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Abstract
Background: Although bacteria are implicated in the pathogenesis of chronic inflammatory bowel
diseases (IBD), mechanisms of intestinal injury and immune activation remain unclear. Identification
of adherent-invasive Escherichia coli (AIEC) strains in IBD patients offers an opportunity to
characterize the pathogenesis of microbial-induced intestinal inflammation in IBD. Previous studies
have focused on the invasive phenotype of AIEC and the ability to replicate and survive in
phagocytes. However, the precise mechanisms by which these newly identified microbes penetrate
the epithelial lining remain to be clarified. Therefore, the aim of this study was to delineate the
effects of AIEC, strain LF82 (serotype O83:H1) on model polarized epithelial monolayers as a
contributor to intestinal injury in IBD.

Results: Infection of T84 and Madin-Darby Canine Kidney-I polarized epithelial cell monolayers
with AIEC, strain LF82 led to a reduction in transepithelial electrical resistance and increased
macromolecular (10 kilodalton dextran) flux. Basolateral AIEC infection resulted in more severe
disruption of the epithelial barrier. Increased permeability was accompanied by a redistribution of
the tight junction adaptor protein, zonula occludens-1, demonstrated by confocal microscopy and
formation of gaps between cells, as shown by transmission electron microscopy. After 4 h of
infection of intestine 407 cells, bacteria replicated in the cell cytoplasm and were enclosed in
membrane-bound vesicles positive for the late endosomal marker, LAMP1.

Conclusion: These findings indicate that AIEC, strain LF82 disrupts the integrity of the polarized
epithelial cell barrier. This disruption enables bacteria to penetrate into the epithelium and replicate
in the host cell cytoplasm. These findings provide important links between microbes related to IBD,
the intestinal epithelial cell barrier and disease pathogenesis.

Background
The inflammatory bowel diseases (IBD), Crohn disease
and ulcerative colitis, are relatively common chronic dis-
orders considered to develop due to an aberrant immune

response to intestinal microbes in a genetically suscepti-
ble host [1]. Human data and murine models both impli-
cate the involvement of luminal bacteria in IBD
pathogenesis. For example, inflammation is induced by
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direct delivery of fecal material into non-inflamed bowel
loops in susceptible individuals [2] and diversion of feces
results in distal improvement in mucosal inflammation
[3]. In addition, most of the genes associated with suscep-
tibility to IBD, including NOD2/CARD15, Atg16L1 and
IRGM encode proteins involved in host-microbial interac-
tions [4]. Further support for the involvement of microbes
in the pathogenesis of IBD is based on the observation
that colitis does not occur in most gene knock-out models
of IBD when animals are reared in germ-free conditions
[5,6].

Recent advances in molecular techniques have identified
a reduction in the phyla Firmicutes and Bacteroidetes in
IBD patients [7]. Although several organisms have been
proposed as a cause of IBD, there is still no compelling
evidence that any one specific microbe is the etiologic
agent. Mycobacterium avium subspecies paratuberculosis
has been suggested by some investigators [8], although
this remains an area of ongoing controversy [9]. Most
recently, absence of Faecalibacterium prausnitzii from the
ileum of patients with Crohn disease undergoing surgical
resection was associated with recurrence of disease, sug-
gesting a protective role for this commensal organism
[10].

Observations linking IBD to an increase in adherent
Escherichia coli strains have also been recognized over the
past decade [11]. Invasive properties of some of these iso-
lates, including E. coli strain LF82 (serotype O83:H1), led
to the proposition that adherent-invasive E. coli strains
(also termed AIEC) are involved in disease pathogenesis
[12]. Such an association is supported by the isolation of
AIEC from 36% of ileal lesions in post-surgical resection
Crohn disease patients, compared to just 6% of healthy
controls [13], accompanied by increased prevalence and
diversity of AIEC strains in patients with Crohn disease
[14]. Although some of the mechanisms by which these
bacteria lead to colonization and intestinal injury, such as
induction of carcinoembryonic antigen-related cell-adhe-
sion molecule (CEACAM)-6 receptor expression by TNF-α
[15], have been well characterized, other virulence traits
remain to be determined.

