comprised TFs that had previously been reported to

be critical for the development of other tissue macrophages, such as the nuclear receptor LXRa

encoded by Nr1h3 for splenic macrophages and Gata6 for peritoneal macrophages (Varol et al.,

2015; Rosas et al., 2014).

Comparison of tissue-resident and vasculature-resident monocyte-
derived cells
Monocytes are generated in the BM to be subsequently disseminated throughout the body via

blood vessels. Under inflammation, the cells are rapidly recruited to the site of injury. In absence of

challenges, Ly6C+ monocytes can have distinct fates. A fraction of them gives rise to vasculature-res-

ident Ly6C- ‘patrolling’ cells (Auffray et al., 2007). Other cells contribute to the homeostatic replen-

ishment of selective tissue macrophage compartments (Figure 6A). To gauge the impact of the

blood environment, as compared to a solid tissue such as the intestine, on the differentiation pro-

cess, we next compared transcriptomes of Ly6C- blood cells and gut macrophages to their Ly6C+

monocyte precursors (Figure 6—figure supplement 1). A heat map of all 1303 genes, whose

expression significantly differed between Ly6C+ monocytes compared to blood- and gut tissue-resi-

dent cells (day 4), revealed five clusters (Figure 6B). Monocyte progeny, whether in vasculature or

tissue shared signatures, showed considerable similarities as reflected in the expression pattern of

two thirds of the genes (66.7%). Specifically, clusters I and II comprised 780 genes that were down-

regulated upon Ly6C+ monocyte differentiation, including hallmark monocyte markers, such as Ly6c,

Ccr2 and Mmp8 and Myd88 (Figure 6B,C). 160 genes were induced in both blood- and tissue resi-

dent monocyte-derived cells, albeit to different extend, including as Pparg, Ets2 and Tgfbr2 (Cluster

III) (Figure 6B,D). Cluster IV and V spanned one third of the genes differentially expressed by Ly6C+

monocytes and their progenies, but distinct in tissue and vascular resident cells. Specifically, cluster

IV comprised 253 genes up-regulated in blood-resident cells and down-regulated in gut macro-

phages. This included Csf2ra, Nfkb1, Il10ra and Spi1 (PU.1). Cluster V comprised 110 genes induced

in gut macrophages but not vasculature-resident cells, such as the mitochondrial master regulator

Ppargc1b and the metalloprotease Adam19 (Figure 6B). Concerning TFs, Cebpb was induced in

Ly6C- blood monocytes, as was previously reported (Mildner et al., 2017), while Cebpa and Cebpd

were down-regulated in both blood- and gut-resident cells (Figure 6E). Irf family members 7, 8 and

9 were down-regulated during Ly6C+ monocyte differentiation in blood and gut.

Collectively, these data establish that vasculature-resident Ly6C- monocytes and gut macro-

phages that derive both from Ly6C+ monocytes display considerable overlap in transcriptomic signa-

tures, but also display gene expression patterns that are likely associated with their specific

environments.

Discussion
Adult tissue macrophages can derive from distinct origins (Ginhoux and Guilliams, 2016;

Varol et al., 2015). Most tissue macrophages are currently believed to be generated in the embryo

from EMP via a fetal liver monocyte intermediate and subsequently maintain themselves through

self-renewal. Selected macrophages residing in barrier tissues, such as gut and skin, however rely on

constant replenishment from blood monocytes. Here we report the study of this macrophage gener-

ation from monocyte precursors.

Following tissue damage and infection, classical monocytes, defined as CD14+ cells in humans,

and Ly6C+ cells in mice critically contribute to inflammatory reactions by promoting and resolving

acute challenges (Ginhoux and Jung, 2014; Mildner et al., 2016). At the sites of injury, monocytes

can give rise to cells with both macrophage and DC features. Monocyte differentiation during

inflammation has been studied in various pathophysiological settings, including experimental auto-

immune encephalitis (Yamasaki et al., 2014; Masuda et al., 2016), colitis (Rivollier et al., 2012;

Zigmond et al., 2012) and others (Avraham-Davidi et al., 2013). To study less well understood

physiological monocyte differentiation in absence of overt inflammation, we took advantage of an
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Figure 6. Gene expression changes in Ly6C+ monocytes after differentiating to tissue-resident cells. (A) Scheme of monocyte development and fates

during physiology and inflammation. (B) Fold change heat map of all 1303 genes that significantly change during the transition of Ly6C+ blood

monocytes to Ly6C- blood monocytes and BM Ly6C+ monocytes to engrafted intestinal macrophages at day 4. Colors represent fold change between

Figure 6 continued on next page
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experimental system that allows synchronized reconstitution of macrophage compartments by

monocyte engraftment (Varol et al., 2007; Varol et al., 2009).

