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Chemotherapy induced peripheral neuropathy (CIPN) is an often severe and debilitating

complication of multiple chemotherapeutic agents that can affect patients of all ages,

across cancer diagnoses. CIPN can persist post-therapy, and significantly impact the

health and quality of life of cancer survivors. Identifying patients at risk for CIPN is

challenging due to the lack of standardized objective measures to assess for CIPN.

Furthermore, there are no approved preventative treatments for CIPN, and therapeutic

options for CIPN remain limited once it develops. Biomarkers of CIPN have been studied

but are not widely used in clinical practice. They can serve as an important clinical tool

to identify individuals at risk for CIPN and to better understand the pathogenesis and

avenues for treatment of CIPN. Here we review promising biomarkers of CIPN in humans

and their clinical implications.

Keywords: chemotherapy-induced peripheral neuropathy (CIPN), paclitaxel, vincristine, bortezomib, biomarkers,
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INTRODUCTION

Chemotherapy induced peripheral neuropathy (CIPN) is a common and debilitating toxicity
of cancer therapy. CIPN manifests with distal sensory and motor impairments, including pain,
paresthesia, numbness, weakness, stiffness, and muscle atrophy (1), and can lead to impaired
physical function and quality of life in cancer survivors (2–4). Patients at risk for CIPN range from
children to adults, and span multiple cancer diagnoses (1, 5). Classes of chemotherapy implicated
in CIPN include platinums, taxanes, vinca alkaloids, proteosome inhibitors, and angiogenesis
inhibitors (5). As many a 68% of adult patients receiving neurotoxic chemotherapy develop CIPN,
with one third of cases persisting post-therapy (6).

Despite the high prevalence and morbidity associated with CIPN, there are significant
barriers to diagnosis and treatment. There is no standardized measure for CIPN, and current
measures have limitations (7, 8). Objective measures including nerve conduction studies and the
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Total Neuropathy Score (TNS) can be invasive and time
consuming, while patient-reported measures can be biased
by subjective responses (8). Further, there are no approved
treatments to prevent CIPN, and limited therapeutic options
once it develops (9).

Biomarkers offer a novel approach to objectively identifying
and risk-stratifying patients with CIPN and can provide insight
into pathogenesis and treatment. Although studies of biomarkers
of CIPN have increased over the past decade, they are still not
part of routine clinical care. We present a review of promising
biomarkers of CIPN in humans, and their implication for clinical
care and future studies.

PROTEIN/MOLECULAR BIOMARKERS OF
CIPN

Increasing studies are identifying alterations in serum proteins
and molecular markers in CIPN patients (Figure 1).

Neurofilament Light Chain (NfL)
NfL is a neuronal cytoskeletal protein released with axonal
damage (10). NfL was initially described as a marker
of neurodegenerative diseases (11), and later of inherited
neuropathies, and CIPN in animal models (10, 12).

Recently NfL has been studied in adults with CIPN. A
prospective study of 43 patients receiving oxaliplatin evaluated
serum NfL and CIPN severity by nerve conduction studies
throughout therapy (13). Mean serum NfL levels increased over
time, with significant differences in serumNfL between low grade
(0–2) CIPN vs. high grade (≥3) CIPN at 6 months, and a cut-off
of 195 pg/ml being 80% sensitive and 86.2% specific to identify
high grade CIPN (13).

Brain Derived Neurotrophic Factor (BDNF)
BDNF is a protein that promotes neuronal survival (14, 15).
BDNF was associated with CIPN in 25 bortezomib-treated
multiple myeloma patients evaluated for CIPN using the reduced
Total Neuropathy Score (TNS-r) before and during therapy (16).
Eight participants who developed CIPN had lower mean BDNF
levels (2.16 ± 0.72 vs. 4.62 ± 0.61 ng/ml, p = 0.007), and were
more likely to have a reduction from baseline BDNF (−1.67
± 0.67 vs. 0.41 ± 0.71, p = 0.02) than those without CIPN
(16). Similarly in 91 multiple myeloma patients treated with
bortezomib or thalidomide lower BDNF levels during treatment
were associated with CIPN by Common Terminology Criteria for
Adverse Events (CTCAE), and a cut-point of 9.11 ng/ml was 76%
sensitive and 71.4% specific to identify CIPN (17). Correlation
between BDNF levels and CIPN by TNS-r was also reported in 22
non-Hodgkin lymphoma patients treated with vincristine (18).