Defects in the structure and function of apical junctional
complexes (AJCs) are implicated in both patients with
IBD and in animal models of IBD [16,17]. In this context,
the adverse effects of microbes on intercellular junctions
offer potential bridges connecting bacteria to the patho-
genesis of IBD. Barrier dysfunction precedes the relapse of
Crohn disease in asymptomatic patients [18] and is also
seen in unaffected first-degree relatives, who are at
increased risk of subsequently developing the illness [19].
Recent studies demonstrate specific distribution patterns
of the tight junction proteins claudin 2, 3, 4, 5, & 8 in IBD

patients, which correlate with increased gut permeability
[20,21]. For these reasons, the aim of this study was to
define the ability of AIEC strain LF82 to disrupt model
epithelial cell polarized monolayers. We describe herein
increased permeability of polarized epithelia infected
with AIEC as well as morphologic disruption of apical
junction complexes.

Methods
Epithelial cells in tissue culture
T84 and Madin-Darby Canine Kidney (MDCK)-I cells are
polarized epithelial cells that form AJCs, resulting in high
electrical resistance, and are widely used for studying the
effects of bacteria on permeability [22,23]. T84 human
colon cancer epithelial cells were cultured in Dulbecco's
minimal essential medium (DMEM)/F-12, 10% heat-
inactivated fetal bovine serum (FBS), 2% penicillin-strep-
tomycin, 2% sodium bicarbonate and 0.6% L-glutamine.
MDCK-I cells were grown in DMEM, 10% FBS and 2%
penicillin-streptomycin (all from Gibco, Grand Island,
NY). Cells were maintained in 25 cm2 flasks (Corning
Glass Works, Corning, NY) and then grown on 12-well
Transwells (6.5 mm diameter; 3 μm pore size; 37°C; 5%
CO2; Corning) or 24-well plates (Corning). Non-polar-
ized intestine 407 (human fetal intestine) cells were culti-
vated in Minimal Essential Medium (MEM), 10% FBS and
2% penicillin-streptomycin (Gibco).

Bacterial strains
Enterohemorrhagic E. coli (EHEC), strain CL56 serotype
O157:H7 [24], non-pathogenic E. coli, laboratory strain
HB101, used as a negative control, and adherent-invasive
E. coli (AIEC), strain LF82 serotype O83:H1, a generous
gift from Dr. Darfeuille-Michaud (Université d'Auvergne,
Clermont-Ferrand, France) [13] were stored at -80°C and
re-grown on 5% sheep blood agar plates at 37°C. Colo-
nies were transferred from plates into Penassay broth and
incubated at 37°C for 18 h, and re-grown in 10:1 fresh
Penassay broth (3 h; 37°C). Multiplicity of infection
(MOI) used for all experiments was 100:1. To determine
whether live bacteria were required for the observed
effects, bacterial suspensions were either boiled at 100°C
for 30 min or fixed with formaldehyde for 6 h prior to
infection of cell monolayers.

Measurement of transepithelial electrical resistance (TER) 
and macromolecular permeability
MDCK-I and T84 cells were plated onto Transwells (5 ×
104 or 2 × 105 cells/well, respectively; 6.5 mm diameter;
0.4 μm-pore size; Corning) and grown until AJCs devel-
oped (as indicated by a TER > 1,000 Ω·cm2). Twenty four
hours prior to infection the tissue culture medium was
removed and fresh medium without antibiotics, but with
FBS, was added. FBS was maintained throughout the
infection period. Transwells were then infected with either
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EHEC O157:H7, E. coli HB101 or AIEC (MOI: 100:1;
37°C; 5% CO2) introduced either to the apical or basola-
teral aspect of the Transwell. Sham control monolayers
were treated in an identical fashion, excluding the addi-
tion of bacteria. TER was measured prior to and 16 h after
infection, using a Millicell-ERS Voltmeter and chopstick
electrodes (Millpore, Bedford, MA). TER of Transwells
without cells was 32 Ω·cm2. Results are expressed as a per-
centage, relative to sham control wells.