The majority of changes in gene expression, both in fold change and numbers, occurred in the

transition from monocytes to either colonic or ileal macrophages at day four post transfer, that is

immediately after extravasation. Engrafted colonic and ileal macrophages segregated in gene

expression according to tissue. Tissue-specific macrophage imprinting occurs hence early during

development, shortly after tissue infiltration. Interestingly, two samples of engrafted ileal macro-

phages clustered with the colonic samples rather than the ileal ones, suggesting that the colonic sig-

nature is default. Colonic macrophages at day 12 post engraftment were also more distinct from

endogenous colonic macrophages, compared to their ileal counterparts, which implies that the

mature colonic gene signature might take longer time to develop or could be more heterogeneous.

Recent studies have noted heterogeneity within murine blood monocytes, in particular with respect

to an intermediate between the Ly6C+ and Ly6- populations (Mildner et al., 2017). While we cur-

rently cannot formally rule out that, colonic and ileal macrophages could hence derive from distinct

precursors, we consider this however unlikely.

Mowat and colleagues have reported a transcriptome analysis of monocytes and colonic macro-

phages, including intermediates of the ‘waterfall’ (Schridde et al., 2017). The authors highlighted

the critical role of TGFb in the differentiation process. While a comparison of these data to ours con-

firmed the late onset of genes that characterize long-lived gut macrophages, the use of the distinct

platforms and distinct experimental set up precluded further direct alignment. Of note, monocyte-

derived cells are in our system synchronized with respect to development and therefore allow addi-

tional temporal resolution, especially with respect to final population of the scheme (P4), which com-

prises in the cited study (Schridde et al., 2017) a heterogeneous conglomerate.

With their extended half-life, Ly6C- monocytes that patrol the endothelium, have been proposed

to represent vasculature-resident macrophages (Ginhoux and Jung, 2014). Indeed, these cells

shared gene signatures with the gut resident macrophages, such as the reduction in IRF TFs follow-

ing monocyte differentiation and induction of characteristic macrophage genes, such as PPARg and

TGFbR. However, the comparison of these blood-resident cells to gut tissue-resident macrophages

revealed also considerable differences likely associated with the residence in vasculature and the

solid tissue, respectively.

Though anatomically close, the small and large intestine represent very distinct tissues, including

structural dissimilarities, such as the extended ileal villi and Peyer’s Patches, characteristic distinct

abundance of immune cells, as well as different luminal microbiome content (Mowat and Agace,

2014). Highlighting these differences, ileum and colon display also unique susceptibility to perturba-

tions, as for instance to a IL10R deficiency (Zigmond et al., 2014; Bernshtein et al., 2019). Our

comparative analysis of colonic and ileal macrophages, including their generation from monocytes,

might provide critical insights into the mechanism underlying segment-specific pathology resistance

or - susceptibility in the gut. Together with earlier reports (Mildner et al., 2017; Schridde et al.,

2017), our data sets can provide a starting point for hypothesis-driven experiments.

To conclude, we characterized here monocyte-derived intestinal macrophages generated under

conditions avoiding overt inflammation. We highlight specific genes and TFs which are regulated fol-

lowing monocyte differentiation to generic or segment-specific intestinal macrophages. By compar-

ing transcriptomes of early intestinal macrophages and blood-resident Ly6C- cells, we show that the

populations which share a common ancestor – the Ly6C+ blood monocytes – show considerable

overlap in gene expression, while they also display adaptation to their specific environments. Our

data provide a gateway and reference point to further studies on monocyte differentiation to

macrophages.

Figure 6 continued

tissue-resident cells and their respective precursor cells. (Supplementary file 1, data sets 1, 2, 5, 12,13). (C) Representative monocyte-related genes. (D)

Representative genes related to monocyte-derived cells. (E) Expression of TFs of the Cebp and Irf gene families.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Gating strategy for sorting of Ly6C+ and Ly6C- blood monocytes.
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Materials and methods

Mice
Mice were kept in a specific-pathogen-free (SPF), temperature-controlled (22 ± 1˚C) facility on a

reverse 12 hr light/dark cycle at the Weizmann Institute of Science. Food and water were given ad

libitum. Mice were fed regular chow diet (Harlan Biotech Israel Ltd, Rehovot, Israel). The following

mice strains all on C57BL6 background were used: Cx3cr1gfp/+ mice (Jung et al., 2000), CD11c-DTR

transgenic mice (B6.FVB-Tg [Itgax-DTR/GFP] 57Lan/J) (Jung et al., 2002) and CX3CR1-DTR trans-

genic mice (Diehl et al., 2013). BM chimeras were generated by engraftment of 7–10 weeks old

recipient mice that were irradiated the day before with a single dose of 950 cGy using a XRAD 320

machine (Precision X-Ray (PXI). Femurs and tibiae of donor mice were removed and BM was flushed

with cold PBS. BM was washed with cold PBS twice and filtered by 100 mm filter. BM cells were sus-

pended in PBS and 5 � 106 cells were injected IV into irradiated recipient. Mice were handled and

experiments were performed under protocols approved by the Weizmann Institute Animal Care

Committee (IACUC) in accordance with international guidelines.