Single nucleotide polymorphisms (SNPs) in BDNF may also
confer increased risk for CIPN in individuals with Met/Met or
Val/Met vs. Val/Val genotype (17–20). This association has been
shown in bortezomib (16), and taxane-treated patients (20). A
study of 35 breast cancer patients treated with taxanes, however,
found the risk may be due to increased prevalence of baseline
neuropathy, with no difference in prevalence of CIPN between
genotypes when excluding patients with baseline neuropathy

(21). There was also no association between the met-BDNF
genotype and CIPN in 22 non-Hodgkin lymphoma patients
treated with vincristine (18).

Nerve Growth Factor (NGF)
NGF is a protein that also regulates neuronal survival (22). In
23 cancer patients receiving taxanes or platinums NGF levels
decreased after four to six cycles of chemotherapy, and decline
was associated with severity of CIPN by nerve conduction studies
(23). Similarly in 129 plasma samples from 34 women treated
for cervical cancer with paclitaxel and cisplatin, decrease in NGF
from baseline was associated with CIPN severity by TNS (24). A
prospective study of 45 patients with hematologic malignancies
treated with bortezomib, thalidomide, or vincristine, also found
there was a significant decrease in NGF in participants who
developed CIPN symptoms, whereas there was no change in
NGF in participants who did not develop CIPN symptoms (25).
In contrast, in a study specifically evaluating neuropathic pain
in 60 patients treated with platinum or taxane therapy, the 13
patients who developed painful neuropathy had higher NGF
levels post-therapy than those without neuropathic pain (26).

Osteopontin
Osteopontin is a glycoprotein involved in inflammatory
pathways and has been implicated in cancer progression (27).
It has been described as a marker of inflammation in other
neurologic conditions included multiple sclerosis (28), and has
also been implicated in neuronal repair (29). In a study of 50
breast cancer patients treated with taxanes evaluated by the
TNS-r lower baseline levels of osteopontin were associated with
developing moderate or severe CIPN, and baseline osteopontin
levels were inversely associated with the magnitude of change in
nerve conduction over time (30).

Inflammatory Markers
The immune system has increasingly been implicated in CIPN in
animal models (31, 32), but few studies examine the association
of immune markers with CIPN in humans. In 67 breast cancer
patients treated with taxanes there was a higher peripheral blood
neutrophil-to-lymphocyte ratio in patients with CIPN than those
without CIPN (33). In an analysis of cytokines in 55 breast cancer
patients treated with taxane and platinum chemotherapy, high
IFN-γ, IL-1β, and IL-8 and low IL-10 and IL-6 were associated
with CIPN symptoms (34).

MicroRNA, Proteomics, and Metabolomics
A recent approach to biomarker discovery in CIPN has
included microRNA and exosome sequencing. In a preclinical
model, miRNA-124 was associated with CIPN in mice treated
with paclitaxel (35). MicroRNA may be a promising marker
in humans as well, in cross-sectional analysis of microRNA
expression in 84 breast cancer patients treated with paclitaxel,
15 microRNAs were identified with a significant fold change
between CIPN and non-CIPN groups, and miRNA-451a was the
most discriminatory (36). Mass spectrometry-based proteomic
technology is another novel approach to biomarker discovery
used to identify protein signatures associated with CIPN. In a
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FIGURE 1 | Serum markers of CIPN and their role in CIPN pathogenesis. Adapted from “Neuron Anatomy,” by BioRender.com (2022). Retrieved from https://app.

Biorender.com/biorender-templates. CIPN, chemotherapy-induced peripheral neuropathy; BDNF, brain derived neurotrophic factor; NGF, nerve growth factor; OPN,

osteopontin.

study of 17 patients with breast cancer treated with taxanes, 12
protein signatures identified patients who developed CIPN (37).

GENETIC BIOMARKERS OF CIPN

Genetic alterations are increasingly studied as predictors of
disease toxicity. The following genetic alterations have been
implicated in susceptibility to CIPN (Table 1).