Dextran flux was used to measure paracellular macromo-
lecular permeability [25]. After 16 h of infection, monol-
ayers were washed four times with phosphate-buffered
saline (PBS) and infrared-labeled dextran (10-kDa; 0.2 ml
of 0.1 mg/ml in DMEM; Alexa-Fluor 647, Molecular
Probes, Eugene, OR) was then inserted into the apical
compartment of Transwells. After 5 h at 37°C, the basal
compartment was sampled, diluted 1:20, and loaded into
96-well plates for infrared signal quantification using an
imaging system at 700 nm (Odyssey®, Licor, Rockford, IL).
Integrated intensities were expressed relative to sham con-
trol polarized monolayers.

Confocal microscopy for zonula occludens-1 (ZO-1) and 
lysosomal-associated membrane protein (LAMP)-1
For ZO-1 staining, MDCK-I cell monolayers were grown
to confluence (TER >1,000 Ω·cm2) on 6.5 mm Transwells
and then infected with AIEC, strain LF82 at a MOI of
100:1 for 16 h at 37°C. Monolayers were then washed 4
times with PBS and fixed with 100% cold methanol for 10
min at 4°C, blocked with 5% skim milk (Santa Cruz Bio-
technology, Santa Cruz, CA) for 1 h at room temperature
and then incubated with primary rabbit anti-ZO-1 anti-
bodies (1:50, Zymed, Burlington, Ontario, Canada) for 1
h at room temperature. After rinsing 3 times for 10 min
with PBS, cell monolayers were incubated with secondary
antibodies, Cy2-goat anti-rabbit (1:200, Zymed), for 1 h
at 20°C. After two further washes, 300 nM of 4',6-diamid-
ino-2-phenylindole (DAPI, 1:36,000, Invitrogen, Eugene,
ON) was added for 5 min, and rinsed off twice. Mem-
branes supporting the monolayers were then excised and
mounted onto glass slides (using DakoCytomation
Mounting Medium, Carpentaria, CA).

For LAMP1 staining, intestine 407 cells were grown on
glass cover slips in 24-well plates overnight and then
either left uninfected or infected with AIEC, strain LF82
for 4 h at 37°C (MOI 100:1). Wells were washed 3 times
with PBS (pH 7.0) and fixed with 4% paraformaldehyde
in PBS for 20 min at 20°C. Wells were then washed with
PBS and permeabilized with Triton-X 100 (0.1% in PBS;
20 min at 20°C) and blocked overnight with 5% skim
milk (Santa Cruz) at 4°C. Wells were incubated with
mouse monoclonal anti-LAMP1 antibodies (1 in 1,000
dilution; Developmental Studies Hybridoma Bank, Iowa

City, IA) for 1 h at 20°C, washed 5 times in PBS and then
incubated with secondary antibody, Cy3-goat anti-mouse
(1:100, Zymed) for 1 h at 20°C. DAPI staining was per-
formed, as detailed above, and coverslips mounted onto
glass slides.

All samples were examined using a Leica DMIRE2 Quo-
rum spinning disk confocal scan head inverted fluores-
cence microscope (Wetzlar, Germany), equipped with a
Hamamatsu Back-Thinned EM-CCD camera (Hama-
matsu, Japan), at 63× objective. Images were acquired and
analyzed using Velocity 3.7.0 acquisition software
(Improvision, Coventry, England).