Isolation of BM monocyte grafts and monocyte transfers
Femurs and tibias of donor mice were removed and BM was flushed with cold PBS. BM was washed

with cold PBS twice and filtered by 100 mm filter. Cells were suspended with PBS and loaded on

equal amount of Ficoll (GE healthcare). Tubes were centrifuged 920 g in room temperature for 20

min without breaks and Buffy coats were collected and washed with cold PBS. CD11c-DTR > wt].

Cells were stained and sorted according to the following markers: CD117- CD11b+ CD115+ Ly6C+

GFPint. BM chimeras were treated with 18 ng / gram bodyweight Diphtheria toxin (DTx) (Sigma-

Aldrich, Cat # D0564) for two consecutive days before transfer. At the day of transfer mice were

injected with 106 BM monocytes IV. At days 1, 3, 5, 7 and 9 after transfer mice were injected with 9

ng / gr bodyweight DTx.

Isolation of intestinal lamina propria cells
Intestines were removed and fecal content flushed out with PBS; tubes were opened longitudinally

and cut into 0.5 cm sections. Pieces were placed in 5ml/sample (up to 300gr of tissue) of Hanks’ Bal-

anced Salt Solution (HBSS) with 10% heat-inactivated FCS/FBS, 2.5 mM EDTA and 1 mM DL-Dithio-

threitol ((DTT), Sigma-Aldrich Cat# D9779) and incubated on a 37˚C shaker at 300 rpm for 30 min to

remove mucus and epithelial cells. Following incubation, samples were vortexed for 10 s and filtered

through a crude cell strainer. Pieces that did not pass the strainer were collected and transferred to

5 ml/sample of PBS +/+ with 5% heat-inactivated FCS/FBS, 1 mg/ml Collagenase VIII (Sigma-Aldrich

Cat# C2139) and 0.1 mg/ml DNase I (Roche Cat# 10104159001). Tissue was incubated in a 37˚C

shaker at 300 rpm for 40 min (colon) or 20 min (ileum) in the solution. After incubation, samples

were vortexed for 30 s until tissue was dissolved, then filtered through a crude cell strainer. The

strainer was washed with PBS - /- and centrifuged in 4ºC, 375G for 6 min. Cells were stained and

subjected to FACS analysis or sorting.

Isolation of murine blood monocytes
Blood was retrieved from the vena cava, immediately placed in 150 U/ml Heparin and loaded on

Ficoll (GE healthcare). Tubes were centrifuged 920 g in room temperature for 20 min without breaks

and Buffy coats were collected and washed with cold PBS. Cells were sorted according to the follow-

ing parameters: CD45+ CD11b+ CD115+ Ly6C+/-.

Flow cytometry analysis
Samples were suspended and incubated in staining medium (PBS without calcium and magnesium

with 2% heat-inactivated Fetal Calf/Bovine Serum (FCS/FBS) and 1 mM EDTA) containing fluorescent

antibodies. Following incubation, cells were washed with staining buffer only or staining buffer with

DAPI, centrifuged, filtered through 80 mm filter and read. For FACS analysis, LSRFortessa (BD Bio-

sciences) was used. For cell sorting, FACSAria III or FACSAria Fusion (BD Biosciences) were used.

Results were analyzed in FlowJo software (Tree Star). Staining antibodies (clones indicated within
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brackets): anti-CD45 (30-F11), CD11b (M1/70), CD115/CSF-1R (AF598), Ly-6C (HK1.4), CD64/FcgRI

(X54-5/7.1), CD11c (N418), anti-I-Ab (MHCII) (AF6-120.1), DAPI.

RNA sequencing and analysis
RNA-seq of populations was performed as described previously (Diehl et al., 2013; Jaitin et al.,

2014). Cells were sorted into 100 ml of lysis/binding buffer (Life Technologies) and stored at 80˚C.

mRNA was captured using Dynabeads oligo(dT) (Life Technologies) according to manufacturer’s

guidelines. A derivation of MARS-seq (Jaitin et al., 2014) was used to prepare libraries for RNA-

seq, as detailed in Shemer et al. (2018). RNA-seq libraries were sequenced using the Illumina Next-

Seq 500. Raw reads were mapped to the genome (NCBI37/mm9) using hisat (version 0.1.6). Only

reads with unique mapping were considered for further analysis. Gene expression levels were calcu-

lated and normalized using the HOMER software package (analyzeRepeats.pl rna mm9 -d < tagDir >

count exons -condenseGenes -strand + -raw). Gene expression matrix was clustered using k-means

algorithm (MATLAB function kmeans) with correlation as the distance metric. PCA was performed by

MATLAB function pca. Gene ontology was performed by DAVID (https://david.ncifcrf.gov). Data on

molecules and pathways was partly obtained by Ingenuity Pathway Analysis (IPA), Ingenuity Target

Explorer, Qiagen and Metascape Pathway analysis (Zhou et al., 2019).

Statistics
Results are presented as mean ± SEM. Statistical analysis was performed using Student’s t test. *

p-value<0.05 ** p-value<0.01 *** p-value<0.001.
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