Genes Associated With Microtubule
Function
Taxanes and vinca alkaloids interfere with microtubule function
and may lead to CIPN pathogenesis (1, 73), therefore genes
encoding microtubule function have been studied as predictors
of CIPN sensitivity. An SNP in CEP72 (rs924607) is associated
with CIPN in children and adults (38–41). In 48 adults with acute
lymphoblastic leukemia (ALL) receiving vincristine, 75%with the
TT genotype developed CIPN vs. 44% with CC or CT genotypes
(39). In a combined sample of pediatric ALL patients treated with
vincristine in two large therapeutic trials, the TT genotype was
also associated with an increased risk for CIPN (38). This finding
was replicated when measuring CIPN with nerve conduction
studies (41), and in a separate cohort of pediatric ALL patients
(40). However, other studies evaluating CEP72 alterations did

not find associations with CIPN in cohorts of Spanish and Arab
patients treated with vincrisitne (74, 75). Additionally, there was
no association of CEP72 alterations with CIPN in patients treated
with taxanes (43).

A polymorphism in TUBB2A, encoding tubulin, was
associated with CIPN in 1,303 European patients treated with
paclitaxel (42). However this finding has not been replicated in
other studies of taxanes and vinca alkaloids (43, 76). Individual
polymorphisms in MAPT (43, 76) and GSK3B (43) have not
been associated with CIPN in patients treated with taxanes or
vinca alkaloids, however additive polymorphisms in MAPT
and GSK3B were associated with patient and clinician reported
CIPN in 454 ovarian cancer patients treated with paclitaxel and
carboplatin (43). SNPs in cytoskeletal protein genes, ACTG1 and
CAPG, have also been associated with CIPN in pediatric ALL
patients treated with vincristine (44).

Genes Associated With Ion Channels
Disturbance in neuronal function through ion channels may
also contribute to CIPN, and alterations in these genes have
been associated with CIPN sensitivity (1, 73, 77). In 186
Japanese breast and ovarian cancer patients treated with taxanes
a SNP in SCN9A, encoding voltage-gated sodium channels,
was associated with developing ≥grade 2 CIPN, and predicted
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TABLE 1 | SNPs associated with CIPN sensitivity.

Proposed Action Gene rsID Associated Chemotherapy CIPN Instrument References

Microtubule function CEP72 rs924607 Vincristine CTCAE, NCS (38–41)

TUBB2A rs9501929 Paclitaxel CTCAE (42)

MAPT Additive SNPS Paclitaxel, carboplatin EORTCQLQ-OV28 (43)

GSK3B Additive SNPS Paclitaxel, carboplatin CTCAE (43)

ACTG1 rs1135989 Vincristine CTCAE (44)

CAPG rs229668 Vincristine CTCAE (44)

Drug metabolism/transport CYP3A5 rs776746 Vincristine CTCAE (45)

CYP3A4 rs2740574 Paclitaxel, docetaxel CTCAE (46)

CYP2C8 rs10509681 Paclitaxel CTCAE (47)

rs1058930 Paclitaxel CTCAE (42)

CYP1B1 rs1056836 Paclitaxel CTCAE (42)

NR1I3 rs11584174 Paclitaxel CTCAE (48)

UGT2B7 rs7662029 Docetaxel CTCAE (48)

rs7438284 Docetaxel CTCAE (48)

rs7439366 Docetaxel CTCAE (48)

rs7668258 Docetaxel CTCAE (48)

ABCB1 rs3213619 Paclitaxel CTCAE (42)

rs4728709 Vincristine CTCAE (44)

rs1128503 Paclitaxel, docetaxel CTCAE (46)

rs1045642 Paclitaxel CTCAE (49)

rs10244266 Vincristine WHO criteria (50)

rs10274587 Vincristine WHO criteria (50)

rs10268314 Vincristine WHO criteria (50)

rs2032582 Docetaxel, thalidomide CTCAE (51)

SLCO1B1 rs3829306 Paclitaxel CTCAE (42)