Transmission electron microscopy
Confluent MDCK-I Transwells were left uninfected or
infected with AIEC, strain LF82 (MOI: 100:1; 4 h or 48 h;
37°C). Support membranes were washed, excised and
cells fixed in formaldehyde (4%) and glutaraldehyde
(1%) in phosphate buffer, and then post-fixed in osmium
tetroxide (1%; 2 h; 20°C). Specimens were dehydrated in
a graded series of acetone, and subsequently infiltrated
and embedded in Epon-Araldite epoxy resin. The process-
ing steps from post fixation to polymerization of resin
blocks were carried out in a microwave oven (Pelco Bio-
Wave 34770, Pelco International, Redding, CA). Ultrathin
sections were cut with a diamond knife (Reichert Ultracut
E, Leica Inc., Wetzlar, Germany), stained with uranyl ace-
tate and lead citrate and then examined by transmission
electron microscopy (JEM-1011, JEOL USA Corp., Pea-
body, MA) at 75 kV. Digital electron micrographs were
acquired directly with a 1024 × 1024 pixels CCD camera
system (AMT Corp., Denver, MA).

Statistics
Results are expressed as means ± SEM. N represents the
number of individual experiments. Replicates within
experiments are expressed as a mean for a single experi-
ment. ANOVA and unpaired Student's t-test were con-
ducted using InStat3 (GraphPad, San Diego, CA). Means
were compared using ANOVA and Tukey's post-hoc test.

Results
AIEC infection decreases TER in T84 and MDCK-I 
epithelial cell monolayers
Similar to EHEC O157:H7, apical infection for 16 h with
AIEC, strain LF82 caused a 46% reduction in TER in
human colonic T84 cells (Figure 1A; ANOVA: p < 0.01,
compared with uninfected sham controls). When the
pathogen was introduced into the basolateral aspect of
monolayers there was an 81% reduction in TER, relative
to sham control monolayers, with AIEC infection (p <
0.001), compared to a 50% reduction with EHEC infec-
tion (p < 0.01; t test of AIEC vs. EHEC: p = 0.052). In con-
trast, both apical and basolateral infection of T84
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AIEC, strain LF82 disrupts the integrity of polarized epithelial monolayersFigure 1
AIEC, strain LF82 disrupts the integrity of polarized epithelial monolayers. Model epithelial cell monolayers [T84 
(Panel A) and MDCK-I (Panels B & C)] grown in Transwells were infected with either E. coli, strain LF82 (AIEC) or EHEC 
O157:H7 – employed as a positive control – for 16 h at 37°C. Both apical (black bar histograms) and basolateral (gray bars) 
infections of human intestinal T84 monolayers caused a reduction in TER (Panel A; N = 4–6). Similar effects of infection on 
monolayer integrity were observed when MDCK-I cell monolayers were infected with AIEC, strain LF82 (Panel B), together 
with an increase in permeability to a macromolecular (10-kilodalton) dextran probe, indicating barrier disruption (Panels C; N 
= 2–4). HK denotes heat-killed bacteria. ANOVA: * p < 0.05; ** p < 0.01; *** p < 0.001.

0

20

40

60

80

100

Sham EHEC AIEC

T
E

R
 (

%
 o

f 
c
o

n
tr

o
l)

20

40

60

80

100

T
E

R
 (

%
 o

f 
c
o

n
tr

o
l)

Apical

Basolateral

A

B

**
**

**
**

** ** **

***

0

Sham EHEC AIEC HK-AIEC Fixed-AIEC

0

10

20

30

40

Sham EHEC AIEC HK-AIEC Fixed-AIEC

In
te

g
ra

te
d

 i
n

te
n

s
it

y

 (
re

la
ti

v
e
 f

o
ld

 i
n

c
re

a
s
e
)

C

*



BMC Microbiology 2009, 9:180 http://www.biomedcentral.com/1471-2180/9/180
monolayers with non-pathogenic E. coli, strain HB101 did
not lead to a reduction in TER (N = 2).

Apical and basolateral infections of canine kidney-derived
MDCK-I polarized monolayers with EHEC and AIEC
caused a comparable reduction of 53–73% in TER (Figure
1B; ANOVA: p < 0.01). Live bacteria were required,
because there was no drop in TER with either heat-inacti-
vated or formaldehyde-fixed bacteria (Figure 1B). The
effects were not due to the metabolic activity of bacteria
on epithelial cells, since incubation with tissue culture
medium corrected to pH 6 (the pH of medium after 16 h
of infection) did not reduce TER (N = 2).