ABCC1 rs2384937 Bortezomib Not specified (52)

rs35604 Bortezomib Not specified (52)

rs3887412 Vincristine NCI CTCAE (53)

rs11864374 Vincristine WHO criteria (50)

rs3743527 Vincristine WHO criteria (50)

rs1967120 Vincristine WHO criteria (50)

rs17501331 Vincristine WHO criteria (50)

rs1293345 Vincristine WHO criteria (50)

rs11642957 Vincristine WHO criteria (50)

rs374867 Vincristine CTCAE (40)

ABCC2 rs3740066 Vincristine WHO criteria (50)

rs12826 Vincristine WHO criteria (50)

ABCC6 rs8058696 Bortezomib Not specified (52)

ABCG2 rs144018 Oxaliplatin CTCAE (54)

PSMB1 rs1474642 Bortezomib CTCAE (55)

DPYD rs1413239 Vincristine CTCAE (53)

Ion channels SCN9A rs13017637 Paclitaxel, docetaxel CTCAE (56)

rs6746030 Oxaliplatin TNS (57, 58)

SCN4A rs2302237 Oxaliplatin CTCAE (59)

SCN10A rs1262392 Oxaliplatin CTCAE (59)

Inflammatory pathways FCAMR rs1856746 Paclitaxel CTCAE (60)

CTLA4 rs4553808 Bortezomib CTCAE (55)

CTSS rs12568767 Bortezomib CTCAE (55)

IL17RD rs1454981 Bortezomib Not specified (52)

IL10RA rs229113 Bortezomib Not specified (52)

(Continued)
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TABLE 1 | Continued

Proposed Action Gene rsID Associated Chemotherapy CIPN Instrument References

PSMB4 rs7172 Bortezomib Not specified (52)

BTRC rs4151060 Bortezomib Not specified (52)

F2 rs31136516 Bortezomib Not specified (52)

MBL2 rs216810 Bortezomib CTCAE (53)

rs11003127 Bortezomib CTCAE (53)

rs7071882 Bortezomib CTCAE (53)

rs5030737 Vincristine CTCAE (53)

PPARD rs2267668 Vincristine CTCAE (53)

rs7739752 Bortezomib CTCAE (53)

rs6901410 Bortezomib CTCAE (53)

rs6902123 Bortezomib CTCAE (53)

rs6457816 Bortezomib CTCAE (53)

Inherited neuropathies SBF2 rs149501654 Paclitaxel CTCAE (61)

rs117957652 Paclitaxel CTCAE (61)

rs141368249 Paclitaxel CTCAE (61)

rs146987383 Paclitaxel CTCAE (61)

rs7102464 Paclitaxel CTCAE (61)

FZD3 rs7833751 Paclitaxel CTCAE (61)

rs7001034 Paclitaxel CTCAE (62)

FGD4 rs351855 Paclitaxel, docetaxel CTCAE (46)

rs10771973 Paclitaxel CTCAE (62)

ARHGEF10 rs9657362 Paclitaxel CIPN20 (63, 64)

rs2294039 Paclitaxel CIPN20 (63, 64)

rs1768288 Paclitaxel CIPN20 (63, 64)

Neuronal function TAC1 rs10486003 Oxaliplatin CTCAE (65)

COCH rs1045644 Vincristine CTCAE, TNS-PV (66)

SOX10 rs139887 Paclitaxel, carboplatin FACT/GOG-Ntx (67)

GPX7 rs3753753 Paclitaxel, carboplatin FACT/GOG-Ntx (67)

NFATC1 rs9954562 Bortezomib Not specified (52)

NFATC4 rs2228233 Bortezomib Not specified (52)

EDN1 rs5370 Bortezomib Not specified (52)

TCF4 rs1261134 Bortezomib CTCAE (55)

DYNC1I1 rs916758 Bortezomib CTCAE (55)

GJFE1 rs11974610 Bortezomib CTCAE (55)

GNGT1 rs1858826 Paclitaxel CTCAE (68)

EPHA4 rs17348202 Paclitaxel, carboplatin CTCAE (69)

EPHA5 rs7349683 Paclitaxel, carboplatin CTCAE (62, 69–71)

EPHA6 rs301927 Paclitaxel, carboplatin CTCAE (69)

EPHA8 rs209709 Paclitaxel CTCAE (71)

Cell cycle regulation/DNA repair CCNH rs2230641 Oxaliplatin CTCAE, symptom reporting (54, 72)

rs309816 Oxaliplatin Symptom reporting (72)