Macromolecular permeability increases following AIEC 
infection of MDCK-I monolayers
Transcytosis of a 10-kDa dextran probe across monolayers
supported the TER results. Consistent with previous
reports [26], EHEC O157:H7 caused a dramatic increase
in permeability to dextran, indicating breakdown of the
epithelial barrier. Infection with AIEC also resulted in
increased dextran permeability in MDCK-I cells (ANOVA:
p < 0.05 for basolateral AIEC infection) comparable to
findings seen with EHEC infection (Figure 1C; p > 0.05).
There was a similar, but more modest, increase in perme-
ability of T84 monolayers infected with AIEC (data not
shown). There was no difference in permeability between
apical and basolateral bacterial infections of monolayers
of both cell types. Increases in permeability were not the
result of epithelial cell death, since cells were still present
in monolayers after 16 h of infection (Figure 2B).

AIEC infection alters the distribution of ZO-1
Sham control MDCK-I cells (Figure 2A) demonstrated a
normal distribution of ZO-1, delineating intact apical cel-
lular junction complexes [27]. Consistent with effects on
permeability, 16 h infection of MDCK-I monolayers with
AIEC, strain LF82 (Figure 2B) led to profound disruption
of ZO-1 with large gaps between cells with punctate and
interrupted distribution of ZO-1, indicating disruption of
this integral tight junction protein [28]. Nevertheless, cells
in the monolayer remained viable, as demonstrated by
the presence of nuclei and maintenance of normal cells
shape and morphology.

Disruption of MDCK-I monolayers is accompanied by 
AIEC invasion and bacterial replication
Transmission electron microscopy of infected MDCK-I
monolayers was used to define the effect of AIEC infection
of polarized monolayers. In contrast to sham control epi-
thelial monolayers, which demonstrated tightly placed
cells without expanded intercellular spaces (Figure 3A),
AIEC-infected MDCK-I monolayers were disordered after
4 h of incubation, with spaces evident between adjacent
cells and disruption of intercellular spaces. Loss of cellular

polarity was also observed, as demonstrated by presence
of microvilli on the lateral aspect of infected cells. Further-
more, consistent with previous reports [29], multiple bac-
teria were seen within cells 4 h after infection with
effective replication, indicating that these organisms sur-
vive within the cytoplasm of epithelial cells (Figure 3B).
Extension of bacterial infection to 48 h resulted in pro-
found disruption of the monolayer, with complete sepa-
ration between cells and terminal changes in cells,
including loss of membrane integrity, chromatin conden-
sation and ballooning of mitochondria (Figure 3C). This
effect may be the result of bacterial overgrowth after 48 h
of infection.

Invasive AIEC are found within a membrane-bound, 
LAMP1 positive intracellular compartment
The ability of invasive microbes to survive in cells is
dependent on creating a protective niche for replication
[30]. Invasive AIEC were found in membrane-bound
compartments 4 h after infection (Figure 3D). Presence of
multiple organisms in one compartment suggests that
they can effectively replicate within these vacuoles. Since
the membrane appeared to be partially missing, it is pos-
sible that bacteria were escaping the vacuole.

Confocal microscopy of infected intestine 407 cells, using
an antibody against the late endosomal marker LAMP1,
demonstrated that AIEC co-localized with this marker
after 4 h of infection, indicating that vacuoles containing
invasive AIEC were directed to the endosomal pathway in
epithelial cells (Figure 4).

Discussion
The intestinal barrier is comprised of a single layer of
polarized epithelial cells serving to separate the luminal
content, including microbes, from the underlying
mucosa. Breaches in the epithelial barrier integrity result
in penetration of luminal antigens and microbes, which
stimulate pro-inflammatory responses, leading to chronic
intestinal and systemic diseases, including IBD [1]. The
importance of barrier maintenance in IBD is further high-
lighted by the development of colitis in mice expressing
constitutively active myosin light chain kinase, which is
involved in regulating the epithelial barrier [31]. AJCs are
common targets of bacterial virulence, as displayed by
multiple infection models affecting the integrity of the
epithelial barrier [27]. Targeting of AJCs can be mediated
by either bacterial toxins or effectors, by direct contact of
the pathogen and by indirect effects on signaling path-
ways involved in host regulation of junction-associated
proteins.

Recent research related to microbes isolated from patients
with Crohn disease highlight a role for adherent-invasive
E. coli strains, including strain LF82, in the pathogenesis
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Epithelial tight junctions are disrupted by AIEC infectionFigure 2
Epithelial tight junctions are disrupted by AIEC infection. MDCK-I monolayers were grown to confluence on 6.5 mm 
diameter Transwells and then either left uninfected (sham control; Panel A) or infected with AIEC, strain LF82 (Panel B) at a 
MOI of 100:1 for 16 h. Monolayers were then washed with PBS and fixed, blocked and incubated with primary rabbit anti-ZO-
1 and the appropriate secondary antibody and DAPI. Panel A: Sham control cells showed a normal distribution of ZO-1, out-
lining the intercellular tight junctions. Panel B: AIEC infection resulted in disruption of ZO-1 localization with large gaps 
between cells (arrows). Approximate original magnifications: × 630.
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AIEC disrupts MDCK-I monolayers and replicates in the cell cytoplasmFigure 3
AIEC disrupts MDCK-I monolayers and replicates in the cell cytoplasm. MDCK-I monolayers were either left unin-
fected (sham control; Panel A) or infected with AIEC for 4 h (Panel B & D) and 48 h (Panel C). While uninfected cells 
maintained normal intercellular spaces (Panel A), transmission electron photomicrographs demonstrated disruptions in inter-
cellular junctions between epithelial cells (*), as well as adhesion (black arrow) and invasion and replication (arrowheads and 
white arrow, respectively) of bacteria in 4 h AIEC, strain LF82-infected MDCK-I cells (Panel B). After 48 h of bacterial infec-
tion, monolayers were severely disrupted, accompanied by morphological changes within cells (Panel C). Some of the invasive 
bacteria appeared within membrane-bound vacuoles after 4 h of infection (arrowheads in Panel D). Measurement bar = 1 μ.
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AIEC localizes with late endosomes in infected epithelial cellsFigure 4
AIEC localizes with late endosomes in infected epithelial cells. Intestine 407 cells were infected with AIEC for 4 h and 
then fixed and stained with anti-LAMP1 antibody and DAPI. Multiple bacteria were observed adherent to cells and several inva-
sive organisms (stained by DAPI) were found within the perinuclear region of the epithelial cell in LAMP1 positive compart-
ments (arrows in Panel A). Panel B: enlarged image of dashed insert in Panel A, highlights colocalization of an invasive 
organism with the late endosomal marker LAMP1.
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of IBD [12]. Studies have focused on bacterial adhesion,
invasion and replication in both epithelial cells and mac-
rophages, as well as the accompanying inflammatory
response [32]. For example, epithelial surface adhesions,
such as CEACAMs, mediate attachment of various bacte-
rial pathogens [33]. The association between LF82 and
Crohn disease is linked to up-regulation of CEACAM5
and CEACAM6 by intestinal epithelial cells, which is
induced by LF82 through TNF-α secretion [15]. Neverthe-
less, the ability of these microbes to disrupt the integrity
of the epithelial barrier has not been extensively studied.
Only a single published study describes AIEC-induced
barrier disruption of Caco-2 cells [34]. Therefore, we
employed transformed human colonic T84 cells and
canine kidney MDCK-I cells as model polarized epithelia,
which both express mature apical junctional complex pro-
teins and maintain cell polarity [35], and are used exten-
sively to study host-microbial interactions [22,36].
Furthermore, the utility of polarized epithelial monolay-
ers in the study of AIEC infection was recently reported by
Eaves-Pyles et al. [37] that demonstrated chemokine
secretion by AIEC-infected Caco-2 and T84 monolayers
leading to transmigration of immune cells.