ERCC3 rs2276583 Bortezomib CTCAE (53)

ERCC4 rs1799800 Bortezomib CTCAE (53)

SNP, single nucleotide polymorphism; CTCAE, National Cancer Institute Common Terminology Criteria for Adverse Events; NCS, nerve conduction studies; EORTCQLQ-OV28, European

Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Ovarian Cancer Module; WHO criteria, World Health Organization criteria; CIPN20, European

Organization for Research and Treatment of Cancer Quality of Life Questionnaire CIPN-20; TNS, Total Neuropathy Score; TNS-PV, Total Neuropathy Score-Pediatric Vincristine;

FACT/GOG-Ntx, Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity.
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CIPN persistence post-treatment (56). In 94 Spanish patients
with gastrointestinal cancer treated with oxaliplatin another
polymorphism in SCN9A was associated with a lower risk of
acute CIPN by neurologic evaluation (57), and in 228 South
Indian gastrointestinal cancer patients treated with oxaliplatin it
was associated with increased incidence of chronic CIPN (58).
In 200 patients with colorectal cancer treated with platinums,
polymorphisms in SCN4A and SCN10A that encode voltage-
gated sodium channels were associated with CIPN risk and
severity (59). SCN10A has also been associated with chronic
CIPN (58). Associations of mutations in voltage-gated potassium
channels with CIPN have not been identified (78).

Genes Associated With Inherited
Neuropathies
Genes implicated in inherited neuropathies have also been
examined in relation to CIPN. SBF2, associated with Charcot-
Marie-Tooth disease, was associated with CIPN in 213 African
American patients treated with paclitaxel (61). However, another
prospective study of 58 paclitaxel-treated patients found FZD3
was associated with CIPN, but not SBF2 (61). In a study of
219 breast cancer patients treated with taxanes, FGD4 was
associated with CIPN (46). In a large prospective study of
855 patients of European Ancestry receiving paclitaxel, another
polymorphism in FGD4 was associated with patient-reported
sensory CIPN, which was replicated in two additional cohorts
(62). In the replication cohorts a different polymorphism in
FZD3 was also associated with sensory CIPN (62). ARHGEF10
was associated with CIPN in a prospective study of 269 cancer
patients treated in Alliance N08C1 that analyzed blood samples
for 49 Charcot-Marie-Tooth genes (63). These findings were
confirmed in 138 patients treated with paclitaxel in Alliance
N08CA (64).

Genes Associated With Inflammatory
Pathways
There is a growing body of literature suggesting inflammation
contributes to CIPN (73, 79, 80), and genetic alterations in
inflammatory pathways have been studied in association with
CIPN. In 3,431 breast cancer patients treated with paclitaxel
a SNP in FCAMR that encodes the FC receptor, trended
toward a significant association with CIPN (60). In 139 patients
treated with bortezomib, variations in genes regulating immune
function, CTLA4 and CTSS, were associated with time to onset
of CIPN, with a similar trend for CTLA4 in a validation
cohort (55). Bortezomib-neuropathy has also been associated
with alterations in IL17RD, IL10RA, and genes in the NF-
KB signaling pathway in 646 patients with multiple myeloma
(52). Late-onset bortezomib-neuropathy was associated with
polymorphisms in other genes in inflammatory pathways,MBL2
and PPARD in 186 myeloma patients (53). In a meta-analysis
of pediatric patients treated with vincristine for ALL from two
large clinical trials rs7963521, associated with coding of the
protein chemerin implicated in inflammatory pathways (66), was
associated with CIPN.

Genes Associated With Drug Metabolism
and Transport
Polymorphisms in genes involved in chemotherapy metabolism
may also increase CIPN sensitivity. In 107 children treated for
ALL with vincristine CYP3A5 polymorphisms were associated
with CIPN (45). SNPs in CYP2C8 and CYP3A4 were associated
with ≥grade 2 CIPN in two studies of breast cancer patients
treated with taxanes (46, 47). In 79 breast cancer patients
treated with taxanes SNPs in NR1I3 and UGT2B7 involved in
drug metabolism were also associated with CIPN (48). In 1,303
patients treated with taxanes, additional SNPs in genes involved
in taxane metabolism including, CYP2C8∗4 and CYP1B1∗3,were
associated with CIPN, as were, ABCB1 and SLCO1B1, involved
in drug transport (42). In multiple myeloma patients treated
with bortezomib, alterations in PSMB1, encoding drug binding
proteins (55), and ABCC1 and ABCC6, encoding drug transport,
were also associated with CIPN (52). However, in a separate study
of 369 multiple myeloma patients ABCC1 polymorphisms were
not associated with bortezomib-neuropathy, but were associated
with vincristine-neuropathy, as was DPYD responsible for drug
excertion (53). ABCC1 polymorphisms have also been associated
with CIPN in pediatric ALL patients treated with vincristine
(40, 50). Alterations in, ABCB1, encoding drug transport, has
also been widely associated with CIPN in patients treated with
vincristine and taxanes (44, 46, 49–51), and alterations in ABCC2
are associated with CIPN in children treated with vincristine
(50). An alteration in ABCG2, involved in oxalate metabolism,
was associated with oxaliplatin-induced neuropathy in 206 colon
cancer patients (54).

Other Genetic Alterations Associated With
CIPN
Genes involved in nervous system development and function,
and in cellular repair pathways, have also been associated
with CIPN.

Alterations in genes encoding ephrin receptors (EPHA4,
EPHA5, EPHA6, EPHA8), a family of tyrosine kinase receptors
involved in neural development, are associated with CIPN
in patients treated with taxanes (62, 69–71, 81). An SNP in
TAC1, encoding neuronal signaling hormones, was associated
with CIPN in colon cancer patients treated with oxaliplatin
(65). A polymorphisms in COCH, encoding cochlin involved in
vestibular function and hearing loss, was associated with CIPN
in a study of children with ALL treated with vincristine (82).
Alterations in SOX10, involved in neuronal development, and
GPX7 were associated with CIPN in 107 survivors of gynecologic
cancers treated with taxane or platinum (67). Polymorphisms in
genes involved in nervous system function, NFATC1, NFATC4,
and EDN1 were associated with CIPN in 646 myeloma patients
treated with bortezomib (52), as were TCF4, DYNC1I1, and GJE1
in 139 myeloma patients treated with bortezmib (55). GNGT1
encodes a protein in photoreceptors and has been associated with
taxane-CIPN (68, 83).

Alterations in genes associated with DNA repair are also
associated with CIPN. SNPs in CCNH, encoding cyclin H,
involved in cell cycle progression and DNA repair (84), were
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associated with CIPN in 206 colon cancer patients (54), and
in 228 gastrointestinal cancer patients treated with oxaliplatin
(72). In myeloma patients treated with bortezomib, ERCC4 and
ERCC3 involved in DNA repair were associated with CIPN (53).
In a study of 680 testicular cancer survivors treated with cisplatin,
lower expression of DNA repair gene RPRD1B, was associated
with an increased risk of CIPN, which was replicated in two
independent datasets (85).

PHARMACOKINETICS AND CIPN

Evaluation of drug pharmacokinetics may be another promising
approach to identifying CIPN sensitivity.

Taxane Pharmacokinetics
In 24 patients who received 12 weekly 3 or 1 h infusions
of paclitaxel, longer duration of paclitaxel concentration
>0.05µMwas associated with developing CIPN (86). In another
prospective evaluation of 60 breast cancer patients receiving
weekly paclitaxel infusions neither peak plasma concentration
nor time above concentration of 0.05µM were associated
with CIPN, but were associated with increased toxicity-related
treatment disruptions (87). An early study of lung cancer
patients treated with paclitaxel also found no association between
plasma concentration and neuromuscular or neurosensory
outcomes (88).

Vincristine Pharmacokinetics
An early study of pharmacokinetics in 54 children treated with
vincristine did not find any association between vincristine
clearance and neurotixicy (89). In a subsequent study assessing
pharmacokinetics of vincristine in 74 pediatric patients, lower
vincristine metabolite concentrations were associated with
increased CIPN severity (45). Another study assessed vincristine
pharmacokinetics in 35 patients receiving vincristine via push
or 1 h infusions and found intercompartment clearance of
vincristine was associated with an increased risk of CIPN,
however other pharmacokinetic measures including maximum
concentration were not associated with an increased CIPN
risk (90).