Our findings indicate that infection of polarized monol-
ayers with AIEC, strain LF82 leads to disruption of epithe-
lial cell monolayers, as demonstrated by both reduced
transepithelial electrical resistance and increased macro-
molecular permeability, as well as morphological defects
in the structure of the AJCs of infected monolayers. The
ability of invasive bacteria to disrupt monolayer integrity
is described for some intestinal pathogens, such as Shigella
flexneri, Listeria monocytogenes [38] and Campylobacter
jejuni [39], while other bacteria, such as Helicobacter pylori,
appear to alter AJCs without entering into the cytoplasm
[28]. Since AIEC strains are associated with IBD, host cell
invasion and barrier disruption, as presented in this study,
are mechanisms that could contribute to intestinal injury
and immune stimulation in affected patients.

Sasaki et al. [34] demonstrated the ability of LF82, as well
as other AIEC strains, to reduce TER of Caco-2 monolayers
and displace both ZO-1 and E-cadherin from AJCs. Our
results confirm these findings in additional polarized epi-
thelial cell lines and also reveal an increase in macromo-
lecular permeability of infected monolayers. In addition,
we show that introducing bacteria to the basolateral sur-
face of T84 monolayers leads to a more profound reduc-
tion in TER. The significance of this finding is highlighted
by the suggestion that other enteric pathogens, such as C.
jejuni, enter epithelial cells through the basolateral mem-
brane [40].

Our findings show that AIEC can replicate in membrane-
bound vesicles, which positively stain with the late endo-

somal marker LAMP1. Similar to these findings, previous
work suggests that strain LF82 is present in vacuoles in
epithelial cells after invasion, but is also seen in the cyto-
plasm, suggesting that these bacteria can escape from the
vacuoles [29]. Nevertheless, the phagocytic pathway
involved in AIEC invasion of epithelial cells has not been
characterized. Similar to our findings in epithelial cells,
LF82 co-localizes with LAMP1 in infected macrophages
[41], suggesting that there are common features in the
intracellular fate of these microorganisms in different cell
types.

The ability of AIEC to survive and replicate within the
cytoplasm of epithelial cells is of relevance in IBD, since
defects in the handling of intercellular microbes are con-
sidered to contribute to disease pathogenesis [11]. For
example, absence of NOD2 in transgenic mice results in
increased susceptibility to infection with intracellular
pathogens, such as Mycobacterium tuberculosis [42]. Fur-
thermore, the autophagy protein Atg16L1, which is also
implicated in the pathogenesis of IBD [43], is involved in
inflammatory responses to invasive microbes. Mice lack-
ing Atg16L1 are more susceptible to chemically-induced
colitis than wild-type animals subject of the same stress
[44]. Therefore, it is plausible that defective handling of
invasive AIEC strains in patients with IBD who have
genetic mutations linked to defects in microbial process-
ing contributes to intestinal injury, as suggested by
increased response of monocytes from Crohn disease
patients with NOD2 mutations to AIEC infection in vitro
[45]. The findings of our study support the ability of AIEC
to subvert one of the first lines of host innate defence, the
epithelial cell barrier.

Taken together, these findings provide an improved
understanding of mechanisms leading to intestinal injury
and chronic immune stimulation by an AIEC bacterial
strain that has been linked to IBD pathogenesis. Further
insight into the mechanisms of epithelial barrier disrup-
tion and subversion of host defenses by intestinal patho-
gens is essential for developing novel strategies to
interrupt the infectious process and thereby prevent its
complications, including IBD.

Conclusion
The invasive E. coli strain LF82, which is linked to IBD,
disrupts AJCs of polarized epithelial monolayers and
leads to increased macromolecular permeability and mor-
phological interruption of intercellular tight junctions.
After invasion into epithelial cells, the bacteria replicate
within late endosomes. These findings contribute to cur-
rent understanding of bacterial-mediated processes
related to the pathogenesis of IBD and offer potential tar-
gets for intervening early in the course of the disease proc-
ess.
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