DISCUSSION

We described promising biomarkers of CIPN in humans,
including serum proteins, genetic polymorphisms, and drug
metabolites. There are several limitations to the current studies
and areas for future direction.

Serum protein biomarkers such as NfL, BDNF, NGF,
osteopontin, and inflammatory markers have all been associated
with CIPN, and may be easily translatable tools for detection
and risk profiling in clinical practice (13, 18, 19, 24, 28, 91).
However, these studies have been limited by small samples and
variation in CIPN measurement between studies. Prospective
validation studies of these biomarkers using objective CIPN
measures would be helpful in confirming their clinical utility.
Additionally, preclinical models should continue to be utilized to
identify protein biomarkers that can be validated in humans.

Protein biomarkers can also inform therapeutic options that
should continue to be explored. For example, in a study of
60 patients with bortezomib-neuropathy, patients randomized
to receive NGF injections had better nerve conduction studies
than those who did not receive NGF (92). In paclitaxel-treated
rats, losartan had anti-inflammatory activity that resulted in
lower inflammatory markers and decreased signs of CIPN (31).
In addition to immune pathway targets, there are promising
therapeutic targets that have been identified in critical CIPN
pathways in animal models (73, 93). Neuronal Calcium Sensor-
1 (NCS1), a protein involved in calcium signaling that binds
taxanes and vinca alkaloids, decreases in CIPN in animal models
(94–96). NCS1 may be a therapeutic target since lithium and
ibudilast bind NCS1 and prevent CIPN in animal models (96),
and retrospective studies show lithium may prevent CIPN in
humans (97). Sterile alpha and TIR motif containing protein
(SARM1) is another protein implicated in axonal degeneration
in CIPN in preclinical models (73), and SARM1 inhibition
may prevent CIPN (98, 99). Therefore, preclinical models can
help better understand CIPN mechanisms, not only resulting
in biomarker discovery that can be translated to the bedside,
but also informing therapeutic strategies to prevent and mitigate
CIPN that can be tested in humans.

Genetic polymorphisms are another avenue that offer promise
in identifying individuals at risk for CIPN. CEP72 has been
identified as a risk factor for CIPN in multiple studies (38,
39, 43), and may help classify upfront risk for toxicity. Future
studies should focus on whether treatment modification in at
risk individuals alters toxicity and survival outcomes. Other
genome wide studies identified numerous polymorphisms that
may influence CIPN sensitivity, but few were replicated in
multiple cohorts, therefore future studies should focus on
replicating these findings. Another limitation of genome wide
studies is that they only identify proteins with altered expression,
however in othermodels altered function, rather than expression,
of cellular components are proposed to initiate CIPN (93).
Future studies should continue to elucidate CIPN pathogenesis
through complementary mechanisms of genome wide studies
and functional pathway analyses to identify therapeutic targets
to mitigate this outcome.

Finally, pharmacokinetics is an evolving way to assess
drug response and CIPN susceptibility in individuals receiving
neurotoxic chemotherapy. Although current studies report
mixed results regarding the ability to identify individuals at risk
for CIPN (45, 87, 90), it warrants further exploration. Monitoring
individual plasma drug concentration could offer a novel method
to ensure adequate dosing for cancer treatment while minimizing
risk for CIPN.

A limitation across studies is that there is no standardized
method to define CIPN. We found most studies used CTCAE for
CIPN grading, which lacks sensitivity and can vary by evaluator
(100–102). Patient-reported outcome measures for CIPN have
been validated in adults, and may be more sensitive for detection
and measurement of change over time than the CTCAE (101–
103). However, patient-reported outcomes still have limitations
and do not always correlate with clinical assessments (104). It
is important that future biomarker research incorporate robust,
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validated measures for CIPN that ideally combine patient-report
and clinical evaluations (104).

Overall, there are many promising biomarkers of CIPN that
can be valuable tools to aid in detection, risk stratification, and
drug development. Future studies should prioritize large-scale
validation of these biomarkers using standardized instruments
to measure CIPN and expedite their implementation into
clinical practice.
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